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Abstract: Sepsis is a significant cause of mortality and morbidity and is often associated with increased hospital 
resource utilization, prolonged intensive care unit (ICU) and hospital stay. The economic burden associated 
with sepsis is severe. With advances in medicine, there are now aggressive goal oriented treatments that can 
be used to help these patients. If we were able to predict which patients may be at risk for sepsis we could 
start treatment early and potentially reduce the risk of mortality and morbidity. Analytic methods currently 
used in clinical research to determine the risk of a patient developing sepsis may be further enhanced by 
using multi-modal analytic methods that together could be used to provide greater precision. Researchers 
commonly use univariate and multivariate regressions to develop predictive models. We hypothesized that 
such models could be enhanced by using multi-modal analytic methods that together could be used to 
provide greater precision. In this paper, we analyze data about patients with and without sepsis using a 
decision tree approach. A comparison with a regression approach shows strong similarity among variables 
identified, though not an exact match. We compare the variables identified by the different approaches and 
draw conclusions about the respective predictive capabilities. 

1 INTRODUCTION 

Sepsis is defined as infection plus systematic 
manifestations of infection (Dellinger et al., 2008). 
Severe sepsis is considered present when sepsis co-
exists with sepsis-induced organ dysfunction or 
tissue hypo-perfusion (Dellinger et al., 2008). Sepsis 
can result in mortality and morbidity, especially 
when associated with shock and/or organ 
dysfunction (Angus et al., 2001). Sepsis can be 
associated with increased hospital resource 
utilization, prolonged intensive care unit (ICU) and 
hospital stay, decreased long-term health related 
quality of life and an economic burden estimated at 
US $17 billion each year in the United States alone 
(Brun-Buisson et al., 1995; Salvo et al, 1995; Pittet 
et al., 1995; Angus et al., 2001). In Canada, there are 
limited data on the burden of severe sepsis; however, 
costs in Quebec may be as high as $73M per year 

(Letarte, Longo, Pelletier, Nabonne & Fisher, 2002), 
which contribute to estimates of total Canadian cost 
of approximately $325 M per year. 

Patients with severe sepsis generally receive their 
care in the ICU. A multicentre study of sepsis in 
teaching hospitals found that severe sepsis or septic 
shock is present or develops in 15% of ICU patients 
(Alberti et al., 2002). However, diagnosing sepsis is 
difficult because there is no “typical” presentation 
despite published definitions for sepsis (American 
College of Chest Physicians/Society of Critical Care 
Medicine Consensus Conference 1992; Levy et al., 
2003). 

In the Canadian Sepsis Treatment And Response 
(STAR) registry (mix of teaching and community 
hospitals across Canada), the total rate for severe 
sepsis was 19.0%. Of these, 63% occurred after 
hospitalization.  

With advances in medicine there are now 
aggressive goal oriented treatments that can be used 
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to help these patients (Rivers et al., 2001; Minneci, 
Deans, Banks, Eichacker, & Natanson, 2004; 
Bernard et al., 2001). If researchers were able to 
predict which patients may be at risk for sepsis we 
could start treatment early and potentially reduce the 
risk of mortality and morbidity. Therefore, methods 
that can be developed to help with the early 
diagnosis of patients who either present with sepsis 
or develop sepsis in hospital are needed.  

A variety of analysis techniques can be used to 
identify relationships among a set of measured 
variables or quantities. We hypothesized that 
analytic methods currently used in clinical research 
to determine the risk of a patient developing sepsis 
may be further enhanced by using multi-modal 
analytic methods that together could be used to 
provide greater precision. Researchers commonly 
use univariate and multivariate regressions to gather 
information about variables that are associated with 
the dependent variable, which in this case is whether 
the patient contracted sepsis or not. However, 
sometimes these models are constrained as we either 
use univariate analysis to guide our decision on 
which variable to include or rely on the literature to 
guide the variable selection. Earlier work had looked 
at the use of regression techniques to develop a 
linear predictive model or mortality and length of 
stay, but not sepsis (Martin et al., 2008). 

In this paper, we consider the use of decision tree 
analysis and cluster analysis. Decision trees are 
interesting since they provide a prescriptive 
approach for arriving at a decision with an 
associated probability. In contrast, cluster analysis 
takes a holistic approach to partition the data into 
similar but disjointed sets. We were interested in 
using these approaches to identify the key variables 
or variable sets that can be used to predict the 
likelihood of sepsis or not having sepsis in patients.  

2 DATA IN STUDY 

We obtained data that was collected from 12 
Canadian intensive care units that were 
geographically distributed and included a mix of 
medical and surgical patients (Martin et al., 2008). 
Data were collected on all patients admitted to the 
ICU who had an ICU stay greater than 24 hours or 
who had severe sepsis at the time of ICU admission. 
Patients who were not anticipated to obtain to 
receive active treatment were excluded. 

Hospitals collected a minimum data set on all 
eligible patients admitted to the ICU. This included 
demographic information and data about their 

admission, source of admission, diagnosis, illness 
severity, outcome and length of ICU and hospital 
stay. Illness severity scores were calculated using 
data obtained during the first 24 hours in the ICU 
(Knaus, Draper, Wagner, & Zimmerman, 1985; 
Knaus et al., 1991). All patients were subsequently 
assessed on a daily basis for the presence of 
infection and severe sepsis.  

The management of severe sepsis requires 
prompt treatment within the first six hours of 
resuscitation (Dellinger et al., 2008b). Experts in 
critical care agree that the literature supports early 
goal-directed resuscitation which has been shown to 
improve survival in patients presenting to 
emergency rooms with septic shock (Dellinger et al., 
2008a).  

2.1 Ethical Review, Funding and Data 
Ownership 

The study was approved by the University of 
Western Ontario Research Ethics Board and the 
need for informed consent was waived. Participating 
institutions submitted the study to their review 
process if local approval was required. All activities 
were compliant with the privacy and confidentiality 
practices of the participating institutions and the 
Federal and Provincial governments of Canada. Eli 
Lilly Canada provided a research grant to London 
Health Sciences Centre to support trial coordination, 
data collection, data management and data analysis. 
The investigators and sites retained control and 
responsibility for data collection, analysis and 
interpretation. Data is owned by and resides with 
London Health Sciences Centre. 

3 DECISION TREE APPROACH 

In data mining and machine learning, a decision tree 
is a predictive model, that is, a mapping from 
observations about an item to conclusions about its 
target value. In these tree structures, leaves represent 
classifications and branches represent conjunctions 
of features that lead to those classifications. The 
machine learning technique for inducing a decision 
tree from data is called decision tree learning, or 
(colloquially) decision trees. 

A decision tree is made from a succession of 
nodes, each splitting the dataset into branches. 
Generally, the algorithm begins by treating the entire 
dataset as a single large set and then proceeds to 
recursively split the set. Three popular rules are 
typically applied in the automatic creation of 
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classification trees. The Gini rule splits off a single 
group of as large a size as possible, whereas the 
entropy and twoing rules find multiple groups 
comprising as close to half the samples as possible.  

The algorithms construct the tree from the “top” 
down until some stopping criteria is met. In our 
current approach, we have used the gain in entropy 
in order to determine how to best create each node 
of the tree. 

3.1 Entropy 

In order to define information gain precisely, we 
used a measure commonly used in information 
theory, called entropy, that characterizes the “purity” 
(or, conversely, “impurity”) of an arbitrary 
collection of examples. Generally, given a set S, 
containing only positive and negative examples of 
some target concept (a so-called two-class problem), 
the entropy of set S relative to this simple, binary 
classification is defined as: 

Entropy(S) = - pplog2 pp – pnlog2 pn (1)

where pp is the proportion of positive examples in S 
and pn is the proportion of negative examples in S. In 
all calculations involving entropy we define 0log0 to 
be 0.  

One interpretation of entropy from information 
theory is that it specifies the minimum number of 
bits of information needed to encode the 
classification of an arbitrary member of S (i.e., a 
member of S drawn at random with uniform 
probability).  

If the target attribute takes on c different values, 
then the entropy of S relative to this c-wise 
classification is defined as  

 
(2)

where pi is the proportion of S belonging to class i. 
Note that if the target attribute can take on c possible 
values, the maximum possible entropy is log2c.  

3.2 Information Gain 

Given entropy as a measure of the impurity in a 
collection of training examples, we can now define a 
measure of the effectiveness of an attribute in 
classifying the data. The measure we will use, called 
information gain, is simply the expected reduction in 
entropy caused by partitioning the examples 
according to this attribute. More precisely, the 

information gain, Gain (S, A) of an attribute A, 
relative to a collection of examples S, is defined as  

(3)

where Values(A) is the set of all possible values for 
attribute A, and Sv is the subset of S for which 
attribute A has value v (i.e., Sv = {s ∈  S | A(s) = v}). 
Note the first term in the equation for Gain is just 
the entropy of the original collection S and the 
second term is the expected value of the entropy 
after S is partitioned using attribute A. The expected 
entropy described by this second term is simply the 
sum of the entropies of each subset Sv, weighted by 
the fraction of examples |Sv|/|S| that belong to Sv. 
Gain (S,A) is therefore the expected reduction in 
entropy caused by knowing the value of attribute A. 
Put another way, Gain(S,A) is the information 
provided about the target attribute value, given the 
value of some other attribute. The value of 
Gain(S,A) is the number of bits saved when 
encoding the target value of an arbitrary member of 
S, by knowing the value of attribute A.  

The process of selecting a new attribute and 
partitioning the training examples is now repeated 
for each non-terminal descendant node in the tree, 
this time using only the training examples associated 
with that node. Attributes that have been 
incorporated higher in the tree are excluded, so that 
any given attribute can appear at most once along 
any path through the tree. This process continues for 
each new leaf node until either of two conditions is 
met: 

1. Every attribute has already been included 
along this path through the tree, or  

2. The training examples associated with this 
leaf node all have the same target attribute 
value (i.e., their entropy is zero).  

Some of the variables in the data set are 
continuous variables, such as temperature. These 
require a somewhat special approach. This is 
accomplished by dynamically defining new discrete-
valued attributes that partition the continuous 
attribute value into a discrete set of intervals. In 
particular, for an attribute A that is continuous-
valued, the algorithm can dynamically create a new 
Boolean attribute Ac that is true if A < c and false 
otherwise. The only question is how to select the 
best value for the threshold c. This is done by 
selecting values for the threshold based on the 
existing values of the attribute A and computing the 
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gain. The threshold c that produces the greatest 
information gain is then chosen.  

4 COMPARISON 

In this section we compare the results of the decision 
tree analysis to the results obtained using regression 
techniques. In particular, we were interested in 
which variables were identified as key in 
determining sepsis in the two approaches. 

4.1 Regression Analysis 

Previous work had focused on the analysis of the 
data using regression techniques. From a 
multivariate logistic regression a number of 
variables emerged as significant in the model 
(computed using SAS 8.2). The model was very 
accurate in being able to classify patients not likely 
to get sepsis (99%) and reasonably accurate at 
predicting patients that were likely to get sepsis 
(66%). The variables in the model are summarized 
in Table 1. 

As indicated, we were interested in exploring 
whether a decision tree analysis technique could 
provide additional or at least complementary insight 
into the regression model. 

4.2 Decision Tree Analysis 

The decision tree analysis yielded 9 distinct paths 
that led to a determination of sepsis with high 
probability. The four most frequent of the variables 
associated with sepsis are shaded in Table 2 along 
with all variables that appeared in one of these 9 
paths. 

We tested the accuracy of the tree by randomly 
removing 30 patients, for whom outcomes were 
known, regenerating the tree and then tested the 
accuracy of the tree in predicting whether those 30 
patients would develop sepsis or not. Of the 30 
patients, 6 had developed sepsis. Using the decision 
tree to predict the likelihood of developing sepsis for 
these 6 patients, the tree predicted that 5 would 
develop sepsis with a likelihood of 100% and the 6th 
would develop sepsis with a likelihood of 97%. Of 
the 24 patients that did not develop sepsis, the tree 
predicted their likelihood with values between 0% 
and 1.7%, i.e., that it was very unlikely that these 
patients would develop sepsis. Essentially, the 
decision tree correctly predicted all 30 of the 
patients.  

Table 1: Logistic Regression Model. 

Variables P value Exp(B) 
Anaerobea culture .122 .317 

Abdominal diagnosis .000 15.027 
Blood diagnosis .000 3.574 
Lung diagnosis .000 10.360 
Other diagnosis .000 8.492 
Urine diagnosis .000 7.280 

Chest X-ray and purulent 
sputum .000 2.756 

Gram negative culture .047 .679 
Gram positive culture .001 .533 

Heart rate >90bpm .000 16.933 
No culture growth .000 .103 
PaO2/FiO2 <250 .000 12.305 

pH <7.30 or lactate >1.5 
upper normal with base 

deficit >5 
.141 1.242 

Platelets <80 or 50% 
decrease in past 3 days .000 5.665 

Respiratory rate >19, 
PaCO2 <32 or Mechanical 

ventilation 
.000 8.866 

SBP <90 or MAP <70 or 
Pressure for one hr .000 9.963 

Abdominal culture .259 1.872 
Blood culture .000 2.311 
Lung culture .724 .932 

Other site culture .614 .869 
Urine culture .100 1.450 

Temperature <36 or >38 .000 8.246 
Urinary output <0.5 

mL/kg/hr .000 3.166 

WBC > 12 or <4 or >10% 
bands .000 6.281 

Yeast culture .011 .492 
Constant .000 .000 

Details on the variables and their decision points 
in paths 1, 3, 4 and 9 are provided in Tables 3-6. The 
variables which appear in these 9 paths of the 
decision tree are highlighted in the Table 1 of the 
regression model. 
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Table 2: Decision Tree Analysis. 

Variables Pa
th

1 

Pa
th

2 

Pa
th

3 

Pa
th

4 

Pa
th

5 

Pa
th

6 

Pa
th

7 

Pa
th

8 

Pa
th

9 

Lung diagnosis   √ √  √ √ √ √ 
Chest X-ray and purulent sputum   √       
Temperature <36 or >38 √  √ √ √ √ √ √  
WBC > 12 or <4 or >10% bands √   √  √   √ 
No culture growth   √  √ √ √ √ √ 
Heart rate >90bpm √ √ √ √ √ √ √ √ √ 
SBP <90 or MAP < 70 or pressors for one hour √ √ √ √ √ √ √ √ √ 
PaO2/FiO2 <250 √ √ √ √      
Urinary output <0.5 mL/kg/hr √ √        
pH <7.30 or lactate >1.5 upper normal with base 

deficit >5 √ √        

Respiratory rate >19, PaCO2 <32 or Mechanical 
ventilation  √   √    √ 

Other diagnosis      √ √   
Abdominal diagnosis      √ √ √  
Platelets <80 or 50% decrease in past 3 days √ √        

Note: Underlined check marks are for ‘Yes’ 

 
Table 3: Decision Tree Analysis Path-1. 

Variables in the path  
Platelets <80 or 50% decrease in past 3 days Yes 

pH <7.30 or lactate >1.5 upper normal with base 
deficit >5 

No 

Urinary output <0.5 mL/kg/hr No 
SBP <90 or MAP < 70 or pressors for one hour No 

PaO2/FiO2 <250 No 
WBC > 12 or <4 or >10% bands Yes 

Temperature <36 or >38 Yes 
Heart rate >90bpm No 

Table 4: Decision Tree Analysis Path-3. 

Variables in the path  
Temperature <36 or >38 Yes 

Chest X-ray and purulent sputum Yes 
No culture growth Yes 

Lung diagnosis No 
PaO2/FiO2 <250 Yes 

SBP <90 or MAP < 70 or pressors for one hour No 
Heart rate >90bpm Yes 

 

 

 

Table 5: Decision Tree Analysis Path-4. 

Variables in the path  
Temperature <36 or >38 No 

WBC > 12 or <4 or >10% bands Yes 
Lung diagnosis Yes 

PaO2/FiO2 <250 Yes 
SBP <90 or MAP < 70 or pressors for one hour No 

Heart rate >90bpm Yes 

Table 6: Decision Tree Analysis Path-9. 

Variables in the path  
Respiratory rate >19, PaCO2 <32 or Mechanical 

ventilation 
Yes 

WBC > 12 or <4 or >10% bands Yes 
Lung diagnosis Yes 

No culture growth Yes 
SBP <90 or MAP < 70 or pressors for one hour Yes 

Heart rate >90bpm Yes 

5 DISCUSSION 

First, all variables appearing in the 9 paths also did 
appear in the regression model. This provides good 
support for both the regression model and decision 
tree result. Interestingly, urine diagnosis had 

HEALTHINF 2009 - International Conference on Health Informatics

94



 

relatively high beta coefficient in the regression, but 
did not appear in any of these paths of the decision 
tree. However, other variables with higher beta 
coefficients in the regression, such as abdominal 
diagnosis, lung diagnosis, SBP and temperature, 
were also important in the tree. 

This has implications for practice since clinicians 
want to apply models of risk at the bedside. Often it 
is not feasible to collect data on 20 variables, such as 
those we found in the regression or cluster and 
models that are easy to use to either rule out patients 
who are not at risk of sepsis or those who are at risk 
would be more useful. To test any model we have to 
ensure that it is reliable and valid. Here we have 
shown with the 30 patient accuracy test that our tree 
is reliable and it approaches 100% validity. Our 
analysis also illustrates the value of multiple 
methods: 1) in our analysis, regressions can be used 
to provide a broad estimate of risk, and 2) a more 
precise estimate in this case can be made using a 
decision tree. In a separate paper, we will compare a 
cluster analysis approach to a decision tree. This is 
outside the scope of this paper. A valid approach for 
future research is the comparison of cluster analysis, 
decision trees and regression analysis. 

6 CONCLUSIONS 

Multiple methods of analysing clinical data provide 
different perspectives on models of risk of disease. 
To develop robust models researchers may want to 
consider regression to get a broad perspective on the 
risk and utilize decision trees to provide more 
parsimonious models. 

This study has several strengths. This was a 
prospective observational cohort and the 
determination of sepsis used standard criteria. The 
large sample size provided a large number of 
variables that we could use for our analyses.  

Future research will now entail testing the 
decision tree paths in practice to determine which 
path is most reliable and valid as well as completing 
a more in depth measure of the accuracy of the 
regression and decision tree models. We did not 
have an opportunity to test other methods such as 
cluster analysis, Bayesian methods or neural 
networks, which we hope to do in the future. 
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