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Abstract. A Use Case Map (UCM) is a scenario-based visual notation 
facilitating the requirements definition of complex systems. A UCM may be 
generated either from a set of informal requirements, or from use cases 
normally expressed in natural language. Natural languages are, however, 
inherently ambiguous and as a semi-formal notation, UCMs have the potential 
to bring more clarity into the functional description of a system. It may 
furthermore eliminate possible errors in the user requirements. The semi-formal 
notation of UCMs aims to show how things work generally, but is not suitable 
to reason formally about system behaviour. It is plausible, therefore, that the use 
of UCMs as an intermediate step may facilitate the construction of a formal 
specification. To this end this paper proposes a mechanism whereby a UCM 
may be translated into Object-Z. 

1 Introduction 

Use Case Maps (UCMs) gained popularity due to their applicability and adaptability 
to various purposes [1-6]. In general a UCM is used for enhancing the understanding 
and architecting of the behaviour of large, complex, and self-modifying systems [7]. 
A UCM facilitates the capturing of service functionality during the requirements 
elicitation phase, during which requirements tend to be vague and often contradictory. 
UCMs offer a comprehensible, by humans, representation of system scenarios and the 
interactions among these that may be superimposed on the structure of components. 
They combine in a single view the behavioural and architectural structure of a system. 
UCMs also have the potential to serve as input to other specification and design 
languages, given a suitable transformation or adaptation process is defined [8, 9]. 
Although formal methods may be used during most stages of the software 
development process [12], the lack of a precise technique in Z to set up the 
boundaries of a system during the early stages of development (e.g. capturing non-
functional requirements) makes it hard to grasp a system from scratch. The power of 
Z (Object-Z) resides in its ability to enable a system specifier to think deeply about 
the details of a system using the Established Strategy [10, 11] and not so much about 
the higher-level architecture of the system. Despite the advantages of the use of 
formal methods in producing quality software [13], they are mostly still not embraced 
by industry. The reasons for this state of affairs may be varied, but in this work we 
argue that one of the reasons is the lack of a step-by-step formal methodology capable 
of embracing architectural and system boundaries. Therefore, we believe that a 
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framework to transform a UCM into Z/Object-Z would facilitate the construction of a 
formal specification. A correct Z specification could be used in a reverse-engineering 
approach to in turn enhance the original UCM. A more correct UCM may be vital, 
since system designers may prefer to develop a system from a set of UCMs instead of 
a formal description. In this sense the formal specification is often referred to as a 
throwaway specification. 

In section 2, we briefly review and illustrate some aspects of the UCM notation. 
Section 3 presents an overview of Z and Object-Z. In section 4, we propose a 
transformation process. Thereafter, in Section 5 we apply the process to a small case 
study followed by the conclusions and further work in Section 6. 

2 Overview of UCMs 

UCMs, originally developed by Buhr and Casselman [1, 2] embody a semi-formal 
(graphical elements and prose descriptions) notation showing related and interacting 
use cases in a map-like diagram (see Fig. 1). The progression of scenarios along use 
cases is captured by paths shown as wiggle lines. UCM models describe service 
functionalities with causal relationships between responsibilities, superimposed on 
organisational structures of abstract components [1, 2]. A responsibility represents 
generic processing, e.g. an operation, a task, an action, a function and so forth. The 
strength of a UCM is in utilising a simple graphical notation to describe complex 
systems. 

A Start point is indicated by a black dot and is defined by a set of possible 
triggering events and optionally a precondition. The execution of a path begins when 
some triggering events occur and the precondition enabled.  

A Responsibility is some generic processing as discussed above. 

 
Fig. 1. A Use Case Map – Buhr [1]. 

A Path segment is a continuous line that chains path elements (see below) in an 
ordered sequence. A hand and an arrow indicate the direction of the progression of a 
scenario. 

An End point is indicated by a vertical bar and is defined by a set of resulting 
events and an optional postcondition that terminate the execution of a path. 

Some other path elements are waiting places and stubs. A stub provides for path 
abstraction and represents a place where a sub-map, called a plug-in, is needed but 
whose details are presented elsewhere. When only one plug-in is needed, a static stub 
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is used. Otherwise, a dynamic stub is used and a selection policy is used to select only 
one plug-in at runtime [1]. A waiting place along a path segment indicates that the 
execution is interrupted, waiting for a predefined unblocking event to occur. The path 
in execution is called the main path and the one through which the triggering event 
occurs is the triggering path. A timer is a special case of a waiting place where the 
waiting time is predefined and a timeout path is used to initiate some action in case 
timeout occurs before the triggering event. These concepts are depicted in Fig. 2. 

Triggering path 

Main path Main path 

Clearing path 

Timeout path 

Waiting places Timer Static stub Dynamic stub  
Fig. 2. UCM path elements – Buhr [1]. 

A UCM path is the execution route of one or more scenarios and may be composed of 
a number of path segments interconnected by means of path connectors (see Fig. 3) to 
achieve path coupling and express interactions between scenarios. 

 
And-Fork And-join 

Or-Fork Or-Join  
Fig. 3. Path connectors. 

Team Process Object  
Fig. 4. UCM components. 

 

An And-fork splits a path segment into 2 or more parallel paths. An And-join 
merges 2 or more parallel paths into a single path. An Or-fork splits a single path into 
2 or more alternative paths and an Or-join merges 2 or more alternative paths into a 
single one. A UCM may be superimposed on a structure of abstract components that 
describe software entities, for example objects, databases, processes, servers, etc. and 
non-software entities like hardware, actors, etc. [1]. Each component performs 
responsibilities bound to it. The following components, amongst others, are available:  

A Team component is a generic component allowed to contain any other 
component type including other teams.  

A process is an autonomous, active component that may operate concurrently 
with other processes. An object is a passive component that supports data or 
procedural abstraction through an interface. Objects perform their own 
responsibilities but do not have ultimate control on when they are activated. Further 
and comprehensive overviews of the UCM notation appear in [1-3, 7]. 

3 Overview of Z and Object-Z 

Z is a formal specification language based on first order logic and a strongly-typed 
fragment of Zermelo-Fraenkel (ZF) set theory [13, 14]. The main construct in Z is the  
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schema (see Fig. 5). A state schema describes  the  static  behaviour of a system while 
operation schemas describe dynamic aspects of the system. 

 
Declaration-part 
 

Pred icate-part 

SchemaName 
 

 
Fig. 5. Generic format of a Z schema. 

Visibility list 
Inherited classes 
Type definitions 
Constant definitions 
State schema 
Initial state schema 
Operation schemas 
History invariant 

[ClassName[generic parameters] 

 
Fig. 6. Generic form of a Class schema. 

SchemaName represents the name of the schema. The declaration part includes 
a list of typed variables, called components. Composed types are normally defined 
from a list of Basic types identified during the construction of a specification.  
 

The predicate part defines constraints or relationships between the components in 
the declaration part, e.g. the state invariant. 

Object-Z is an object-oriented extension of Z that uses class schemas (see Fig. 6) 
to encapsulate Z schemas, and introduce the notion of system structure to standard Z.  
Object-Z is discussed in detail in [15-17]. 

The visibility list restricts access to the attributes and operations of the class. A 
class may inherit from other classes. Type and constant definitions are similar to 
those of Z. A class schema includes only one state schema. The components of the 
state schema are initialised to some realisable values. Operation schemas are similar 
to those of Z. The history invariant constraints the order of the operations. An 
example is given in Section 5.4. 

4 Framework for Transforming a UCM into Object-Z 

Although UCM as a semi-formal notation may share with natural languages some 
limitations such as allowing ambiguous requirements, non-detection of errors, etc., it 
has the advantage of encapsulating different types of information in a single view. 
Thus, a drawback of a transformation process would be the loss of information (e.g. 
when a UCM is transformed into a Message Sequence Chart, some information on the 
scenario interactions is lost [18]).  

We propose to use Z as an intermediate transformation step. This way we can 
exploit the rigour of Z to allow for clear and precise definitions of static and dynamic 
behaviour of systems, extracted from an input UCM. At the same time we use meta-
classes to extract necessary architectural information. 

Thereafter we combine the Z schemas with the meta-classes to form the Object-Z 
schemas. The architecture of this mechanism is presented in Fig. 7. 
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UCM 
Z schemas

Meta-
classes 

Class 
schemas

Step 1 
Intermediate 

models Step 2 
 

Fig. 7. Basic transformation strategy. 

4.1 Relationships between UCM and Z/ Object-Z 

To evaluate the feasibility of the above mechanism, we need to analyse the 
relationships between the UCM and Z / Object-Z notations: 
• Both notations are specification techniques that focus on systems functionalities at 

the requirement level, but, can also be used during later stages of the software 
development process. 

• Their documentations include, for clarification purposes, natural language prose 
aimed at explaining possible intricacies of UCMs and schemas. 

• UCMs target the static, dynamic and architectural aspects of a system while Z 
focuses on the static and dynamic aspects only. However, the architectural 
component of UCMs can be compensated with the class structures of Object-Z. 

• Users and industries may more easily adopt the usage of UCMs. This may be 
because the UCM notation is graphic in nature and therefore more appealing to 
humans than the terse mathematical notation of Z. Formal methods tend to be 
perceived by industry as being unsuitable for serious system design. We believe 
that this situation stems from the fact that the Established Strategy for constructing 
Z documents [10], is largely silent about the architecture of the system. Schemas 
are defined and it is left to the user to perceive how these fit together in the final 
system. Some suggestions, notably heuristics to guide the construction process 
have been made [19, 20], but the difficulties seem to persist among practitioners 
since the said heuristics are still surrounded by technical terms. We consider this 
situation to be further justification for using UCMs as an initial step in the use of a 
formal method. 

• UCMs use scenario-based reasoning to target the general aspects of system 
functionality and structure, and are not concerned with detailed descriptions. Z on 
the other hand fills this gap as far as system functionality is concerned, but also 
does not provide any construction process for the schemas. Sommerville [12] 
suggests that formal methods in general should be used at the system requirements 
level, after user requirements specification, but before any detailed design. This 
situation suggests that a one-to-one relationship between the elements of a UCM 
and Z schemas may not be feasible in general, but UCM elements may constitute 
important starting points in the construction of schemas. 
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4.2 Conceptual Constructs in UCMs and Z 

Since in a UCM, the two important concepts are paths to describe scenarios and 
components to describe the architecture of the system, we need to analyse the 3-tiered 
relationship among the above concepts in UCMs, schemas in Z and class schemas in 
Object-Z. 
• A UCM path consists of one or more path segments. Each path segment includes, 

amongst other path elements a sequence of responsibilities, each representing an 
abstraction of a service provided by the system. A path segment may be bound to 
a component that handles the execution of the responsibilities on such path. These 
UCM constructs may be modelled in Z by a set of operation schemas to describe 
the bound responsibilities, a set of state schemas to describe the portion of the 
system state that is controlled by the component and is likely to be consulted or 
changed by the bound responsibilities, and a list of basic types necessary to define 
the two set of schemas mentioned above. 

• A sequence of responsibilities on a path segment can hence be modelled in Z by 
schema composition. Alternatively, we could also consider using a Z sequence 
structure with schema operations as elements. A sequence structure may assist a 
specifier with traceability aspects of the transformed model. 

• Scenario interactions are represented in a UCM with path connectors, i.e. And-
fork, And-join, Or-fork and Or-join. Such connectors may be described in Z using 
appropriate schema operators. As an example we consider an Or-Fork connector 
with one entry path segment and two outgoing alternatives (see Fig 3). Let op1 be 
the composed schema that models the sequence of responsibilities of the entry 
path segment and op11 and op12 schemas modelling the two alternative exit 
segments. The resulting operation along such path can therefore be described by 
the following Z schema calculus expression:  

op = op1 ƒ (op11 ϖ op12) (1) 

Other UCM connectors may be modelled in a similar vein. 
• Active components such as “Processes” execute responsibilities and also control 

the execution of responsibilities. We therefore consider for each active 
component, an implicit generic responsibility (shared by all paths bound to the 
component) to control the execution of responsibilities. To this end we propose 
that an additional schema operation be created to describe the generic control 
operation for each active component. Such “control schemas” are traditionally not 
part of a Z specification. 

• Components in a UCM describe the structure of a system. The class schema of 
Object-Z is a clear candidate to fulfil this role. We therefore suggest the creation 
of a meta-class for any component that is not a team as well as a hierarchy of 
meta-classes for each team component with one super-class and sub-classes.  

4.3 Transformation Process 

We assume in this process the use of one of the existing UCM traversal techniques [9] 
to scan a UCM as input to identify individual map elements. For reasons of space we 
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consider only some UCM elements (see Section 4.2) below. Our process follows a 
bottom up strategy where we start the description in Z of scenario paths from their 
path segments, and the transformation of team components from their sub 
components.  

Step1 – Construct Basic types, Abstract states, Operation schemas and Meta-classes:  
Initialise a list of basic types that will be populated as new types are needed. 

1.1 For each UCM component that is not a team, specify a state schema to 
describe the part of the system state controlled or represented by the 
component. When defining the invariant, consider relevant information such as 
the component’s type, inter-component interactions, bounded scenarios, etc. 

1.2 For each team component, recursively specify state schemas as follows: Create 
schemas for the contained components and one schema for the containing 
component. Combine these schemas using Z’s schema calculus (e.g. schema 
inclusion or schema typing). Combining schemas aims to capture inheritance 
in a UCM. Where appropriate, use natural language prose to aid the 
specification. 

1.3 Complete the system state schema and define realisable initial states.  
1.4 For each path segment, create operation schemas to specify responsibilities 

(and other active path elements). In general, schemas for bound responsibilities 
will apply to the local state of the binding component, but in some cases, they 
may apply to the whole system state. If a map has no component, we assume 
one implicit component for the system. 

1.5 Use schema composition to compose a sequence of schemas that will describe 
scenarios over a full path (sequence of path elements). Consider path elements 
and path connectors. 

Step 2 – Complete the Z schemas and generate Object-Z class schemas ([21] provides 
more details on mechanisms to transform Z schemas into Object-Z.): 

2.1 Define total operations (covering error conditions) corresponding to each 
partial operation defined in Step 1 above. Calculate a precondition for each 
total operation. Employ heuristics [20] where appropriate. 

2.2 Fill in each meta-class with appropriately selected schemas. In general, those 
schemas must have been generated from elements of path segments that are 
bound to the component. 

5 A Ticket Reservation System 

A ticket reservation System (TRS) [22] allows users to connect to the system and 
browse through a catalogue of events and available seating, and buy tickets online. 
We shall focus here only on the connection process that involves the two components 
User and WebServer and a sequence of responsibilities: Connect (a user logs onto the 
TRS system), ConnectWeb (opens a webserver session for the user), and ConfirmWeb 
in Fig. 8. 
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ConfirmWeb 

 
Fig. 8. UCM for the TRS system. 

5.1 Basic Types and State Spaces 

Following Step 1 above reveals the basic types: 

[USER, CONNECTION, SESSION]. 

USER represents all possible users, CONNECTION the set of all connections, and 
SESSION the set of all possible sessions. Execution of Step 1 also identifies the 
following 2 state schemas. 

5.2 State Schemas 

StateUsers 
WebSessions: USER      SESSION 

dom webSession ⊆ dom usersConnected 

StateWeb

listUsers: USER 
usersConnected: USER     CONNECTION 

dom usersConnected ⊆ listUsers 

StateUsers 

 
The team component User in Fig. 8 controls the list of users and the list of 

currently connected users. Only users known by the system can be connected. This 
may help us to discover and consider new tasks such as the user registration process 
and consequently rethink the UCM. The WebServer component controls the list of 
open sessions, hence the inclusion of StateUsers in StateWeb above. Assuming a team 
component for the system, we need to combine the two schemas, giving StateWeb. 
We defer the initialisation of the system state to the definition of classes. 

5.3 Partial Operations 

Connect ; ConnectWeb ; ConfirmWeb (2) 
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Δ StateUsers 
u?: USER 
u? ∈ listUsers 
  c:CONNECTION • c ∉ ran usersConnected ∧ 
usersConnected ′ = usersConnected ∪  {u? →  c} 

Connect

Δ StateWeb 
u?: USER 
c?: CONNECTION 
 
(u?, c?) ∈ usersConnected 
  s:SESSION • webSessions ′ = webSession ∪ {u? → s} 

ConnectWeb 
 

Ξ StateWeb 
u?: USER 
s!: SESSION 
rep!: RESPONSE 
 
(u?,s!) ∈ webSessions 
rep! = CONNECTED 

ConfirmWeb

 

The schema calculus expression (2) shows the sequence in which the partial 
operations are performed to accomplish the connection process. Formula (2) may be 
expanded along the way to include more schemas and operators as the execution of 
steps 1 and 2 above progresses. 

5.4 Definition of Classes 

In the definition of classes, basic types are considered as empty classes with the same 
name [21] as far as they represent undefined objects. 

    ↑(usersConnected , Connect) 
    

ClassUsers

listUsers: USER 
usersConnected: USER × CONNECTION 
dom usersConnected ⊆  listUsers 

listUsers = ∅
usersConnected = ∅

INIT 

Δ (u sersConnected) 
u?: USER  
 
  c:CONNECTION • c ∉  ran  (usersConnected) ∧  
usersConnected’ = usersConnected  ∪ {(u?,c)} 

Connect

 

The execution of Step 2 above leads to the definition of 2 classes. ClassUsers is 
derived from the UCM component User. It makes visible to the environment the state 
variable usersConnected, and the operation Connect and includes the state schema 
StateUsers.  The state schema by convention does not have a name since there is only 
one such schema in the definition of a class. INIT is the default name given to an 
initial state. 

RESPONSE ::= CONNECTED 
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WebSessio ns  = ∅
INI T 

   ↑(Co nnectW eb, Co nfirm W eb) 
   ClassUse rs 
    

ClassW ebser ver  

webSessions: USE R    SE SSION 
dom  webSession ⊆   d om u se rsConnected  

Δ ( webSessio ns) 
u?:  USER; c? :  CONNECT ION 

(u? ,c? ) ∈  usersCo nnec ted  
(  s:SE SSI ON) •  
webSessions ′ = webSessio ns ∪ {u?  →  c?} 

C onnectWeb

u?:  USER  
s!:  SE SSION; rep !: RE SPONSE 
(u? ,s!)  ∈ webSessio ns 
rep ! = CONNECT E D 

C onfir mW eb

 

ClassWebserver inherits the list of the currently connected users from the class 
ClassUsers. The state schema in this class includes only the component webSessions. 
The other variable is accessible from inherited class. An invariant specifies that web 
sessions are opened only to those users who have been successfully connected. The 
two operations performed are ConnectWeb and ConfirmWeb. ConnectWeb changes 
the state of the system whereas ConfirmWeb does not.  In that case, the Δ list is 
omitted. The Ξ convention is also not used in Object-Z. 

6 Conclusions and Further Work 

In this paper we proposed a framework to derive Object-Z class schemas from UCMs. 
The map is first transformed into Z following a sequence of steps. We believe the 
ability of Z to stimulate thorough thinking about system properties will aid the 
transformation process towards Object-Z. This process has amongst others some 
advantages: (i) It provides a flexible way to generate Z and Object-Z documents. 
Formal reasoning is applied to manageable components of a UCM and not directly to 
the whole system. (ii) Mathematical formulas can be used to facilitate traceability. 
(iii) It may encourage the use of Z and Object-Z in industry. To this end a next step 
would be to embark on empirical work in industry. 

Although our approach has made an initial step towards the development of a 
step-by-step construction process for Z and Object-Z from a UCM, further research is 
needed to validate transformations and develop more cases aiming at discovering 
additional transformational aspects of UCM.  A comparison of our approach with 
some others, e.g. transforming UCMs into Message Sequence Charts [18] should also 
be conducted. A further aim may be to provide an iterative and interactive 

12



 

environment for the construction of Z (object-Z) where a UCM serves as input and Z 
is used to reveal possible errors in the UCM. Such a tool may provide for an 
automated transformation of UCMs to Z (Object-Z).   
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