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Abstract: This paper shows how sparse path problems can be solved by tree-decomposition techniques. We analyse the

properties of closure matrices and prove that they satisfy the axioms of a valuation algebra, which is known
to be sufficient for the application of generic tree-decomposition methods. Given a sparse path problem where
only a subset of queries are required, we continually compute path weights of smaller graph regions and
deduce the total paths from these results. The decisive complexity factor is no more the total number of graph

nodes but the induced treewidth of the path problem.

1 INTRODUCTION ing. Essentially, there are two approaches which focus
on solving sparse fixpoint systems over semirings by
tree-decomposition techniques: Similar to the inverse
matrix in case of linear systems over fields, tfuasi-
inversematrix provides a solution to a semiring fix-
point system. Such quasi-inverse matrices always ex-
ist for closed semiringgLehmann, 1976) and can be
ycomputed by the well-known Floyd-Warshall-Kleene
algorithm. (Radhakrishnan et al., 1992) combined this
Sinsight with LDU decomposition for semiring matri-
ces (Backhouse and Carré, 1975) to obtain a tree-
decomposition algorithm for sparse fixpoint equations
over closed and idempotent semirings. Again, this ap-
proach is covered by the local computation frame-
work with the fixpoint equations satisfying the val-
uation algebra axioms. Alternatively, (Chaudhuri and
Zaroliagis, 1997) proposed a second method for the
particular problem of computing shortest distances. In
this paper, we will identify the algebraic requirements
of this second method and show that it complies with
the valuation algebra framework. This enables the ap-
plication of existing, generic inference procedures for
the solution of sparse path problems. Moreover, we

In recent years, a large number of formalisms for au-
tomated inference have been proposed. Typical ex-
amples are: probability potentials from Bayesian net-
works, Dempster-Shafer theory, different constraint
systems and logics, Gaussian potentials and densit
functions, relational algebra, possibilistic formalisms
and many more. Inference based on these formalism
is a computationally hard task which motivated the
introduction of tree-decomposition methods. But it
also turned out that they all share some common
algebraic properties which are pooled in tedua-

tion algebraframework (Shenoy and Shafer, 1990;
Kohlas, 2003). Based on this framework, a collec-
tion of generic tree-decomposition methods has been
derived. Thus, instead of re-inventing such inference
procedures for each different formalism, it is suffi-
cient to verify a small axiomatic system to gain access
to efficient generic procedures and implementations.
This is known as théocal computatiorframework.

In parallel to these developments, tree-decomposition

”}EIhOdS v;/_ere succtessfullz applledt_for thet solution rgeneralize this idea from shortest distances to a wider
Of Sparse finéar Systems. For equation SySIems OVely .o semirings calleldleene algebrasvhich fur-

fields, it has been shown that these approaches, whichy, o i o1y des other graph related path problems as for

a'rE. atttpeﬂ:mnln?lza:.tlon cl)f f;)ll-mfs N matrll(ces,datrﬁ ¢ example the computation of maximum capacities or
subject o the vajuation algebra Iramework, and that o japijities, and also many other problems that are

the according tree-decomposition procedures are SP€hot directly related to graphs but which can neverthe-

cializations of the generic local computation methods |

) ess be reduced to a path problem. We refer to (Rote,
(KOh'?S' 2003; Poul_y a_”d Kohlas, 2010). However, 1990) for an extensive listing of such examples.
many important applications can be reduced to the so-

calledalgebraic path problerwhich requires to solve
a fixpoint equation system with values from a semir-
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2 VALUATION ALGEBRAS 2.1 Generic Inference Problem

The basic elements of a valuation algebra are so-The computational interest in valuation algebras is
called valuations Intuitively, a valuation can be re- stated by thénference problemGiven a set of val-
garded as a representation of knowledge about theuations{e,...,o} C ® calledknowledgebasand a
possible values of a setof variables. It can be said set ofqueries x= {x,...,%s}, the inference problem
that each valuatiomp refers to a finite set of variables consists in computing

d(@) Cr called itsdomain Further, leD be the power X N 1% 1
set ofr and® a set of valuations with their domains _ @ (@ @%) @)
in D. We assume the following operations(i, D): for 1 <i <s For example, if the knowledgebase

e Labeling:® > D; @ d() consjsts of the CPTs from a Bayesian network, then
' ' ' the inference problem reflects the computation of

e Combination:® x ® — ®; (¢, ) — e Y, marginals from the join probability distribution. If the

e Projection: ® x D — ®; (@, x) — @™ for x C d(¢). knowledgebase models a constraint system, then the

inference problem with the empty query corresponds

to satisfiability, if the knowledgebase contains rela-

1. Commutative Semigroulombinationis associa-  tions, then the inference problem mirrors query an-

tive and commutative. swering in relational databases.

2. Labeling:For@, g € ®, d(e® §) = d(@) Ud(y). The complexity of combination and projection

d(
C X generally depends on the size of the factor domains
3. Projection:Forg e ® andx < d(¢), d(@”) = x. and often shows an exponential behaviour. Accord-

We further impose the following axioms eéhandD:

4. Transitivity: Forge ® andx Cy C d(9), ing to axiom 2 and 3, the domains of valuations grow
(@) = g under combination and shrink under projection. Effi-
' cient inference algorithms must therefore confine in
5. CombinationFor, Y € ® with d(¢) =X, d(|) = some way the size of intermediate results, which can
yandz e D such thak C zC xUy, be achieved by alternating the operations of combina-
tion and projection. This is the promise of local com-
(P2 W) = o Y+, putation. The valuation algebra axioms are sufficient

- . _ xil for the definition of general local computation pro-

6. Domain:Forg e ® with d(¢) = x ™ = ¢ cedures which solve the inference problem indepen-

7. IdempotencyForge ® andx C d(q), p2 ¢ = @. dently of the underlying formalism. These algorithms
These axioms require natural properties regarding includefusion(Shenoy, 1992) anbucket elimination

knowledge modelling. The first axiom indicates that (Dechter, 1999) for inference problems with a single

if knowledge comes in pieces, the sequence does notquery, and the Shenoy-Shafer architecture (Shafer and

influence their combination. The labeling axiom tells Shenoy, 1988) for multiple queries. If (some weaker

us that the combination of valuations gives knowledge condition of) axiom 7 is present, other local computa-

over the union of the involved variables. Transitivity tion architectures with a more efficient scheduling of

says that projection can be performed in several steps computations can be derived (Lauritzen and Spiegel-

and the combination axiom states that we either com- halter, 1988; Jensen et al., 1990; Kohlas, 2003).

bine a new piece to the already given knowledge and

focus afterwards to the desired domain, or we first cut

the uninteresting parts of the new knowledgeoutand 3 |LOCAL COMPUTATION

combine it afterwards. The domain axiom expresses

that trivial projection has no effect and finally, idem- | ocal computation methods are usually described as

potency states that combining a piece of knowledge message-passing schemesonering join treegalso

with a part of itself gives nOthing new. Ca"edtree-decompositi@m

Definition 1. A system(®, D) satisfying the axioms  Definition 2. A join treeis a labeled tregV, E, A, D)
1to 6 is called avaluation algebralf axiom7 holds, whose labeling functioh : V — D satisfies theun-
then it is called an idempotent valuation algebra. ning intersection property.e. for two nodesy v, €

A listing of formalisms that adopt the structure of V. if X € A(v1) NA(v2), then X is contained in every
a valuation algebra was already given in the intro- Node label on the unique path betwegnand v. A

duction. Among them, the valuation algebras of re- J0in treecoversthe inference problem if
lations and crisp constraints are idempotent. We refer e for each factong, there is a node ¥ V such that
to (Pouly, 2008; Kohlas, 2003) for further examples. d(@) CA(v),
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o for each query i there is a node ¥ V such that
Xi CA(V).

A detailled description of all local computation

methods can be found in (Pouly, 2008). Here, we only

semiringE. This set forms itself an idempotent semir-
ing. We define the power sequence of matrices:

M®) (4)

| +M+M?4...+M".

cite the main theorem that all multi-query procedures !f We interpretM as the adjacency matrix of a graph

have in common:

with edge weights from the tropical semiring, then
M) corresponds to the shortest distances containing

Theorem 1 At the end of the message-passing, each at mostr edges. Consequently, we obtain the shortest

node i containgp ().

If the queryx; is covered by some nodec V,

we obtain the query answer as a consequence of the

transitivity axiom by one last projection

o - (@Mi))“j , @)

In local computation methods, all computations
take place in the join tree nodes. The domains of in-
termediate factors, which determine the complexity

distances between each pair of graph nodes by

PM = 1+M+M*+ .. (5)

r>0

Observe that this infinite sum is not always defined.
But if the above sequence converges with a suitable
notion of topology (Gondran and Minoux, 2008), it
can be shown that its lim* always satisfies

M* = MM*+1 = M*"M+1. (6)

of combination and projection, are therefore bounded This motivates the following definition.

by the largest node label in the join tree. This mea-
sure is calledreewidth In other words, the smaller
the treewidth, the more efficient is local computa-
tion. Finding a covering join tree with a minimum
treewidth is NP-complete (Arnborg et al., 1987). But
there are good heuristics (Lehmann, 2001).

4 ALGEBRAIC PATH PROBLEM

The algebraic path problem aims at the unification of
various path problems in terms of the solution of a
generic fixpoint equation with values from a semiring.
Definition 3. A tuple(E, +, x,0,1) with binary oper-
ations+ and x is called semiring if:

e + and x are associative and- is commutative;

e fora,b,cec E: ax (b+c)=axb+axc;
fora,b,ce E: (a+b)xc=axc+bxc;
e + and x have neutral elementsandl;
e ax0=0xa=0forallacE.

If the semiring isdempotentsatisfyinga+ a = a for
alla€ E, then the following relation is a partial order:

®3)

Typical examples of idempotent semirings are the
Boolean semiring({0,1},max min,0,1), the trop-
ical semiring (N U {0,0},min,+,,0), the arctic
semiring(R U {—o} , max +,—c0,0), the probabilis-
tic semiring ([0,1],max-,0,1) and the bottleneck
semiring(R U {400, —co}, max min, —co, c0).

Forn € N we next consider the set ofx n ma-
tricesM € a1 (E,n) with values from an idempotent

a<b if,andonlyif a+b=h.

Definition 4. The algebraic path problem consists in
solving the fixpoint equation X MX+1 = XM+1.

There may be no solution, one solution or in-
finitely many solutions to this equation. However, for
computational purposes it is often convenient to avoid
this difficulty by ensuring the existence of a solu-
tion axiomatically. Such semirings are calleldsed
semiringgLehmann, 1976) and they provide for each
a € E an element* € E such thata* = aa*+ 1 =
a*a+ 1. Moreover, given a matrik with values from
a closed semiring, it is possible to compMé&induc-
tively from the values of the underlying semiring:

e Forn=1we defing(a)” = (a*).
e Forn> 1 we decompose the matri into sub-
matricesB,C,D, E such thatB andE are square

and define
B C\” _ (B*+B*CF*DB* B*CF* )
D E - F*DB* F*

whereF = E 4 DB*C.

M* as a result of this construction is a solution to
the algebraic path problem (Lehmann, 1976). In other
words, matrices over closed semirings themselves
form a closed semiring. The proof of this statement
affords the Floyd-Warshall-Kleene algorithm which
performs this task in tim®(n?). But to derive a val-
uation algebra, we first introduce an even more struc-
tured class of semirings callé&deene algebrag/hich
are closed and idempotent semiring with an additional
monotonicity property:

Definition 5. A tuple (E,+, x,%,0,1) with an unary
operationx is called Kleene algebra if:

1. (E,+, x,0,1) is an idempotent semiring;
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the projection operator satisfies transitivity. We next
introduce thedirect sumof labeled matrices: Let
M1 € o (E,s) andMy € o (E,t) with snt =0 and
X,Y € sut, we define

2. a@=1+aa=1+aa'foracE;
3. ax< ximplies that &x < x for a, x € E;
4. xa< x implies that xa < x for a,x € E.

For example, the Boolean semiring is a Kleene al-

gebra with 0 = 1* = 1. The tropical semiring of non- M1(X,Y) if X,Y €5,
negative integers is a Kleene algebra wath= 0 for (M@ M) (X,Y) = Ma(X,Y) if X,Y et,
allae NU{0,}. The arctic semiring is a Kleene al- 0 otherwise

gebra witha* = 0 for a> 0 anda* = — otherwise.
The probabilistic semiring is a Kleene algebra with It follows from the inductive definition oM* that the
a*=1forae [0,1], and the bottleneck semiring isa closure operation distributes over the direct sum, i.e.
Kleene algebra witla* = o for allae RU{—o0, 00}, N N N

Kleene algebras have many interesting properties. (M1&Mg) My & My. (10)
Most important among them are the closure proper- This allows us to define an operation of vacuous ex-
tiesta< a’, @™ =a* anda < b implies thata® < b*, tension fortM € a7 (E,s) andsCt byMt =M@ |;_s.
but alsol = 1* < a* and The application of the closure operation and vacu-

(a+b)* = (@ +b)* = (a* +b") 8) ous extension are interchangeable. It follows directly

from (10) andl* = 1 that
for all a,b € E. We refer to (Kozen, 1994) for the X \ "
proofs of these and other elementary properties. (Mﬁ) r (M o |t_s) h (M* @ |t_s) £ (M*) ,
Since Kleene algebras are closed semirings, we (11)

E'lay comlputbd\/l bOftﬁ matrixM Iwnht;]/aluesdf;ﬁm a ItThus,CD is also closed under vacuous extension. Fi-

eene algebra by the same algorithm and the resu nally, we introduce a very intuitive combination rule
again satisfies r_nonotommty (Conway, 1971). This for elements ind. Imagine that we have two closure
proves that matrices over Kleene algebr_as the”?se've atrices which express shortest distances in two pos-
form a K'ee”? _algebra_, and asa further |mpI|c_at|on of sibly overlapping regions of a large graph. Then, the
the monotonicity law, 1t COUf'fmS tha_t Comp LUy . shortest distance matrix for the unified region is found
over the troplce_ll semiring mdeed gives shortest d|§— by vacuously extending both matrices to their union
tances. Acc_o_rdmgly, the arctic semiringggivesygaxi domain, taking the component-wise minimum which
mum capacities, the probab|l|st|c_ Semiing maxiigm corresponds to semiring addition and computing the
reliabilities and the Boolean semiring connectivities. new shortest distances. Thus. . M: € ® with

: » W, Vo

d(M;) =sandd(M;) =t we define

5 KLEENE VALUATIONS

We prove in this section that closures matrices satisfy We directly conclude from this definition tha is
the valuation algebra axioms. Let= {Xi,...,%} closed under combination and also that combina-

be a finite set of variables aridl its powerset. For a tion is commutative. Proving associativity is more in-
Kleene algebrdE,+, x,,0,1) ands € D, we con-  Volved but follows from (11) and (8). Furthermore,
sider labeled matrices M sx s — E and refer to this definition of combination also fulfills the combi-
d(M) = sas their domain. We then writer (E, s) for nation axiom:

the set of all labeled matrices with domaig D and Lemma 1 If M3, M5 € ® with d(M;) ='s, dM3) =t
also define the set of all closures of labeled matrices gnd sC zC sUt we have

with domain inD as® = {M*|M € # (E,s) ands € . 1z

D}. We next introduce some operationsdnstart- (M1 ®@M3)

MioMs = (M1 + M=) (12)

Mi® (M3)#"  (13)

ing with the projection. FoM* € @, t C d(M*) and
X,Y €t,

(MHHXY) = M*(XY). 9)

This simply corresponds to the restriction of the ma-
trix M* to the variables int. It is easy to prove that

@ is closed under projection, i.e. the restriction of a
closure matrix again results in a closure matrix. Intu-
itively, considering a subgraph of a graph with short-

DecomposeM; @ M3 = (M)t 4 (M3) sty
with respect te andt — z. The statement then follows
from (7). Finally, we observe that closure matrices
fulfill idempotency. FoM* € ® with sCt = d(M*),

This follows from the idempotency of addition and
the propertied < a* and a** = a*. Altogether, we

est distances still contains shortest distances. Clearly,proved the following theorem:

200



A GENERIC APPROACH FOR SPARSE PATH PROBLEMS

Theorem 2 Closures of Kleene valued matrices with  We obtainO(|V |w?) for the time complexity of com-
labeling, projection (9) and combination (12) satisfy puting Equation (14) since only matrices are stored,
the axioms of a valuation algebra. the space complexity i©(|V|w?). However, there is

Every Kleene algebra therefore induces an idem- an important i$S“e _regarding the treewidth complex-
potent valuation algebra of matrix closures. For ity. When deal!ng with path problems, people are of-
the particular case of the tropical semiring of non- ten mterest_ed in a large number of paths. These query
negative integers, this corresponds to the result of sets may either be structured (e.g. smgle—sou_rce prob-
(Chaudhuri and Zaroliagis, 1997) that implicitly used '€MS). Or they may be arbitrary sets of queries. But
the above properties by referring to Bellmann'’s prin- since theJO'F‘ tree must goverall queries, the treew_ldth
ciple of optimality. The final section shows how lo- may grow significantly if a large number of guernes
cal computation with valuation algebras of matrix clo- IS Present. In the worst case, when all possible path

sures are used for the solution of path problems. weights have to be computed, the join tree consists of
a single node containing all variables. Except for such

extreme cases, this problem can be addressed by ex-
ploiting idempotency. If the valuation algebra is idem-

6 SOLVING PATH PROBLEMS potent, it hold that
Considering decompositions of large graphs or net- 0 — éq’u(i) (15)
works is very natural. A typical example is a road map W '

of Europe that is decomposed into smaller road maps ]
for each country. Thus, we assume an adjacency ma-1his was shown by (Kohlas, 2003). The following
trix M of a large graph which is decomposed into a set |emma can be derived from this important result:

of matrices{My,...., M.n} taking values fromaKleene | emma 2 Let (vy,...,v) be a path in the join tree
algebra. These matrices correspond to the adjacencyrom node y to node y with v €V for 1 <i < k. We
matrices of some smaller graph regions. Represent-then have for an idempotent valuation algebra
ing the nodes of the total graph by the variable set )
S= d(M) we obtainM = MIS+ st Mﬁs and using (pU\(Vl)U---U)\(Vk) _ ®¢U\(Vi) (16)
the properties (8) and (11) = '

M* = (MIS+---+MQS) = Mi®--- @M. For an uncovered quer§X,Y} we always find two

) ) __nodesvi, Vg €V such thatX € A(v1) andY € A(w).

path weightsM*(X,Y) for variablesX,Y € s. These  fo|lows from the transitivity axiom that
pairs of variables form the query setand the task
consists in computing

k
AWM @A)
(MHHXYE = (Mi@...oMHHYE (14) ‘§’

for each query{X,Y} € x. This defines an inference from which we obtain the query answer by one last
problem according to Section 2.1 which can be solved projection to{X,Y}. Computing this formula is yet
by local computation. We first construct a join tree too expensive. But a clever application of the combi-
covering all knowledgebase factdvs and all queries  nation axiom uncovers the following algorithm:
{X,Y} € xand then execute a multi-query local com- ¢ initializen := @)

putation architecture. At the end of the message- )

passing, the query answers are obtained from Equa-2- "epeatfor=1...k—1

tion (2). During the local computation process, two n o= (pu\(vi“) ®n¢)\(v1)u()\(vi)ﬂ)\(vi+1))
messages are sent along each edge, and each mes-

sage is combined to some node content. For a join 3. returnn*“*.Y},

tree (V,E,A\,D) we thus perform gV| — 1) combi- .
natio(ns and @)V| -1) projectionse.| Cl,oml:Zination js Theorem3 The algorithm outputs ¢*Y) - for
surely the more costly operation since projection only {X,Y} S A(v) UA(v) and vy, v € V.

corresponds to matrix restriction. Using the algorithm The domain ofn will never exceed the union of
of Floyd-Warshall-Kleene we obtain the closuvk two node labels. Therefore, its time complexity is
of a matrix M in time O(|d(M)|3). Moreover, the  driven by the double of the treewidth. Also, the num-
largest matrix domain that occurs during the local ber of combinations is bounded by the largest path
computation process is bounded by the treewidth  in the tree with has at mo$¥' | nodes. We obtain for

)

) JA (V1) UM Vi)
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the time complexityO(|V| - (2w)3) = O(|V| - w®). To J. of Algebraic and Discrete Method&:277-284.

sum it up, given a factorized path problem and some Backhouse, R. C. and Carré, B. A. (1975). Regular algebra
guery set, we only consider the knowledgebase for the applied to path-finding problemslournal of the In-
construction of the join tree and ignore the query set. stitute for Mathematics and its Applicatiqriss:161—
This gives us the smallest treewidth that can be found 186.

for this inference problem. After local computation, Chaudhuri, S. and Zaroliagis, C. (1997). Shortest paths in
each node € V containgpV) according to Theorem ﬂlt%mghil O(f)r?twrililctreze;’f”zdltg'_ngg I: Sequential algo-
1. For each quer{X,Y} € x, we search two nodes Al 4 .I | b 4 Fini
VL,Vk €V that cover this queryX, Y} C A(v1) UA(v2) Conway, J. H. (1971). Regular Algebra and Finite Ma-

. : chines Chapman and Hall Mathematics Series. Chap-
and identify the path between them. Then, the above man and ng_ P

query answering algorithm is executed. Doing so, all pecher, R. (1999). Bucket elimination: A unifying frame-

queries inx can be computed with a total time com- work for reasoningArtificial Intelligence 113:41-85.
plexity of O(|x| - V|- «?). Itis clear that forthe com-  Gongran, M. and Minoux, M. (2008).Graphs, Dioids
plete query set, we hav&| = |V|?/2 which makes and Semirings: New Models and Algorithm®per-

the time complexity of this algorithm worse than the ations Research Computer Science Interfaces Series.
direct computation oM*. However, by storing inter- Springer Publishing Company, Incorporated.

mediate results in the above algorithm, it is possible Jensen, F., Lauritzen, S., and Olesen, K. (1990). Bayesian
to reduce the complexity of the all-pairs problem to updating in causal probabilistic networks by local

O(|V|? - w®) which corresponds to the construction of computation Computational Stafistics Quartetlg.

an optimum path tree (Pouly and Kohlas, 2010). Thus, Kohlas, J. (2003).Information Algebras: Generic Struc-
for extremely sparse path problems this approach may tuggSor InfSengeSpringer-Vego.

still be worthwhile. If however only some smaller ~<0zeM: E' (1993)'hA Clombpletef”ess ltheorer;@fgr Kleene al-
subset of queries is required, the performance of this gﬁdrgir?]r;uénzfl%?z)r%&;%%%.ar evemtsormation
algorithm is equal to other sparse matrix techniques

. . ) L Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local
which proved their worth in many applications. " bt ), hipbietonl ( ). Loca

computations with probabilities on graphical struc-
tures and their application to expert systeskRoyal
Statis. Soc. B50:157-224.

Lehmann, D. J. (1976). Algebraic structures for transitive
7 CONCLUSIONS closure. Technical report, Department of Computer

Science, University of Warwick.
We have shown in this article that closure matrices | ehmann, N. (2001). Argumentation System and Belief

over Kleene algebras always induce a valuation alge- Functions PhD thesis, Department of Informatics,
bra. This uncovers many new and important instances University of Fribourg.
of the local computation framework which can now Pouly, M. (2008).A Generic Framework for Local Compu-

be studied in this more general setting. It further gives tation. PhD thesis, Department of Informatics, Uni-
a general and efficient algorithm for the solution of versity of Fribourg.

sparse path problems when either only a subset ofPouly, M. and Kohlas, J. (2010)Generic Inference John
all queries are of interest, or if a high sparsity rate Wiley & Sons, Inc.

s presen. Thers s o need 0 spectyth query selRadAEAD, V1, S, 7, 190
n advance. The propagated join tre_,'e ean thus be con- tions ano? path problems. l&gTA)é:S '92: Proceedir?gs
sidered as the result of a pre-compilation, upon which of the 9th Annual Symposium on Theoretical Aspects
gueries can later be answered in a dynamic way. This of Computer Sciengepages 109-119, London, UK.
approach does not assume any structure in the query Springer-Verlag.

set which makes it more generally applicable than Rote, G. (1990). Path problems in graph€omputing
other path algorithms. Finally, the query answering al- Suppl 7:155-198.

gorithm is only based on the properties of idempotent Shafer, G. and Shenoy, P. (1988). Local computation in
valuation algebras and can thus be applied to other hypertrees. Technical report, University of Kansas.
formalisms than matrices over Kleene algebras. This Shenoy, P. P. (1992). Valuation-based systems: A frame-

however still deserves closer investigation. work for managing uncertainty in expert systems. In
Zadeh, L. and Kacprzyk, J., editofSuzzy Logic for

the Management of Uncertaintpages 83-104. John

Wiley & Sons.
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