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Abstract: The development towards ambient computing will stimulate research in many fields of artificial intelligence,
such as activity recognition. To address this challenging issue, we present a formal activity recognition frame-
work based on possibility theory, which is largely different from the majority of all recognition approaches
proposed that are usually based on probability theory. To validate this novel alternative, we are developing an
ambient agent for the cognitive assistance of an Alzheimer’s patient within a smart home, in order to identify
the various ways of supporting him in carrying out his activities of daily living.

1 INTRODUCTION (ADL) (Pollack, 2005). However, most of these re-
searches has largely focused on probabilistic models.
Combining ambient assisted living with techniques One limitation of probability theory is that it is in-
from activity recognition greatly increases its accep- sufficient to handling imperfect information, which is
tance and makes it more capable of providing a betterimpressed of uncertainty and imprecision. In the con-
quality of life in a non-intrusive way. Elderly peo- text of cognitive assistance, where the human agent
ple, with or without disabilities, could clearly benefit is characterized by erratic behaviours, complete ig-
from this new technology (Casas et al., 2008). Ac- norance about the specific dependence between two
tivity recognition aims to recognize the actions and actions cannot be represented with the classical prob-
goals of one or more agents from a series of obser-ability theory. The possibility theory (Dubois and
vations on the environmental conditions. Due to its Prade, 1988), an alternative to probability theory, is
many-faceted nature, research addressing the recogan uncertainty theory devoted to the handling of in-
nition problem in smart environments refer to activ- complete information. By using a pair of dual set-
ity recognition as plan recognition, which relates be- functions (possibility and necessity measures) instead
haviours to the performer’s goals. The plan recogni- of one, this theory allows us to capture partial igno-
tion problem has been an active research topic (Au- rance, so that it is possible to represent partial belief
gusto and Nugent, 2006) for a long time and still about events. Also, it is more easier to capture partial
remains very challenging. The keyhole, adversarial belief concerning the activities realization from hu-
or intended plan recognition problem (Geib, 2007) man experts, since this theory was initially meant to
is usually based on a probabilistic-logical inference provide a graded semantics to natural language state-
for the construction of hypotheses about the possible ments (Zadeh, 1978).
plans, and on a matching process linking the observa- At the Domus and LIAPA labs, we investigate
tions with some activity models (plans) related to the possibility theory to address this issue of recogniz-
application domain. ing behaviours classified according to cognitive er-
Prior works have been done to use sensors, likerors. These recognition results are used to iden-
radio frequency identification (RFID) tags attached tify the various ways a smart home may help an
to household objects (Philipose et al., 2004), to rec- Alzheimer's occupant at early-intermediate stages to
ognize the execution status of particular types of carry out his ADLs. This context increases the recog-
activities, such as hand washing (Mihailidis et al., nition complexity in such a way that the presumption
2007), in order to provide assistive tasks like, for in- of the observed agent’s coherency, usually supposed
stance, reminders about the activities of daily living in the literature, cannot be reasonably maintained. We
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POSSIBILISTIC ACTIVITY RECOGNITION

propose a formal framework for activities recogni- Chpre, Is the set of possible contexts before the ac-

tion based on description logic and possibility theory, tion occurs (pre—action context€pos, is the set of

which transforms the recognition problem into a pos- possible contexts after the action occurs (post—action

sibilistic classification of activities. The possibility contexts) iy, is the possibility distribution 0pre,

and necessity measures on behaviour hypotheses althat an environment’s state in a particular context al-

low us to capture the fact that, in some case, erroneoudows the action to occur, amans, iS the transition

behaviours concerning the realization of activities can possibility distribution between contexts @pre, and

be equally possible than normal behaviours. Hence,Cpos, if the action does occur.

in a complete ignorance setting, both behaviour types  The action library is represented with an ontology,

are fully possible, where each type is not necessarily where the set of possible actioass partially ordered

the one being carried out. So, unlike probability the- with the action subsumption relatian,, which can

ory, possibility theory is not additive. be seen as an extension of the concept subsumption
The paper is organized as follows. Section 2 relationC of DL (Baader et al., 2007).

presents our new possibilistic recognition model.

Section 3 presents an overview of related work. Fi-

nally, we conclude the paper by outlining future plans

with this work.

Proposition 2.2(Action subsumption)Leta, b € 2
be tWO aCt|0n tupleg:prea, Cpo%, Tﬁnita, Trtran%) and
(Cpr%, Cpogo, Tﬁnitb7 Trtrangb). |f an aCt'Onb |S Sub‘
sumed by an actioa, denoted byb C; a, then for
all contextd in Cyyrg,, there exists a contextin Cpre,
whered C ¢, Tiit, (d) < Tinit,(C), and for each con-

2 POSSIBILISTIC ACTIVITY textein Cpos,, there exists a contextin Cpos, Where
RECOGNITION MODEL eC f andTkrang, (€]d) < Trans, (f[C).
For instance, th®© penDooraction subsumes the

In our model, the observer agent has knowledge QpenPantryDooraction, where thépenDooris at
concerning the resident's environment, which is |east as possible tha®penPantryDoorin contexts
represented by using a formalism in description \where OpenPantryDoorcan be carried out or ob-
logic(DL) (Baader et al., 2007). DL is a family served.
of knowledge representation formalisms that may be  with this action library, the recognition agent
viewed as a subset of first-order logic, and its expres- evaluates the most possible action that can explain
sive power goes beyond propositional logic, although the changes observed in the environment. olser-
reasoning is still decidable. By using the open world vation at a timet, denoted b)ObS; consists to a set
assumption, it allows us to represent the fact that the of DL assertions describing, according to the sensors,
environment is partially observable. The observation the environment’s state resu]ting from an action re-
of the environment’s state with sensors allows us to alization. Since the observatimbs can be partiaL
obtain the low—level context of the environment. multiple contextss; can be entailed by this observa-
Since, the observation can be partial, this context cantjon (obs = ¢), which influences the possibility and
represent a subset of the environment's state space necessity measures of observation for each action.
(C € 9), where states of this subset share some com- 1o determine such possibility and necessity mea-
mon environmental properties. For instance, the con- syres of action observation, a possibility distribution
text where the patient is in the kitchen, the pantry door on the action library concerning the possibility that a
is open, and the pasta box is in the pantry includes particular action was observed according to the previ-
several possible states. Also, a set of contexts can beyys action prediction possibilities (possibility that an
a partition of the environment's state space. action will be the next one carried out) and the cur-

In order to infer behavioural hypotheses about the rent action recognition possibilities (possibility that
realization of activities by an observed patient, the no- an action is the one that was carried Out) must be eval-
tion of possibilistic actions must be formalized, since ated. Theaction prediction possibility distribution
activities are carried out by performing a sequence of at 3 timet, Thre, IS Obtained by selecting, for each
actions that affect the environment’s State.péSSi' actiona ¢ a, the maximum poss|b|||ty value among
bilistic actionon the set of environment’s stat8ss a the action initiation possibilitiesin, (¢) for the pre—
nondeterministic action where the transitions between gction contexts; € Cpre, entailed by the observation
states are quantiﬁed with a pOSSlblllty distribution. obs Theaction recognition poss|b|||ty distributioat
Definition 2.1 (Possibilistic Action) A possibilistic atimet, Tieq, is Obtained by selecting, for each action
actiona is a tuple(Cpre, , Cpos,; Thnita» Thrans, ), Where a € 4, the maximum possibility value among the ac-
Chpre, andCpog, are context sets armnit, andTerans, tion transition possibilitieStrans, (Ci, Cj) for the pre—
are possibility distributions. contextsci € Cpre, €ntailed by the previous observa-
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tion obs_1 and the post—contextg € Cpos, €ntailed which uses the sequence of observed actions to in-
by the current observatiosbs. Since the prediction  fer behaviour hypotheses concerning the realization
possibilities must be taken into account when evalu- of the patient’s activities.

ating the action observation possibilities, thieser- Such activities are defined as plan structures,
vation addition operatorpsis used on the previous  which consist of a planned sequence of actions that
prediction possibility distributiomt,re_, and the cur-  allows to accomplish the activity’s goals.

rent recognition possibility distributiorieq to com-
pute the current action observation possibility distri-
bution Tpg. The Bops Operator selects, for each ac-
tion a € 4, the maximum possibility value between
the prediction possibilitytyre ,(a) and the recogni-
tion possibility Tieq (2), in order to obtain the obser-
vation possibilityypg ().

So, for each observatiavbs, we evaluate thac-
tion observation possibility distributiomnypg, Which ] \
allows us to select the most possible observed action  The use of time values allow us to describe the
at the timet, according to the possibility and neces- Minimum and maximum delays between the real-
S|ty measures of action obser\/aticb_ﬂbbs andNObE’(- !Za“on Of two actions. SO, the I’elatlor_L Wh|Ch.
Those measures, which allow us to indicate the possi-iS transitive, can be seen as an ordering relation-
bility Mops (Act) and necessitiops (Act) that an ac- _shlp with tgmporal constraints between two actions
tion ain a subsef\ct C 2 ({a} is also a subset) was N the activity plan. For instance, the activity
observed by the observer agent, according to the en-WatchTvcan have an activity plan composed of the

Definition 2.3 (Activity). An activity a is a tuple
(Acty, oq,Crely , Thel, ), WhereAcly C 4 is the activ-
ity’s set of actions, which is partially ordered by a se-
quence relatiory € Acty x Acly x T x 7, whereT
represents a set of time valu€s,, is the set of pos-
sible contexts related to the activity realization, and
Thel, iS the possibility distribution that a context is re-
lated to the execution of the activity.

vironment's state describexbs, are given by: actionsSitOnCouch OpenT vand CloseTvand the
sequence relationSitOnCouch OpenTy 0, 5) and
Mobs (Act) = Qg%(mbs(a» ' 1) (OpenTyCloseTy5, 480) (do not watch tv for more

. = than 8 hours) , where the time values are in minutes.
Nobs (Act) = max (Tobs (b)) — Mobs (A, (2) By using the observationbs, we evaluate, for
each activity plarx in the plan library?, the pos-
= min ( max (Topg (b)) — Trobs(a)) 3) sibility value that the current observed environment’s

agAct \{bea} state is related to the realization of an activity The
Mobg (Act) is obtained by taking the maximum value activity realization possibility distribution is obtaide
among the observation possibilitigsys (a) of the ac- by taking, for each activity plam € 2, the maxi-
tionsa in Act. Nopg (Act) is obtained by taking the — mum possibility value among the context possibilities
minimum possibility value among the values result- T, (Gi) for the contexts; € Cye, entailed by the ob-
ing from the subtraction of the maximum value in servatiornobs.
the distribution (since it can be not normalized, i.e. at As previously mentioned, the most possible action
least one value at 1) with the observation possibilities & that could explain the changes in the environment'’s
Thbg (@) Of the actions not in Act (a € Act). state according to the observatiolps resulting from

By obtaining the possibility and necessity mea- an action realization is sent to the behaviour recog-

sures for each action, we can then select the most position agent, which uses the sequences of observed
sible observed actioa that can explain the changes actions to generate hypotheses concerning the be-
in the environment’s state, described by the obser- haviour of the patient when he performs some activi-
vation obs, resulting from the realization of an ac- ties. This sequence of observed actions formslan
tion at timet. An observed actiorat timet, de- served plan R, which consists to a totally ordered
noted bya;, is obtained by selecting the most pos- set(ay,...,&,...,&), where eacly is the most possi-
sible and necessary actiane 4 according to the  ble and necessary observed action for the observation
Mobg (@) and Nopg (a) values. If there is more than  obs. Forinstance, the observed pig® penDoort =
one most possible action, the least common subsumel0, 3), (EnterKitchent = 1,4)) indicates that foobs,
action, according to the action subsumption relation, the O penDooraction was observed at a timestamp of
of this action subset is selected as the observed ac-3 minutes after the start of the recognition process,
tion a. For instance, if the most possible actions are and forobsg, the EnterKitchenaction was observed
OpenTapOpenColdTamndOpenHotTapthen the one minute later (timestamp of 4 minutes).
OpenTapaction is selected since it subsumes both Since the current observed behaviour can contain
OpenColdTamndOpenHotTapThe new observed  partial or complete coherent realizations of some ac-
actiona; is sent to the behaviour recognition agent, tivity plans, we must define the notion pértial ex-
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ecution path A partial execution patifPathex for ried out in a coherent way.

an activity plana is a subset of the observed plan From this point, the behaviour recognition agent
Pobg, Where each observed action in the partial path has determined the sets of plausible normal and er-
is associated to an action in the activity ptanAlso, roneous hypothesesy and 3g, concerning the be-
the observed actions in the partial p@dthexg must  haviour of the observed patient. In order to circum-
represent a coherent realization of a part of the activ- scribe the behaviour hypothesis set before sending
ity plan, where the sequence and temporal constraintstheses hypotheses to an assistance agent, the possi-
defined in the activity plan must be respected accord- bility and necessity measures concerning the obser-
ing to the observed actions in the partial path. For vation of each behaviour must be evaluated. Such
instance, for the observation pl&(SitOnCoucht = measures are obtained from the behaviour possibil-
0,4), (OpenElectricalAppliancgé = 1,5)), possi- ity distribution, which also need the partial execution
ble partial paths for th&/atchT vactivity plan could  path possibility. Theartial execution path possibility
be the SitOnCouchaction only or theSitOnCouch distribution at timet, Tzxq, is Obtained by selecting,
action followed by theOpenElectricalAppliance for each partial patlp € Patheye the maximum val-
action (since OpenElectricalAppliancesubsumes  ues between the minimum action prediction possibil-
OpenTY. ity among the next possible actions and the minimum

At each new observed actiaq added to the ob-  Vvalue among the action observation and activity pos-
served plarP,ps, the set of partial execution paths sibilities for each observed action in the partial path.
Patheyeis updated by extending, removing, or adding This partial path pOSSlblIIty diStribUtiOﬂEXQ is then
partia| paths_ A partia| path can be extended if the new used to evaluate the behaviour pOSSIbI'Ity distribution
observed actioa; subsumes one of the next possible They- Thebehaviour possibility distributiomey is
actions in the activity plan and if the extended partial obtained by selecting, for each behaviour hypothe-
path respects the constraints in the activity plan. If Sisb € 3, the maximum possibility value between
we can extend a partial path, we must keep a copy of the minimum partial path possibility for the partial
the original partial path, since the new observed ac- paths of the behaviour, the minimum action observa-
tion could be not associated to the realization of the tion possibility for the observed actions in the partial
partial path’s activity plan. A partial path is removed Paths of the hypothesis, and the minimum action ob-
if the maximum delays for the next possible action in servation possibility for the observed actions not in
the activity plan are exceeded. A partial path is added the partial paths of the hypothesis.
is the observed actiom subsumes one of the first ac- The behaviour possibility distribution,e, allows
tions in the activity plan. us to evaluate the possibility and necessity measures
of behaviour observationlpey and Npey. Those
measures, which allow us to indicate the possibility
Mpey (BeV) and necessitiyey (Bey) that a behaviour
bin a subseBevC 3 is the behaviour of the observed
patient according to the observed pRygs, are given

The set of partial execution patRathexe is then

used to generate behavioural hypothesesccording

to the observed plaR,pg, concerning the observed
behaviour of the patient when he realize some activi-
ties. Abehaviour hypothesis & 3 for an observed
plan Pypg is a subset of the partial execution path
setPatheye that respects the following conditions) ( M Bev — max b 4
each partial path is associated with a different activ- bev (BeY {beBev (Toew (b)) @
ity, (ii) some observed actions can be shared between Bev — max o)) — Mie (B 5
partial paths, i{i) each partial path must at least have bev (BeV) (ces (Toe (¢)) ~Moex(Bey — (5)
one action that is not shared. It should be noted that it (

is possible that some observed actions in the observed = min

(b#Bey {Te%’ﬁ("bev(c))—ﬂbev(b)) )

plan are not in the partial paths.
A behaviour hypothesis isormal denoted byoy, Mpey (BeV) is obtained by selecting the maximum be-
when each observed action in the observed plan is as-haviour possibility among the behaviodrin the be-
sociated to at least one partial path. A normal be- haviour subseBevC 3. Nyey(BeV) is obtained by
haviour represents a coherent realization, which canselecting the minimum possibility among the values
be partial or complete, of some activities by the pa- resulting from the subtraction of the maximum pos-
tient. A behaviour hypothesis erroneous denoted  sibility in the distribution with the behaviour possi-
by be, when some observed actions in the observedbilities Tey (b) 0f the behaviour hypothesésnot in
plan are not associated to a partial path. An erroneousBev (b € Bey. This allows to represent an interval
behaviour represents an erroneous realization of someof confidencéNyey (BeV), Mpey (BeV)] concerning the
activities, while some others activities can still be car- possibility that a hypothesis behavidue Bevis the
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observed behaviour of the patient according to the ob-

served plarPypg. SO, after each observatiois, the

behaviour recognition agent selects the most possible

Algorithm 2 Behaviour recognition.

Input:
& current recognized action observed

and necessary behaviour hypotheses and sends them Py , previous observed plan

to an assistance agent, which will use it to plan an

assistive task if needed.

By using the formal tools previously presented,
we can formulate the Algorithms 1 and 2, which de-
scribe the principal steps in the recognition process.

Algorithm 1 Action recognition.

Input:
obs, obs_1 previous and current observations
Tipre_, Previous action prediction distribution
C context set
C;_1 previous entailed contexts
4, ¢ action and plan libraries
Output:
& current recognized observed action
Tipre» Theq» Tobs» Thel, CUITENt action prediction, action
recognition, action observation, and activity possipilit
distributions
C: «+ evaluateEntailedContexts(obg)
. Tiprg < evaluateActionPrediction(, C;)
Theq < €valuateActionRecognition(, C, Ci_1)
Tlophs < ObservationAddOperatarfyrg_,, Treq)
. & + selectObservedAction(, Tops)
. The, < evaluateActivityRelated{(, Centail)

To recognize the behaviour of the observed patient

after the realization of an action at a timehe recog-
nition agent uses the environmental observatadrs

to generate behavioural hypotheses that could explain

the sequence dfobserved actions. According to the
Algorithm 1, the context€;_1 andC; that are entailed
by the previous and current observatiais_; and

obs are used to evaluate the action observation possi-

bility distribution 1ypg 0On the action libraryz by us-
ing the observation addition operatog,son the pre-
vious action prediction possibility distributiamyye, ,
and the action current recognition possibility distri-
bution Tgeq. This action observation possibility dis-
tribution Tpg is then used to evaluate the action ob-
servation possibility and necessity meastitgg; and
Nobg . Which are used, in conjunction with the action

4, 2 action and plan libraries
Thre: Thbs Thel SEtS Of possibility distributions
Patheye partial execution path set
Output:
Pobs current observed plan
Patheye updated partial path set
3 current behaviour hypotheses
They CUrrent behaviour possibility distribution
B; set of most possible behaviour hypotheses
. Pobg + appendObservedActioay, Pobs ;)
. Pathgye +— updatePartialPathSethexe? , Pops)
B + generateBehaviourHypothesea(hExe Pyps)
Texq +— evalPartialPathifathe xe, Pobs» Tpre, Tobs Thel)
They < evaluateBehaviourPossibility( Tixq, Thhs)
. Bt + selectBehaviourHypotheses(tey )

tion pathsPath=ye, Where each partial path is a par-
tial (or complete) coherent realization of an activity
plan. The set of behaviour hypothesess obtained

by selecting subsets #fatheye that respect the con-
ditions in order to be a behaviour hypothesis. Each
behaviour hypothesis € 3 can be a coherent real-
ization of some activitiesh(e 8y) or an erroneous
realization of some activitiedb(e B8g), according to

its partial path subset and the observed plan. The be-
haviour possibility distributiomt,ey is then evaluated

by using the previous defined possibility distributions
(Thore, Tobs The) and the partial execution path pos-
sibility distribution Texq. This behaviour possibility
distributiont,ey allows us to rank the set of behaviour
hypotheses according to the behaviour possibility
and necessity measurBgey andNyey. The recogni-
tion agent sends the most possible behaviour hypothe-
sesB; to an assistance agent, which plans an assis-
tance task if needed.

3 RELATED WORK

A number of researchers have investigated activity

subsumption relation, to select the most possible andrecognition as plan recognition. Logical based ap-

necessary observed actian Also, the activity pos-
sibility distribution Te, On the activity plan library
2, which indicates the possibility that the observed
environment's state described abs is related to a
specific activity realization, is evaluated.

According to the Algorithm 2, the observed plan
Pobg, Which include the new observed actieq is
used to generate a set of hypothesesoncerning

proaches (Kautz, 1991) define a theory using first—
order logic, in order to formalize the recognition
activity into an inference process. But to allevi-
ate to the equiprobability problem of logical models,
where an hypothesis cannot be privileged within the
set of possible activities, probabilistic models (Liao
et al., 2004; Philipose et al., 2004), mainly Bayesian
or Markovian based, or hybrid models (Avrahami-

the observed behaviour of the patient. The observedZilberbrand and Kaminka, 2007; Geib, 2007; Roy
plan Pypg is used to update the set of partial execu- etal., 2009), that use logical and probabilistic reason-
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ing, were proposed. The limit of the vast majority of Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,

these previous approaches is that they were focused

exclusively on the concept of probability where the
inference itself requires large numbers of prior and
conditional probabilities. For example, in the context
of assistive cognition within smart homes, requiring
humans to specify the habitat’s object involvement
probabilities is time consuming and difficult when

we consider all the potential objects involved in each
stage of an activity, given the large numbers of activ-
ities performed. Moreover, the probabilities do not

allow us to represent complete ignorance; besides,

and Patel-Schneider, P. F., editors (2007he De-
scription Logic Handbook: Theory, Implementation,
and Applications Cambridge University Press, sec-
ond edition.

Casas, R., Marin, R. B., Robinet, A., Delgado, A. R., Yarza,

A. R., Mcginn, J., Picking, R., and Grout, V. (2008).
User modelling in ambient intelligence for elderly and
disabled people. IRroc. of the 11th ICCHPnumber
5105 in LNCS. Springer-Verlag.

Dubois, D. and Prade, H. (1988Possibility Theory: An
Approach to Computerized Processing of Uncertainty
Plenum Press.

there are numerous situations where it is not possi- Geib, C. (2007). Plan recognition. In Kott, A. and McE-

ble to give the agent probabilities based on statistical
measures, but only qualitative information provided

by experts or deduced from previous experiences. Our

proposed model, by using possibility theory, allows to

mitigate those limitations by taking into account par-

tial belief and by handling the behaviour hypotheses
as a partially ordered set.

4 CONCLUSIONS

This paper has presented a formal framework of ac-
tivities recognition based on possibilistic DL as the
semantic model of the observed agent’s behaviour.
This framework constitutes a first step toward a more
expressive ambient agent recognizer, which will fa-
cilitate to support the fuzzy and uncertainty con-
straints inherently to the smart environment. Cur-
rently, the proposed is under implementation in the
software framework of our smart home infrastructure,
which consists of a standard apartment with a kitchen,
living room, dining room, bedroom, and bathroom,
equipped with multiple sensor devices. Moreover, the
next logical step consists in conducting an extension
of this framework in order to simultaneously deal with

the vagueness of an activity’s duration and the noises

of the sensors. Finally, we clearly believe that consid-

erable future work and large scale experimentations
will be necessary, in a more advanced stage of our

work, to help evaluate the effectiveness of the model
in the field.
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