
On the Implementation of Tools for Domain Specific
Process Modelling

Stefan Jablonski, Bernhard Volz and Sebastian Dornstauder

University of Bayreuth, Bayreuth, Germany

Abstract. Business process modelling becomes more productive when
modellers can use process modelling languages which optimally fit to the
application domain. Domain specific modelling is the discipline that deals with
the proliferation of domain specific modelling languages. The general tenor is
that the more a modelling language fits to an application domain, the more
efficient and effective an application can be modelled. In this paper we address
the issue of providing domain specific languages in a systematic and structural
way without having to implement modelling tools for each domain specific
language separately. Our approach is based on a two dimensional meta
modelling stack.

1 Introduction

"The only constant is change" is a common quotation in literature when business
process management is characterized. Without anticipating the introduction of a
modelling hierarchy, the phenomena of change can be classified according to the
process modelling levels they occur. Starting at the "lowest" level, running process
instances might have to be changed to react to a sudden shift in the application.
Among others, [24], [3] and [22] are investigating this issue and suggest adequate
solutions. Stepping one level up, the process model (definition) might have to be
changed since it has become obvious that from now on a certain application will be
performed in a different way [24] [9]. Nevertheless, it is possible to even step up
another level hierarchy. Change on this level means to alter the modelling language
we focus on in this paper. For process aware information systems this kind of change
means an evolution of the whole system over time.

Why is the change of a process modelling language an issue that is worth
investigating? One can argue that a process modelling language should always remain
untouched. However, we fully comply with the interpretation of change as being
related to diversity [4]. Although that book discusses change in the context of
programming languages, we can transfer the results to process management. The
authors of [4] notice that diverse domains will be characterized by diverse customer
requirements. This observation can seamlessly be adopted in the business process
management domain. Here, the programming language is the modelling language and
the deployment platform corresponds to the process execution infrastructure.

Jablonski S., Volz B. and Dornstauder S. (2009).
On the Implementation of Tools for Domain Specific Process Modelling.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 109-120
DOI: 10.5220/0001861401090120
Copyright c© SciTePress

We fully subscribe to the argument of [4] that the right languages enable
developers to be significantly more productive. Besides we agree with the
requirement that "we need the ability to rapidly design and integrate semantically rich
languages in a unified way". This means on the one hand that each domain may and
finally has to create its individual, specific language (domain specific language,
DSL). On the other hand it means that a common starting point for these language
developments is assumed. It is important to sustain – despite the diversity of DSLs – a
kind of comparability and compatibility between them. We finally agree that meta
modelling provides capabilities to achieve this.

Changes of a modelling language need not to be huge. For example, in [16] process
steps are tagged to indicate whether they are prohibitive or mandatory. Although
being unspectacular, this tagging is very valuable for the execution and evaluation of
a process model. Standard process modelling languages like BPMN [18] do not offer
this special kind of tagging a priori.

At this point it has to be discussed whether changing a process modelling language
is counterproductive since it diminishes the possibility to exchange process models
with partners. Here, we assume that each development of a DSL takes a standard
language (e.g. BPMN) as a starting point. The following two arguments support the
idea of a domain specific process modelling and – therefore – the adaptation of a
standard modelling language:

First, domain specific adaptations are decisively enhancing the applicability of a
process model within that domain. Adaptations are almost exclusively of interest
within a domain. Thus, it is favourable to support adaptations.

Second, the use of a standard modelling language especially pays off when process
models have to be exchanged with partners. Using a meta modelling approach, it is
easy to distinguish between modelling elements of the standard language and those of
a domain specific adaptation. Thus domain specific adaptations can be filtered out
before a process model is exchanged. Although filtered process models lose
information they are relevant and readable for receiving partners since the latter
merely contains standard modelling elements. Assuming that domain specific
extensions are primarily of interest for the domain developing them, this loss of
information is tolerable.

Building up on these assumptions we present a meta modelling approach which
supports the definition of domain specific process modelling languages. The special
feature of our approach is that DSLs are derived from a common basic language
which most probable will be a sort of standard language. All language definitions will
be based on a meta model. This strategy bears major advantages.
• All derived DSL share a common set of modelling constructs. Thus, they remain

compatible and comparable to a certain extend.
• The definition of a DSL is performed in a systematic way by extending the meta

model of such a language.
• Extensions made for one DSL could be inherited by other domains, i.e. DSLs, if

it is considered to be valuable for the new domain as well. This feature supports
reuse of modelling constructs greatly.

• Tools can be built that support different DSLs at the same time. It is not
necessary to build a special tool for each DSL.

110

So, we deliberate on the benefit of a standard notation and of a customized one.
We definitely favour customization – as argued in [4] – since productivity is
supported decisively better. Nevertheless, data exchange is still feasible.

The focus of this paper lies on tool support for domain specific modelling
languages. The foundations of a domain specific processes modelling tool are
discussed in Section 2. Section 3 illustrates its basic part, a meta model stack. Several
use cases of change are analyzed in Section 4; Section 5 finally discusses related
work.

2 Foundations

The foundation of Perspective Oriented Process Modelling (POPM) is presented in
[10] and [11]; runtime and visualization aspects of POPM are discussed in [12] and
[13], respectively. Since POPM combines a couple of matured modelling concepts in
a new and synergetic manner, these modelling concepts will be introduced.

2.1 Layered Meta Modelling

In Literature, the term “Meta Model” is often defined as a model of models – e.g.
[23]. Thus a meta model defines the structure of models and can be seen as language
for defining models. We also use a model to define the structure (syntax) of our
process modelling languages within the POPM framework. According to the Meta
Object Facility (MOF) [19] this model then becomes part of a meta model stack
which consists of several, linearly ordered layers. Since MOF restricts modellers to a
specific set of features (e.g. it allows only instanceOf relationships between layers)
which is not sufficient for our purpose, our solution is only inspired by them.

In Fig. 1, the actual process models are defined on modelling layer M1 (right
boxes). A process model uses process (and data, organization etc.) definitions which
are collected in the “Type library” on M1 (left box). All process types are defined first
and then "used" in process models (e.g. as sub-processes) to define the latter. M0
contains running instances of processes defined on M1 (right boxes).

All process definitions on M1 are defined in a DSL previously specified at M2. M2
further contains the definition of an abstract process meta model (APMM) defining a
set of general language features such as Processes, Data Flow or Control Flow. Each
DSL is a specialization of elements contained in the APMM. M2 is therefore the layer
where a modelling language like BPMN (left boxes) and its derivations (cf. Section 1,
right boxes) are defined. It is noteworthy to mention that the elements of M2
reference those on M3 (MOF only allows “instanceOf” relationships).

An abstract process meta meta model (APM2M) at M3 defines basic modelling
principles; for instance, it defines that processes are modelled as directed graphs that
also support nesting of nodes; this defines the fundamental structure for process
modelling languages. Following the architecture of Fig. 1 (logical stack) allows for
exchanging the modelling paradigm (graph based process models) at M3, defining
DSLs at M2 as specializations of a general modelling language (APMM) and
establishing type libraries at M1 which allow the re-use of existing process types in

111

Fig. 1. Meta layer stack of POPM.

different contexts. One of the most powerful features of our approach is that most of
the above mentioned kinds of changes can be applied by users and do not require a re-
implementation of the modelling tool.

Without going into details we want to introduce one more feature which is most
relevant for multi layer modelling. We borrow the Deep Instantiation pattern from [1]
that allows defining on which level of a modelling hierarchy a type or an attribute of a
type must be instantiated. Thus it is possible to introduce runtime instance
identification on M3 that enforces that all derived types must carry this identification.
However, this identification is not instantiated before M0.

2.2 Extended Powertypes

As mentioned, the APM2M on M3 defines process models to be interpreted as graphs;
for a tool it is then often necessary to interpret the capabilities (features) of each
element. For example, both "Process" and "Start-Interface" are nodes of a process
model graph. As in a graph usually each node can be connected with others, also the
Start-Interface could have incoming arcs; a fact that needs to be prohibited. Therefore
already at modelling layer M3 a capability canHaveIncomingControlFlows can be
defined that describes whether a node accepts incoming flows or not.

Traditional approaches for implementing these capabilities are class hierarchies or
constraint languages such as the Object Constraint Language (OCL) [20]. Both
approaches are not very useful since either the complexity of the required type
hierarchy explodes with an increasing number of capabilities or the user, who should
be the one to extend the language, must be familiar with an additional language such
as the OCL. Therefore we have chosen to extend the Powertype modelling pattern
introduced by Odell in [21]. In our extension the capabilities (e.g. to have incoming
flows) are defined as attributes of the powertype. These values then specify which
capabilities of the partitioned type should be activated. Furthermore, only those
attributes of the partitioned type are inherited by new constructs whose capability

Process Model
Describes a domain specific application

Process Model
Describes a domain specific application

M3

M2

M1

M0

Abstract Process Meta Meta Model (APM2M)
Definition of the abstract syntax of a general process modelling language

Abstract Process Meta
Model (APMM)

Syntax of a general process
modelling language

Domain Specific Process Meta Model
(DSMM)

Syntax of domain specific modelling
language

Type library
Expressed in a domain

specific syntax

Process Model
Describes a domain specific application

<<instanceOf>>

<<references>>

<<references>>

<<references>>

Process Model
Describes a domain specific application

Process Model
Describes a domain specific application

Process Instance
Process which is currently executed

L1

Li
ng
ui
st
ic
 M

et
a
M
od

el

Logical Meta Model Stack

Li
ng
ui
st
ic
M
et
a
M
od

el
 S
ta
ck

L0

<<instanceOf>>

112

attribute has been set to “true”. Thus our extension removes features physically from
a new construct. Complex runtime checks that deal with temporarily disabled features
can be omitted this way.

2.3 Logical and Linguistical Modelling

In [2] an orthogonal classification approach is introduced. It contains two stacks that
are orthogonal to each other (cf. Fig. 1, Linguistic Meta Model Stack). The Linguistic
Meta Model Stack contains a meta model describing how models (including meta
models) of the application domain are stored. An orthogonal Logical Meta Model
Stack hosts one or more models which are purely content related.

It is crucial for this architecture that each layer of the logical stack can be
expressed in the same linguistic model. As a result a modelling tool can be built that
allows users to modify all layers of the logical stack in the same way. Conventional
modelling tools do not support an explicit linguistic model and thus can usually
modify only one layer of a logical model hierarchy [2]. Therefore a profound
linguistic meta model is a good basis for creating a modelling tool that allows users to
modify arbitrary layers and models.

Due to our extension of the powertype construct, the problem oriented conception
of the meta model stack of the logical model, and the application of the orthogonal
classification approach, a powerful foundation for an infrastructure for domain
specific modelling tools is created. The following sections detail this infrastructure
with respect to the most important part – the logical meta model stack.

3 Content of the Logical Meta Model Stack

Our goal is to implement a tool for the POPM framework that is capable of handling
changes on the various levels of our meta modelling hierarchy. In this section we will
introduce the logical models our actual implementation is based on.

3.1 Abstract Process Meta Meta Model (APM2M)

As explained, the APM2M located at M3 provides basic structures for process
modelling languages defined on layer M2, i.e. it prescribes the structure of the
modelling elements a process modelling language can offer. The most common
graphical notation for process models in POPM is based on directed graphs whose
meta meta model is depicted in Fig. 2 (standard UML notation). It is important to
differentiate between modelling and visualization in this context. In Fig. 2 only the
(content related) structure of a process modelling language – and respectively the
process models derived from it – is defined. How these models are visualized is not
part of this model; visualization is defined in an independent – but certainly related
and integrated – model that is published in parts in [13].

Nodes of a process graph are represented by Node in the APM2M (Fig. 2).
NodeKind then describes the characteristics (features) of nodes in the graph where

113

each feature corresponds to an attribute of NodeKind. The Powertype pattern between
Node and NodeKind is established through the “partitions” relationship; Node
represents the partitioned type and NodeKind is the powertype of the Powertype
pattern.

Processes are just one type of nodes in such a graph; another type of nodes is e.g.
Start-Interface. The different behaviours and capabilities of these two types are
determined by the attributes within NodeKind. Features defined and implemented by
the partitioned type Node are:

• HasIncomingPorts determines whether a modelling construct can be a destination
of incoming flows. It is deactivated for constructs defining the start of a process
(Start-Interface).

• HasOutgoingPorts defines if a modelling construct can be the origin of flows. For
example a “Stop” interface cannot have outgoing connections.

• SupportsData specifies whether a construct accepts inbound and outbound data
flows. If this feature is set to “false” but any of the has…Ports feature attributes
has been set to “true”, this defines connectivity through control flow(s) only.

• SupportsSubclassing determines if a construct can have another construct as
“super type”. The child construct will then inherit all attributes from the parent.

• SupportsAggregation defines whether a construct can contain usages of other
elements. Typically this feature is activated for process steps but not for
interfaces. Thus if activated, hierarchies of modelling elements can be built.

In summary, the features presented above determine whether elements of Node
can establish relationships of a certain kind (e.g. superNode, aggregatedNodes,
inputPorts) to other types of the APM2M. The extended Powertype concept is also
used for the type PortKind – here it determines whether a port can be bound to data
sources; FlowKind is using the normal Powertype semantics.

3.2 Abstract Process Meta Model (APMM)

Fig. 3 shows the APMM of POPM, which defines the fundamental components of a
POPM-related process model: process, connector, data container, control and data
flow, organization, etc.

Fig. 2. APM2M of POPM.

outputPorts
*

partitions

NodeKind

+hasIncomingPorts : Boolean
+hasOutgoingPorts : Boolean
+supportsSubclassing : Boolean
+supportsAggregation : Boolean
+supportsData : Boolean

Node

+typeId : String
+usageId : String

Port

PortKind

+hasDataSource : Boolean

partitions

FlowKind

+flowType : String

Flow

partitions

inputPorts
*

superNode

NodeAttachment DataSource

dataSource 1

attachments

*

source
1

sink
1

flows

*

aggregatedNodes

*

114

In the APMM a process is an element in a graph that can be interconnected with

other nodes (hasIncoming/OutgoingPorts = true), can receive and produce data
(supportsData = true), can be defined in terms of an already existing process
(supportsSubclassing = true) and can be used as a container for other elements
(supportsAggregation = true). A process – and in general every element on layer M2 –
is an instance of a corresponding type (sometimes a powertype) on M3. For instance,
Process is an instance of the powertype NodeKind and inherits all activated features
from the partitioned type Node. The type StartInterface is also an instance of the
powertype NodeKind but does neither support the creation of hierarchies
(supportsAggregation = false) nor incoming connections (hasIncomingPorts = false).

3.3 Domain Specific Meta Models (DSMMs)

According to Fig. 1, DSMMs are specializations of the APMM. As with object
oriented programming languages, abstract types cannot be instantiated. Thus, a
DSMM must first provide specializations for each element of the APMM (abstract
model) which can be instantiated. Then it can be enriched by additional modelling
constructs which determine its specific characteristics. We will show a simple
example DSMM from the medical domain in the following.
We decided to provide for each modelling element of the APMM at least one
modelling element in the DSMM for the medical domain. These domain specific
modelling elements can furthermore be modified in order to capture specific
characteristics of the medical realm. For instance the attribute stepType for the
modelling element Medical Process (specialization of the APMM element Process) is
introduced to determine whether a given step is an administrational or a medical task.
Also tags as requested by [16] can be implemented in this way. Completely new
modelling constructs can be introduced as well, like the so-called
MedicalDecisionElement. In Section 4 we detail this feature.

At level M1 the "normal" modelling of processes takes place. Real (medical)
processes use the types defined in the DSMM on M2; for example each process uses

Fig. 3. The core of the Abstract Process Meta Model of POPM.

Process

+hasIncomingPorts = true
+hasOutgoingPorts = true
+supportsSubclassing = true
+supportsAggregation = true
+supportsData = true

StartInterface

+hasIncomingPorts = false
+hasOutgoingPorts = true
+supportsSubclassing = false
+supportsAggregation = false
+supportsData = true

Connector

+hasIncomingPorts = true
+hasOutgoingPorts = true
+supportsSubclassing = false
+supportsAggregation = false
+supportsData = true

Logical
Connector

Decision
Element

AND OR XOR

NodeKind
Node

ControlFlow

+flowType = "Control"

DataFlow

+flowType = "Data"

FlowKind
Flow

M3
M2

Application

Organization

NodeAttachment

DataSource

DataContainer

DataReference

<<instanceOf>> <<instanceOf>>

<<instanceOf>>

StopInterface

+hasIncomingPorts = true
+hasOutgoingPorts = false
+supportsSubclassing = false
+supportsAggregation = false
+supportsData = true

115

MedicalProcess as basis. Accordingly, input and output data for each process can be
defined; the same applies to organizations and operations. In Fig. 4c an example is
shown. Note that all modelling elements must be defined before being used. For
instance, the process Anamnesis must be modelled (and put into the type library)
before it can be used as sub-processes within HipTEP.

3.4 Modelling Processes on Level M1

In Fig. 4c, a part of a real-world process HipTEP [7] which describes a hip surgery is
depicted. It consists of a start interface and two process steps namely Anamnesis and
Surgery. The start interface is connected with the Anamnesis step via a control flow
whereas Anamnesis and Surgery are also connected with data flows indicating the
transport of data items between them. The symbols (document, red cross) inside the
two steps are tags that indicate whether a step is more of medical or administrational
interest (this is valuable information when the process model has to be analyzed). The
tags correspond to the attribute stepType defined in the Medical DSMM for
MedicalProcess.

3.5 Stepwise Design of a Process Model

In Fig. 4 the three decisive layers of a flexible modelling tool are clearly arranged.
The figure illustrates how concepts evolve from very abstract (APM2M), to more
concrete (APMM), to domain specific (DSMM). Some of the metamorphoses of
modelling elements are explained in detail.

M3 defines that nodes exist which carry ports (Fig. 4a). Ports are sometimes
connected with data sources and can be interconnected by Flows. In the derived
APMM (Fig. 4b) this definition is refined. Nodes are divided into two kinds:
StartInterfaces and Processes. Ports which are not connected to data containers have
evolved into gluing points for control flows between nodes (StartInterface and
Process). Ports connected to data sources demarcate output from input data container
for processes which are connected by data flows. Fig. 4c then depicts a concrete

HipTEP

Flow

Flow

Flow

Data
Source

Node

Port

Port

Port Node
Attachment

Data
Source

Node

Port

Port

Node

Port
a) APM2M

(M3)

Start
Interface

Process 1

Data
Container 1

Process 2

Data
Container 2

Control Flow

Data Flow

b) APMM
(M2)

Start

c) Medical
DSMM
(M2)

Surgery

PatientRecord

Anamnesis

PatientRecord

Fig. 4. Stepwise design of a process models on M1.

116

example written in the language predetermined by the APMM of Fig. 4b. A part of a
medical process (HipTEP) is shown which consists of the processes Anamnesis and
Surgery. One data item is passed between these processes, namely PatientRecord.

Fig. 4 demonstrates the power of this approach since each artefact of a process
model is explicitly defined on clearly separated meta levels.

4 Dealing with Change

We will now explain concrete use cases of changes. These scenarios are ordered
according to their relevance in practice based on our experience. We also depict how
users can use them in a safe and structured way.

4.1 Change I: New Feature for an Existing Construct (Tagging)

Often it is necessary to distinguish processes from each other. Frequently, special tags
are attached to processes and visualized in a suitable form [7] [16]. Speaking in terms
of our logical meta model stack this means that an attribute is added to the
corresponding modelling element in the DSMM that holds the tag. In Section 3 we
have already shown this extension by adding the stepType attribute to the
MedicalProcess type. Depending on the actual value of this attribute a visualization
algorithm can then e.g. display icons appropriately.

4.2 Change II: Introducing New Constructs

One reason for adapting modelling constructs is the evolution of the application
domain. For example, due to more insight into the domain more powerful and
semantically richer modelling constructs have to be created.

A new construct can either be defined “from scratch” or by redefining an already
existing constructs of the DSMM or APMM. Fig. 5 gives an example for this kind of
change in the medical domain. Fig. 5a outlines the complex structure of a medical
decision path whereas Fig. 5b depicts a newly created modelling construct
MedicalDecisionElement which is a macro comprising the functionality of the
complex process structure of Fig. 5a. The problem with the process in Fig. 5a is that it
is not comprehensible easily (only the complex structure of the decision path is of
interest; therefore we did not show any details in Fig. 5a). Thus we decided to
introduce a new compact modelling construct MedicalDecisionElement (Fig. 5b).
This construct comprises the same functionality but is much easier to interpret. First,
the construct has a title clearly showing its purpose. Then the most interesting
decisions are shown in the list below the title and the two possible outcomes – yes or
no – are depicted on the right side. The introduction of this compact construct –
together with the consequent elimination of unreadable process models – was one of
the major factors why process modelling was accepted as adequate means to illustrate
the medical applications in the Ophthalmological Clinics of the University of
Erlangen [14]. This project convincingly demonstrated that a domain specific

117

modelling language is not just "nice-to-have" but is crucial for the acceptance of
process management in general.

4.3 Change III: Enhancing / Changing the Modelling Method

So far all changes of process modelling languages were applied to DSLs individually.

In our approach it is also possible to change the modelling method as such. This

change happens on layer M3 and affects all process modelling languages defined
below. For instance, from now on we will prohibit control flows between nodes.
Referring to the APM2M in Fig. 4 this means to remove ports which are not
connected with data sources. Consequently all flow derived from this constellation
must be removed from all process modelling languages on M2 and also from all
defined process models on M1.

5 Related Work

We now give an overview on existing technologies and systems (beside those already
introduced in Section 2) that aim at increasing the sustainability of information
systems. We will show that these are – per se – not appropriate for domain experts
because they require extensive programming skills or are not flexible enough.

Generative Programming [5] and Software Factories [8] are techniques for the
reuse of code. Generative Programming aims at the generation of code out of a set of
templates. Requiring programming skills to produce valid and correct results,
Generative Programming is unusable for end-users or domain experts. Software
Factories in contrast aim at reducing the cost factors (time, resources etc.) during
application development. This again is not suitable for end-users or domain experts.
Even more harmful is that both approaches are meant to be applied during the
development phase of an application but not during runtime.

Beside programming techniques, we also investigated complete meta modelling
systems e.g. the Microsoft Domain Specific Language Tools for Visual Studio [17],
the Eclipse Modeling Framework (EMF) [6] (along with related technologies that
support the generation of graphical editors) or MetaEdit+ [15]. Most of them use only
two levels in which the type level defines the storage format for the user models.

Fig. 5. The MedicalDecisionElement (b) subsumes many single decisions (a).

"S
ta
rt
"

"Yes"

"No"

"Start"

Glaucoma suspicion?

HRT II.Disk < 2.47?
HRT II.RIM < 1.4?
FDT.Time > 60s
FDT.Errorfields > 2
Results plausible?

Ye
s

N
o

a) Exemplary structure of Medical Decision Path b) MedicalDecisionElement

118

Beside this the modelling freedom is restricted by a fixed underlying meta model.
Also many solutions are not able to use a new modelling language without generating
a new modelling environment.

Summarizing, there are solutions that provide some means for building modelling
tools. But either they require too much programming skills or they are not flexible
enough.

6 Conclusions

In this paper we introduced our approach for a more sustainable process modelling
environment that can be easily adapted by domain experts to their realm without
programming in general. We showed that many concepts exist which can already be
used to establish flexible and adaptable systems but which unfold their real power
after they were combined to form one unified and comprehensive approach. We have
then shown how different adaptation scenarios can be performed with the help of
these concepts. Here the important key-point is that all those change requests that are
most common can be performed without writing code; instead only a new
configuration for the system has to be provided which is easy to set up even though
the domain expert who is pursuing these changes has not much knowledge about the
system internals. Thus domain experts are empowered to adapt the whole system
perpetually to changing requirements which we believe is a fundamental step towards
more sustainability.

References

1. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling. Proc. of the 4th Int'l
Conference on The Unified Modeling Language, Modeling Languages, Concepts, and
Tools. Springer-Verlag, Toronto, Canada (2001)

2. Atkinson, C., Kühne, T.: Concepts for Comparing Modeling Tool Architectures. Lecture
Notes in Computer Science. (2005) 398-413

3. Clarence, E., Karim, K., Grzegorz, R.: Dynamic change within workflow systems.
Conference on Organizational Computing Systems. ACM, Milpitas, California, United
States (1995)

4. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling - A Foundation For Language
Driven Development. CETEVA (2008)

5. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional (2000)

6. Eclipse Foundation: Eclipse Modeling Framework Project (EMF).
http://www.eclipse.org/modeling/emf/?project=emf [2008-11-26]

7. Faerber, M., Jablonski, S., Schneider, T.: A Comprehensive Modeling Language for
Clinical Processes. Proc. of the European Conference on eHealth 2007, Lecture Notes in
Informatics (LNI), GI, Oldenburg, Germany (2007) 77-88

8. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley (2004)

119

9. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A comprehensive
approach to flexibility in workflow management systems. SIGSOFT Softw. Eng. Notes 24
(1999) 79-88

10. Jablonski, S.: MOBILE: A Modular Workflow Model and Architecture. 4th Int'l Working
Conference on Dynamic Modelling and Information Systems Noordwijkerhout, NL (1994)

11. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture and
Implementation. Int'l Thomson Computer Press (1996)

12. Jablonski, S., Faerber, M., Götz, M., Volz, B., Dornstauder, S., Müller, S.: Integrated
Process Execution: A Generic Execution Infrastructure for Process Models. 4th Int'l
Conference on Business Process Management (BPM), Vienna, Austria (2006)

13. Jablonski, S., Götz, M.: Perspective Oriented Business Process Visualization. Business
Process Management Workshops. Springer (2008) 144-155

14. Jablonski, S., Lay, R., Meiler, C., Müller, S., Hümmer, W.: Data logistics as a means of
integration in healthcare applications. 2005 ACM symposium on Applied computing.
ACM, Santa Fe, New Mexico (2005)

15. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment. 8th Int'l Conference on Advanced Information
System Engineering. Springer, Heraklion, Crete, Greece (1996) 1-21

16. Lu, R., Sadiq, S.: On the discovery of preferred work practice through business process
variants. 26th Int'l Conference on Conceptual Modeling. Springer, Auckland, New Zealand
(2007) 165-180

17. Microsoft: Domain-Specific Language Tools.
http://msdn.microsoft.com/en-us/library/bb126235.aspx [2008-11-26]

18. Object Management Group: BPMN 1.1 Specification.
http://www.omg.org/spec/BPMN/1.1/ [2008-11-26]

19. Object Management Group: MOF 2.0 Specification. http://www.omg.org/spec/MOF/2.0/
[2008-11-26]

20. Object Management Group: OCL 2.0 Specification. http://www.omg.org/spec/OCL/2.0/
[2008-11-26]

21. Odell, J.: Advanced Object-Oriented Analysis and Design Using UML. Cambridge
University Press, New York, NY, USA (1998)

22. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems--a survey. Data & Knowledge Engineering 50 (2004) 9-34

23. Seidewitz, E.: What Models Mean. IEEE Software 20 (2003) 26-32
24. van der Aalst, W.M.P., Jablonski, S.: Dealing with workflow change: identification of

issues and solutions. International Journal of Computer Systems Science and Engineering
15 (2000) 267-276

120

