
COMPONENT-BASED FRAMEWORK FOR MOBILE DATA MINING
WITH SUPPORT FOR REAL-TIME SENSORS

Taneli Rautio, Perttu Laurinen and Juha Röning
Intelligent Systems Group, Department of Electrical and Information Engineering, FI-900014 University of Oulu, Finland

Keywords: Mobile data mining, Component-based framework.

Abstract: The increasing use of various mobile devices has shown that there is a need for mobile data mining applica-
tions. While many existing data mining frameworks can be modified to handle data streams generated in real
time, they are usually too complex and inflexible to be used in mobile devices. This paper presents Mobile
Smart Archive, a component-based framework for data stream mining in mobile devices. The framework
takes care of generic data mining operations, allowing the application developer to concentrate on implement-
ing only application-specific functionalities. This reduces implementation time and generates fewer errors,
since the underlying framework of the application is tested and robust. The presented framework is written in
C++ and it extends the existing Smart Archive framework with support for mobile systems and real-time sen-
sors. The benefits of framework-based applications in the mobile world are presented by building and testing
a demonstration program in different computer architectures. In this paper we show that the MSA framework
is suitable for building data stream mining applications for the hardware-oriented mobile environment.

1 INTRODUCTION

Ubiquitous data mining and time series data mining,
among others, are research areas that are predicted to
hold critical and future promise in the field of data
mining (Hsu, 2002). While obviously a very potential
research area, not much work has been done regard-
ing mobile data mining frameworks, even though the
benefits of such frameworks in software engineering
have been recognized widely over 20 years ago (John-
son and Foote, 1988).

Frameworks are not very widely used in mo-
bile application development, since they tend to need
more system resources than applications that are
made and optimized for a single purpose. Compared
with desktop and server applications, the mobile envi-
ronment has been notorious for its limitations and re-
strictions in memory capacity and processing power.
This paper suggests that a well-designed and well-
implemented framework can still speed up the devel-
opment of a new application, even in the field of mo-
bile systems.

This paper presents a component-based applica-
tion framework, called Mobile Smart Archive (MSA).
It is an extended C++ port of the Smart Archive
framework, originally written in Java and reported in
(Laurinen et al., 2005) and (Tuovinen et al., 2008).
The port is designed and modified to serve as a

generic data mining framework for mobile and em-
bedded systems such as handheld and laptop comput-
ers and PDAs. It has been specialized with support
for data stream mining using real-time sensors, but
its use is not limited strictly to that field. Although
MSA shares its internal design with the original Smart
Archive, it has been modified to be better suited for
environments with limited resources, such as memory
and processing power.

MSA offers a tested and robust data mining frame-
work for use in mobile applications with different sen-
sors and data mining methods. It is not a framework
for real-time data mining, although in favorable cir-
cumstances it can be use to build applications that per-
form almost in real time. Instead, it is a framework for
data stream mining, and the sensors that produce the
streams can produce real-time data. In (Thuraising-
ham et al., 2005) the major difference is explained:In
the case of real-time data mining, the goal is to mine
the data and output results in real time. In the case of
stream mining, the goal is to find patterns over spec-
ified time intervals. The MSA framework guarantees
that all the values from sensors are recorded in order,
without losses, and handled as fast as the underlying
hardware is able process them. The most significant
advantage compared with data mining methods used
before is that the data from the real-time sensors are
collected at the same time as they are processed.

208
Rautio T., Laurinen P. and Röning J. (2009).
COMPONENT-BASED FRAMEWORK FOR MOBILE DATA MINING WITH SUPPORT FOR REAL-TIME SENSORS.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 208-213
DOI: 10.5220/0001657702080213
Copyright c© SciTePress



In this paper we

• explain why there is a need for a generic mobile
data mining framework

• discuss why the existing Smart Archive serves as
a good basis for a mobile data mining framework

• show how the framework is modified so that it fits
into mobile systems and can reliably mine data
from real-time sensors

The paper is structured as follows: section 2 re-
views previous work related to MSA and describes
the motivation for creating a mobile data mining
framework. Section 3 discusses why the Smart
Archive framework servers a good basis for a mobile
data mining framework and goes into the details of the
internal design of the framework, especially related to
the original framework. Section 4 then demonstrates
the framework with a small example program. The
conclusions are discussed in section 5.

2 MOTIVATION AND RELATED
WORK

The development of MSA originated from a specific
need of our research group to apply data mining meth-
ods to time series data recorded from human move-
ments. They are usually tracked with several differ-
ent wearable sensors, which may be, for example, ac-
celerometers, magnetometers, gyroscopes and other
similar time series data-producing devices. Usually
the sensors and the software used to collect the data
have been proprietary and tied closely together, mean-
ing that specific sensors can be used only with certain
software within a certain project.

Furthermore, the ways to store the data are nu-
merous: the data can be stored in the flash memory
of the sensor, in a data file or in a database. In ad-
dition, the storage site can reside in a local computer
or in a network. Only the first option allows data to
be recorded without environmental limitations. Oth-
erwise the sensors need a connection to the computer
that records the data, which means data recording is
restricted to the confines of the computer.

This has led to a situation where the data have to
be collected using different sensors, processed so that
they are uniform and transferred to a place where that
are available to the actual data mining software before
one can even think of starting the data mining process.
The process is, at best, slow. With several different
sensors and storage sites, it is also error-prone.

MSA speeds up the development of mobile data
mining applications where data stream-producing
sensors are used. The only two things the application

developer needs to do are code an interface between
the framework and the sensor(s) and define how the
data are processed in the filters of the application.
Everything else is handled by the framework. Even
though the framework has been implemented with the
data stream sensors in mind, the input to the appli-
cation can be any kind of device or storage site that
produces time series data.

Although data mining in a mobile environment
is an emerging field of research, it appears that no
research has been done regarding mobile data min-
ing frameworks. However, there are some inter-
esting applications for mobile systems which intro-
duce different application areas for mobile data min-
ing. For example, MobiMine (Kargupta et al., 2002)
is client-server-based software for monitoring time-
critical financial data from a handheld PDA. (Wang
et al., 2003) proposes a distributed and mobile data
mining system in which algorithms are encapsulated
into SQL Server-stored procedures. An experimen-
tal mobile and distributed data stream mining system
that allows real-time vehicle health monitoring and
driver characterization is presented in (Kargupta et al.,
2004).

Of course, existing non-mobile component-based
data mining application frameworks such as the orig-
inal Smart Archive (Laurinen et al., 2005), D2K
(NCSA Automated Learning Group, 2003), Knime
(Berthold et al., 2006) and YALE (Mierswa et al.,
2006) can be modified to receive and mine real-time
sensor data, but they do not work very well in mobile
systems. First of all, they all are written in Java and
therefore need Java Virtual Machine (JVM) to run.
Many embedded and mobile systems are not capable
of running JVM very well or it may not exist for these
systems at all. Secondly, some of the aforementioned
frameworks apply a graphical user interface (GUI) to
program and visualize the relationships between the
data mining application components, pipes and filters.
The compatibility of the GUIs with different mobile
systems, which can have output screens in various
sizes, is questionable. Finally, if needed, MSA al-
lows modifications anywhere in the code, not just in
the component API of the framework.

3 DESIGN OF THE
FRAMEWORK

The purpose of the MSA framework is to serve as a
core for different data stream mining applications in
mobile systems. To maximize the portability of the
framework, it has been written using standard C++
as much as possible. Since it is very portable, the

COMPONENT-BASED FRAMEWORK FOR MOBILE DATA MINING WITH SUPPORT FOR REAL-TIME
SENSORS

209



main advantage of using MSA is the reduced imple-
mentation time of data mining programs. If the ap-
plication classes are also written to conform to the
C++ standard, the generated application can be eas-
ily transferred to a different computer architecture or
a different operating system. On the other hand, the
data mining software can also be written to take full
advantage of the platform in which it is running by
using platform-specific code. In both cases the devel-
oper is not required to implement the underlying data
mining engine. On the contrary, the developer is free
to start building application-specific functionalities.

As already stated, MSA borrows most of its in-
ternal design from the original Smart Archive, whose
internal design is explained thoroughly in (Laurinen
et al., 2005) and (Tuovinen et al., 2008). Compared
with its predecessor, the structure has been modified
to better suit the mobile environment. The first differ-
ences in design come from the fact that some of the
features of the original Smart Archive are language-
specific. Thus, some of the code could not be trans-
lated directly from Java to C++. However, most of
the improvements are related to maximizing the effi-
ciency of the framework in a limited environment.

The challenges of mining data streams in a mobile
environment are introduced in (Kargupta et al., 2002).
They include:

1. handling a continuous flow of data

2. efficient representation and communication of
data mining models over a wireless network with
a limited bandwidth

3. visualization on a small screen

4. minimization of power consumption.

In the development of MSA, emphasis has been
placed on the first two issues listed above, with the
third issue in mind.

Figure 1 shows the overall arrangement of the
main classes in the framework. Compared with the
original Smart Archive, all of the illustrated classes

Figure 1: Threaded classes in the framework are illustrated
as rectangular boxes. Arrows illustrate data flow within the
framework. The boxes with rounded corners represent data
buffers of the sensors.

Figure 2: ExecutionGraph class is responsible for transfer-
ing data between components in the right order.

run in separate threads. A continuous flow of data
is ensured by presenting every real-world sensor as a
separately threaded object with a queue of its own for
storing sensor data. TheInputReceiver class col-
lects all the data in a single storage site and the ac-
tual data processing class,MiningKernel, fetches the
data to be processed in the components of the frame-
work.

MSA uses pipes-and-filters architecture, where
the input data are processed and transferred from one
component to another via distinct pipes. A single
component includes a filter and optionally a sink. The
former takes care of data transformation and the latter
writes the transformed data into a permanent storage
site. A data mining graph,ExecutionGraph, resides
inside theMiningKernel class and is responsible for
transferring data from one component to another. The
data mining graph is illustrated in Figure 2.

Attaching new physical sensors to the framework
has been made easy by offering classes that imple-
ment serial port communications to applications. As
mentioned before, the sensors in the sensor classes do
not need to be actual physical devices. However, in
the domain of mobile data mining, the use of abstract
input devices may mean significant performance loss.
A data mining application that uses for example a
database table as its input may be more efficient when
implemented in a non-mobile domain.

Some compromises were made to ease the use
of the framework code and enhance its compatibil-
ity with different platforms. Most mobile applications
are not portable because their code is often optimized
for a certain device architecture. MSA uses standard
C++ whenever possible, but in order to maximize
the portability of the framework, free peer-reviewed
portable Boost libraries (http://www.boost.org) are
used in several places in the code. This means ap-
plications made with MSA may be not as fast as
single-purpose, platform-optimized applications, but
the framework significantly eases and speeds up ap-
plication assembly, as proved in a case study in (Lau-
rinen et al., 2005).

Due to the openness of the MSA framework, fur-
ther threading of the framework components is pos-
sible if the data mining graph in the MiningKernel
thread becomes very large. Otherwise, in some cir-

ICAART 2009 - International Conference on Agents and Artificial Intelligence

210



cumstances a situation may arise in which execution
of the program is still in the middle of the MiningKer-
nel when the program should be receiving incoming
data. Currently the MSA framework only supports
standard C++ data types, i.e. one cannot send point-
ers to objects through the pipes. Since the data from
physical sensors are usually numeric, this should not
pose a very significant problem.

The most interesting detail from the point of view
of the source code is the framework’s use of smart
pointers provided by the Boost library. In an embed-
ded environment, dynamic memory allocations are
traditionally frowned upon by programmers. Since
MSA is directed more towards mobile systems with a
little larger memory capacity, the use of smart point-
ers is acceptable. The structure of the data min-
ing graph is built automatically during the execu-
tion of the MSA application, which also makes the
use of smart pointers essential. It should be noted
that the use of raw pointers as members in appli-
cation classes is nowadays considered very harmful
(Smirnov, 2007). This means the application pro-
grammer can forget the error-pronenew anddelete
commands for C++ dynamic memory allocation. The
usage of smart pointers will not eliminate the fact that
it is still the application programmer’s responsibility
to be sure the target platform has enough memory to
run the application.

The other Boost libraries used extensively in the
framework are a threading library and a variant value
type library. The former allows portable threads,
while the latter allows any value to be stored into the
any variable.

The framework itself does not place any restric-
tions on the GUI, so application developers are fully
free to create such a graphical interface as they like.
Since use of the applications created with MSA is in-
tended to be quite short-term, the power consumption
aspect of the framework has been left in the back-
ground. Often the external sensors have considerably
shorter uptime than does the actual mobile device.

4 DEMONSTRATION PROGRAM

While this paper is concerned with the MSA frame-
work, its use cannot be demonstrated without a
demonstration program. Therefore, a very simple
application for testing the portability of the Mobile
Smart Archive framework was created. The applica-
tion was tested in three different target systems. The
first two were desktop systems (Windows and Linux)
and the third was a mobile device with Linux (Nokia
N800). All of the aforementioned systems used a

wireless sensor box to record real-time data.
The N800 is a rather powerful handheld com-

puter with a 330 MHz ARM11 processor and a 128
MB memory. It uses a Linux-based operating sys-
tem and is therefore a suitable platform for demon-
strating the MSA framework. Shake (SAMH Engi-
neering Services, 2007) is a matchbox-sized sensor
box that includes an accelerometer, a magnetometer,
a gyroscope, capacitive sensors, a compass and a ther-
mometer. It can be connected to a computer with a
Bluetooth connection or a USB cable.

The aim of the application was to prove that ap-
plications made with Mobile Smart Archive are trans-
ferable to different processor architectures and oper-
ating systems. Especially the speed and reliability of
the software in the N800 was observed and compared
with those of the desktop PCs. After all, the process-
ing speed of the demonstration application is only one
aspect of comparison. The MSA framework reduces
the actual implementation time of data mining appli-
cations in many ways, which are also explored in the
program under discussion. In the course of building
the demonstration application, the following assump-
tions were proven to be correct:

• The robust and tested framework engine gives the
developer the freedom to focus on application-
specific functionalities

• No target machine-specific coding is required;
standard C++ is sufficient for building an appli-
cation

• If the application-specific classes are coded in a
portable way (i.e. using standard C++), the same
application can be easily transferred from one tar-
get system to another without extra coding

The demonstration program worked as follows: a
Shake sensor box was used to collect three-axis ac-
celerometer data at a user-defined frequency. The col-
lected data were relayed to the software via a Blue-
tooth connection. The application received the data,
attached time stamps and ordering numbers to each
data packet and forwarded them to a specified sink,
which in the demonstration program was either a lo-
cal text file or a table in a MySQL database.

Execution times were recorded with a built-in
timer that used a clock class from the Boost library.
The stored times include not only the actual time re-
quired to acquire the data with the sensor, they also
include initialization of the components, filters and
sinks and assembly of the data mining graph.

The test cases consisted of processing 100, 1000
and 10000 accelerometer data packets gathered using
a 100 Hz frequency. When the local text file in the
desktop PCs was used as a storage site for processed

COMPONENT-BASED FRAMEWORK FOR MOBILE DATA MINING WITH SUPPORT FOR REAL-TIME
SENSORS

211



data, data flow through the application was close to
real time in all the tests, when the initialization and
set-up time of the application was ignored. With the
limited processing power of the N800, data mining
was roughly 2-3 times slower as the Table 1 indicates.

Table 1: Execution times of the demonstration program
when accelerometer samples were recorded into a flat file.

Amount of data packets
Platform 100 1000 10000
Linux PC 3,26 s 11,49 s 98,96 s

Windows PC 2,69 s 10,67 s 98,76 s
N800 4,21 s 29,59 s 278,19 s

In practice this means that when the sensor has
stopped gathering raw data, the application spends the
rest of its running time processing the queued raw
data. Since the applications made with the frame-
work can be hugely different, there are no implicit
frequency rates for the sensors in different platforms
where data can be collected in real time.

However, an estimation of the memory consump-
tion of the application can be made when the struc-
ture of single datapacket is observed. In the demostra-
tion application one datapacket consisted of four vari-
ables from the accelerometer of the Shake sensor box.
When the application was compiled with GNU G++-
compiler and used in the N800, the size of the re-
sulting package was 32 bytes as seen in Figure 3.
This means that with 100 Hz frequency 3200 bytes
of memory was used every second.

When the MySQL database acted as a sink, the
processing speeds of the applications were more sim-
ilar, although the applications run on the desktop PCs
were generally a bit quicker. The execution times
were not evaluated, since the MySQL sink implemen-
tation was unoptimized, which could be observed as
slowness in all platforms. It was only noted that dif-
ferent sink implementations worked and the MySQL
connection from the framework needed more opti-
mization.

In the end the final result was that both test cases
were run successfully: no data packets were dropped
during the process and the execution times did not
increase to disproportionate dimensions. During the
tests the processor load of the programs in the N800
with one Shake sensor was constantly around 30%.
With two sensors the processor load was 70-95%, im-
plying that with a little optimization the N800 could
serve as a functional platform for actual MSA-based
applications in the future.

Figure 3: An example datapacket.

5 CONCLUSIONS

This paper is the first step in exploring the area of
mobile data mining frameworks. It presented Mobile
Smart Archive, a data mining application framework
for mobile systems. It is designed for building data
mining applications for mobile platforms. Especially
data stream mining using one or more physical sen-
sors is supported. The framework is based on the
existing Smart Archive framework, but it is imple-
mented using C++ programming language and it has
been adapted and modified to utilize mobile devices
better.

With MSA, writing mobile data mining software
for data stream mining is significantly easier. There
is an underlying framework for looking after generic
data mining functionalities, thus the application de-
veloper can concentrate on implementing application-
specific classes and functions. This reduces the im-
plementation time of a new application and generates
fewer errors, since the framework is thoroughly tested
and robust.

A demonstration application was created for dif-
ferent platforms to test the portability of the frame-
work. The execution speeds of the programs were
tested and it was observed that the data were col-
lected successfully. In this paper we demonstrated
that, compared with building a mobile data mining ap-
plication from scratch, the MSA framework allows an
application to be built faster and in a less error-prone
way.

REFERENCES

Berthold, M. R., Cebron, N., Dill, F., Fatta, G. D., Gabriel,
T. R., Georg, F., Meinl, T., Ohl, P., Sieb, C., and
Wiswedel, B. (2006). Knime: The Konstanz Infor-
mation Miner. InProceedings of the 4th Annual In-
dustrial Simulation Conference, pages 58–61.

Hsu, J. (2002). Data Mining Trends and Developments: The
Key Data Mining Technologies and Applications for
the 21st Century. InThe Proceedings of 19th Annual
Information Systems Education Conference (ISECON
2002).

ICAART 2009 - International Conference on Agents and Artificial Intelligence

212



Johnson, R. E. and Foote, B. (1988). Designing Reusable
Classes. Journal of Object-Oriented Programming,
1(2):22–35.

Kargupta, H., Bhargava, R., Kun, L., Powers, M., Blair, P.,
Bushra, S., and Dull, J. (2004). VEDAS: A Mobile
and Distributed Data Stream Mining System for Real-
Time Vehicle Monitoring. InProceedings of the fourth
SIAM international conference on data mining, pages
300–311.

Kargupta, H., Park, B.-H., Pittie, S., Liu, L., Kushraj, D.,
and Sarkar, K. (2002). MobiMine: monitoring the
stock market from a PDA. ACM SIGKDD Explo-
rations Newsletter, 3(2):37–46.

Laurinen, P., Tuovinen, L., and Röning, J. (2005). Smart
Archive: A Component-based Data Mining Applica-
tion Framework. InProceedings of the 5th Interna-
tional Conference on Intelligent Systems Design and
Applications, pages 20–26, Wroclaw, Poland. IEEE
Computer Society Press.

Mierswa, I., Wurst, M., Klingenberg, R., Scholz, M., and
Euler, T. (2006). YALE: Rapid Prototyping for Com-
plex Data Mining Tasks. InProceedings of the 12th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 935–940.

NCSA Automated Learning Group (2003).D2K Toolkit
User Manual.

SAMH Engineering Services (2007). SHAKE Sens-
ing Hardware Accessory for Kinaestethic Expression
Model SK6. Dublin, Ireland, revision f edition.

Smirnov, I. B. (2007). Raw Pointers in Application Classes
of C++ Considered Harmful.ACM SIGPLAN Notices,
42(4):23–31.

Thuraisingham, B., Khan, L., Clifton, C., Maurer, J., and
Ceruti, M. (2005). Dependable Real-time Data Min-
ing. InProceedings of the Eight International Sympo-
sium on Object-Oriented Real-Time Distributed Com-
puting, pages 158–165.

Tuovinen, L., Laurinen, P., Juutilainen, I., and Röning, J.
(2008). Data Mining Applications for Diverse Indus-
trial Application Domains with Smart Archive. In
Proceedings of the IASTED International Conference
on Software Engineering, pages 56–61.

Wang, F., Helian, N., Guo, Y., and Jin, H. (2003). A Dis-
tributed and Mobile Data Mining System. InPro-
ceedings of the Fourth International Conference on
Parallel and Distributed Computing, Applications and
Technologies, pages 916– 918.

COMPONENT-BASED FRAMEWORK FOR MOBILE DATA MINING WITH SUPPORT FOR REAL-TIME
SENSORS

213


