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Abstract: This paper considers reinforcement learning problems with additional similarity information. We start with

the simple setting of multi-armed bandits in which the learner knows for each arcolds where it is

assumed that arms of the same color have close mean rewards. An algorithm is presented that shows that
this color information can be used to improve the dependency of online regret bounds on the number of
arms. Further, we discuss to what extent this approach can be extended to the more general case of Markov
decision processes. For the simplest case where the same color for actions means similar rewards and identical
transition probabilities, an algorithm and a corresponding online regret bound are given. For the general case
where transition probabilities of same-colored actions imply only close but not necessarily identical transition
probabilities we give upper and lower bounds on the error by action aggregation with respect to the color

information. These bounds also imply that the general case is far more difficult to handle.

1 INTRODUCTION (for references see e.g. (Kleinberg, 2005)), similarity
information of the given kind seems to be natural.
Algorithms for reinforcement learning problems suf- In Section 2 below we present an algorithm that

fer from the curse of dimensionality when either the is able to exploit color information, as the derived
action space or the state space are large. Unlike thatpounds on the regret with respect to the best arm
in many of these problems humans have no difficul- show: While online regret bounds for ordinary bandit
ties in learning, as they are able to structure the stateproblems (which usually are logarithmic in the num-
space and the action space in a favorable way. Inber of steps taken) grow linearly with the number of

many cases, this structure information regasiisi- actions, with color information the total number of ac-

larity of states and actions. tions can be replaced with the number of colors plus
Here we investigate to what extent similarity in- the number of arms with promising color.

formation can be exploited to improve over the perfor- In the subsequent Section 3 we consider the more

mance in case no such information is given. Although general setting of Markov decision processes where
our main interest lies in Markov decision processes color information for the actions is available. We
(MDPs), we start with a multi-armed bandit problem start examining the simplest case where actions of the
with a simple similarity model: For each arm there is same color have similar rewards (again measured by
an additionatolor information available, where arms ~a parameteB) and identical transition probabilities.
of the same color are assumed to have close mean reFor this setting we give an adaptation of the UCRL2
wards, that is, these deviate by at m@sa parameter  algorithm of (Auer et al., 2009) for which we show
known to the learner. Indeed, a similar model has al- regret bounds that demonstrate similarly to the bandit
ready been considered by (Pandey et al., 2007), whosetting that the color information can be exploited to
also give a typical application to an ad-selection prob- getimproved bounds.

lem on webpages, where ads with similar contentare ~ When this setting is generalized so that actions
similarly attractive to the user and get comparable re- with the same color have not identical but only sim-
ward (i.e., user clicks). Also in other of the numerous ilar transition probabilities, things get more compli-
applications of multi-armed bandits such as routing, cated. In Section 3.2, we investigaetion aggrega-
wireless networks, design of experiments, or pricing tion with respect to such colorings. We derive bounds
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on the error caused by working on the aggregated in-2.1  Algorithm
stead of the original MDP. Unlike in the simpler set-

tings where this error is trivially bounded by the pa- An obvious idea is to adapt a standard bandit algo-
rameterd, the error can be arbitrarily large, depend- rithm to first choose a colarand then in a second step
ing on the (aggregated) MDP. This indicates that sim- to choose an arm with coler This idea also underlies
ilarity information regarding the transition probabili- the TLP algorithm of (Pandey et al., 2007). However
ties cannot be as well eXplOitEd as for rewards, which thereis a prob]em with that direct approach when two
is confirmed by an example at the end of Section 3 colors are very close, as it takél(s%) steps to dis-
that shows that straightforward adaptations of the al- tinguish a distance of between two arms/colors (cf.
gorithm for the simpler setting fail. the analysis of (Pandey et al., 2007), which does not
derive regret bounds, but only considers the conver-
gence behavior of the TLP algorithm). Our algorithm
2 COLORED BANDITS (shown in F.igure 1) does not try to identify tihest
color c* but instead forms a set of good col@s A
distance paramet@rdetermines what the distance be-
tween the best colar* and another colot should be
in order to considec to be suboptimal and exclude it
fromC;. Unlike (Pandey et al., 2007) we do not main-
tain a single estimate value for each cotoibut cal-
culate a confidence interval for each color that w.h.p.
contains the mean reward of the best arm of color

In a multi-armed bandit problem the learner has a fi-
nite set of arm#\ at his disposal. Choosing an aan
from A gives a random reward bounded in the unit in-
terval[0, 1] with mearr(a). As performance measure
for a learning algorithm one usually considersrés
gretwith respect to choosing the optimal arm at each
step. That is, setting(a) to be the number of steps
where arma has been chosen (up to some finite hori-
zonT) theregretis defined ag ,caT(a) (r* —r(a)),
wherer* = maxr(a) is the optimal mean reward. )
The regret of established bandit algorithms such as !N order to derive an upper bound on the regret of
UCBL1 (Auer et al., 2002) is logarithmic in the num- the algorithm, we will consider (i) for how many
ber of steps, but grows linearly with the number of Steps suboptimal colors are includedGhn and (ii)
arms. This is also best possible (Mannor and Tsitsik- WhenGC: contains only close to optimal colors, how
lis, 2004). often will a suboptimal arm be chosen? Ques-

Unlike in the general case, where the learner has tion (ii) is answered by original UCB1 analysis taken
no information apart from, here we are interested in  from (Auer etal., 2002). For question (i) this has to be
the question how given similarity information about 2dapted. Let™(c) := max;qa—cr(a) andr(c) :=
different arms can be exploited to improve regret MiNac(aj—c' (@) We assume that at each stepf the
bounds with respect to the dependency on the number2!gorithm

2.2 Analysis

of arms. That is, the learner additionally knows the rt Q) > f(c)—conf(c). and 1
color of an arm, that is, a coloring functiax A — C 7( ) 2 f( ) k), (1)
that assigns each arm fa color from a given set of rm(c) < fi(c)+cont(c) (2)

colorsC. (We assume that the functieris surjective,  5; each coloc. and that
i.e., each color irC is assigned to an arm i) The

color gives some similarity information about the re- . 3
g ty fa) < ria)+ 109%/8) anq 3)

wards of arms according to the following assumption. 2ni(a)
Assumption 1. There is a8 > 0 such that for each o . log(t®/5)

two arms aad € A: If c(a) = c(&) then |r(a) — f@) = r@)—\/ Zn@ (4)
r@)| <e.

wherea* = argmaxar(a) is an arm with maximal
We assume that the learner knows the parame-mean reward*. Application of Hoeffding’s inequal-
ter 6. This setting is similar to the one considered ity shows that (1) as well as (2) holds with probability

in (Pandey et al., 2007). However, there it is as- 4 a5t 1 8 for a fixed time step, a fixed color
sumed that choosing an arm is a Bernoulli trial that ICIt

gives reward 1 with some success probabifitand € @nd a fixed value ofy(c). Thus, a union bound
reward O otherwise. Further, our Assumption 1 is re- OVer all colors, all possible values of(c) and allt
placed with the supposition that the success probabil-SNoWs that (1) and (2) hold with probability at least
ities p of arms of the same color are distributed ac- 1 — 23t > 1— 8 for all t. Similarly, (3) and (4)
cording to a common probability distribution. hold with probability at least + 1—306 forall t.
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Input: A confidence parametére (0,1), and a dis
tance parametd € (0,1).

Initialization

For each colot € C sample an actioa € Awith
c(a)=c.

do

> Calculate confidence intervalg(¢) for each
color:
For each coloc in C calculate a confidence in
terval for max;¢(a)—cr(a):

l:(c) := [fi(c) — conf(c),

wherer;(c) = ﬁ Y t<tio(ar)=clt With ¢ being
the random reward obtained at stefor choos-|
ing armay, ny(a) being the number of times ac-
tion a was chosen, and(C) := Y ac(a)—cMt(a)
being the number of times an action with cobar
has been chosen. Further,
log(IC[t3/3)

con (c) = /#5455

> Determine relevant colorstC
Let ¢ := argmax.c {fi(c) + 6 + conf(c)} be
the color with maximal upper confidence bod
value, and se€; := {c e C|li(c)Ni(c) #2}.
If confi(ct) > B/4 and conf(c) < B/4 for some
ce G, reselC = {c}.

> Arm selection:
Use UCBL1 to choose an arm frof := {a €
Alc(a) € G}, i.e., if thereis an unsampled a
in A; chooses, otherW|se choose

Figure 1: The colored bandits algorithm.

For time steps =1,2,...

fi(c) + 6+ conf(c)],

. f, I 3 6
a =arg max{ft(a) y %

acA

~ 1
wherer{(a) = (@ 2i<ta=alt

Note that under assumptions (1) and (2) an opti-
mal colorc* (i.e., the color of an optimal ar|a*) is
always inC;, since

fi(c*)+conf(c)+08 > r (c")+6 >
r(c) = 1 (q) > fila) - cont ().

Now, we establish sample complexity bounds both on
(i) the number of times an arm of a color thatfis

far from the optimal colorc* is chosen, and (ii) the
number of times a suboptimal arm is chosen figm
(assuming tha€; contains only color§-close to the
optimal color). For the bound on (ii), we may directly
refer to (Auer et al., 2002), where it is shown that

Bandits and MDPs

any suboptimal arma is chosen at most-& 7(r*81?§(’;)2

times (w.h.p). As playing such an arm gives regret
r*—r(a), this yields a bound of

Z 1+
ce ac(a c

a)<r*

whereCp := {ce C|r* —r*(c) < B+ 26} is the set of
colors that ar-close to the optimal rewand .

For a bound on (i) we may easily adapt the men-
tioned proof as follows. Considerf&bad color ¢ ¢
Cg. Thenr*(c)+B+26 < r*. According to the al-
gorithmc € G only when

fi(c) +conf(c)+0 > fi(c) —conf(ct). (5)

Further, if conf(c) < B/4 thenc € G only in case
conk(c) < B/4, too. But then we have from (1), (5),
and the fact that* < f;(c;) + conf(c;) + 6

rt(c) +B+206 > fi(c)—conf(c)+ B+ 26
ft(ct) — 2conf(c) — conf(c) + B+ 6
r*—2conf(c;) —2conf(c)+ B > r*,
contradicting our assumption thais a3-bad color.
Hence, whenever cofit) < /4 we havec ¢ G, so
thatc(a;) = c only at < [%@W time steps.

Further we have to consider the case when setting
G := {c&}, which may be a suboptimal choice as

well. However, this happens only when cdief) >
B/4, thatis, not more often th nS'OQ(‘BMW times.
Summarizing (and also taking into account the regret
of the initialization), we get the following result.

r*r

AV,

Theorem 2. The regret of the colored bandits algo-
rithm after T steps with probability at leagt- 2—306 is
at most

3
C1+2/c) [2AGTA |

(1+
a:c(a)eCB
r(a)<r*

8logT
r<—r(a ))

As the regret at each step is at most 1, we may
simply sum up the error probabilities for failing con-
fidence intervals givenin (1) and (3) to obtain a bound
on the expected regret as well.

These bounds show that it is possible for the
learner to exploit color information in order to elimi-
nate the dependency on the total number of actions in
the respective regret bounds.

3 COLORED ACTION MDPS

We continue dealing with the natural generalization of
the problem to Markov decision processesMArkov
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decision process (MDPs a tuplem = (S A, p,r), 3.1 When the Color Determines the
whereSis a finite set ofstatesandA is a finite set Transition Probabilities
of actions Unlike in the usual setting where in each

state fromS each action from#\ is available, we con- g gimplest case in the MDP scenario is when two
sider that for each stathere is a nonempty sub-  actions of the same color have identical transition

setA(s) C A of actions available irs. Further, we  ,-papilities and close rewards, given a coloring func-
assume that the sefy(s) are a partition ofA, i.e., tionc: A— C on the action space.
A(s)NA(S) = & for s# ¢, andUssA(S) = A. The
transition probabilitie(s'|s,a) give the probability b : _
of reaching state when choosing actioain states, two actions aa’ € A(/S) with se S: If o(a) = C("j") then
and the payoff distributions with meafs,a) and sup- () p([s,@) = p(|s,&), and (i) [r(s,a) —r(s,&)| < 6.
port in [0,1] specify the random reward obtained for We will try to exploit the color information only
choosing actiom in states. for same-colored actions in the same state, so that
We are interested in the undiscounted, average re-We may assume without loss of generality that actions
ward limr e £ 57, rt, wherer; is the random reward available in distinct states have distinct colors. Thus
obtained at step As possible strategies we consider the set of color< is partitioned by the set§(s) of
(stationary)policies t: S— A, whereTi(s) € A(s). colors of actions that are available in state Fur-
This is justified by the fact that there is always such ther, we have to distinguish between colors having
a policy T which gives optimal reward (Puterman, distinct transition probability distributions. Thus, we
1994). Letp(m) denote the expected average re- write C(s, p) for the set of colors of actions available
ward of policy. ThenTt is an optimal policy if ~ In Statésand having transition probabilitigx-).

p(T) < p(1t*) =: p* for all policiesTt 3.1.1 Algorithm

In the analysis we will also need some tran-
sition parameters of the MDP at hand. Thus let The algorithm we propose (shown in Figure 2) is
T(s|91,1s) be the first (random) time step in which 5 straightforward adaptation of the UCRL2 algo-
states' is reached when policyt is executed on  jthm (Auer et al., 2009). For the sake of simplicity,

MDP a/ with initial states. Then we define thei- e only consider the case where the transition struc-

move from any state to any other staté/, using an  handled analogously to (Auer et al., 2009). We use

Assumption 3. There is a8 > 0 such that for each

appropriate policy, i.e. the color information just as in the bandit case. That
. is, in each state a set of promising colors is defined.
D(wM ) := Sf#ns,aeénfgl_[‘A]E(T(S'lM ,T,9)). Then an optimal policy is calculated where the action

set is restricted to actions with promising colors, and
the actions’ rewards are set to their upper confidence
values. The algorithm proceeds in episogesd the
chosen policyrg is executed until a stateis arrived
where the actiom (s) has been playe the episode

as often abeforethe episode.

We will consider only MDPs with finite diameter,
which guarantees that there is always an optimal pol-
icy that achieves optimal average rewaidndepen-
dent of the initial state. Note that each polimyin-
duces a Markov chainf,; on a7 . If the Markov chain

is ergodic(i.e., each state is reachable from eachother 3 1 5 Apalysis

state after a finite number of steps) this Markov chain

has a state-independestationary distribution The  again we are interested in the algorithm’s regret af-
mixing timeof a policyrton an MDP4/ with induced ter T steps, defined AsTp* — .. Furthermore,

stationary distributiom is given by we also consider the regret with respect to @n
optimal policy, i.e., with respect tp* — € instead
Kn(M ) = Y gesE(T (S, 1,9)) un(S) of p*. The analysis of the algorithm’s regret is a

combination of the respective proofs of Theorem 2
for an arbitrarys € S. The definition is independent and of the logarithmic regret bounds in (Auer et al.,
of the choice oBas shown in (Hunter, 2006). Finally, 2009). That is, we first establish a sample complex-
we remark that in case a poligyinduces an ergodic ity bound on the number of steps in episodes where
Markov chain ona with stationary distributionuy,

theaverage reward oftcan be written as Unlike in the bandit case, this regret definition also con-
siders the deviations of the achieved rewards from the mean

) rewards. Actually, the regret bounds for the bandit case can
P(T) == Y scsHn(S)r (s, TU(S)). (6) be adapted to this alternative regret definition.
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Input: A confidence parametére (0,1), and a dis
tance parametd € (0,1).

Notation: Lett denote the current time step.
For episodes=1,2,...do

> Initialize episode i:
Sett; :=t. Calculate estimates(5,a) for the
mean reward (s,a) for state-action pairgs, a)

with a € A(s), and determine confidence in-

tervals ly(c) for each color as follows. Fg
each state, each transition probability distrib
tion p(-) and each coloc in C(s, p) calculate a
confidence interval for maxa)—cr (s a):

li(s,c) :=
[ft(s,c) — cont(s,c),f(c) + 8-+ conf(s,c)],

where 1{(s,¢) = freg Sreta)=cs—slt With It
being the random reward obtained at stefor
choosing actiore, in states, ny(s,a) being the
number of times actioa was chosen in statg
andn(s,c) being the number of times an acti
with color ¢ has been chosen 87 Further,

7log(2|C|t/d)

conf(s,c) = 20 (5.0)

> Determine relevant colors;C

For each states and eachp(-) let c(s,p) be
the color with maximal upper confidence bod
value, i.e.,

c (s, p) :=argmaxfi(s,c) + 6+ conf(s,c)}.
ceC(s,p)

Set G(s,p) = {c € C(sp)|l(sa(sp) N
i(s,c) # @}. If confi(s,c(s p)) > B/4 and
cong(s,c) < B/4 for somec € G(s,p), reset
C[(S, p) = {Ct(sv p)}

> Policy selection and execution:

Choose an optimal poliéyr; in the MDP with
transition structure as given and action g
A(s) = {ac A9)|c(@) € UpCi(s p)} with re-
wards

7log(2]Alt/d)

fi(s,a) :="fi(sa)+ nsa

PlayTs as long ask(s,Ti(s)) < 2n(s,Ti()) in
the current statg.

2|f the color or action count is 0, reset it to 1.

<
[

ets

Figure 2: The colored MDP algorithm for MDPs with
known transition structure and colored action set.

3Such an optimal policy can be calculated using ordi-

nary value iteration (Puterman, 1994).
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Bandits and MDPs

e-suboptimal reward is received. Thus, Tetbe the
number of steps in episodes where the average per-
step reward is less thagt — €, and letM¢ be the re-
spective indices of these episodes. Note that setting

A= z?;tli_l (p* —1t) to be the regret in episodeve

have that

Having this lower bound oA¢, we now aim at achiev-
ing also arupperbound on/¢ in terms ofT;. These
two bounds then will give us the desired regret bound.
The main part of the derivation of this upper bound
is mainly the same as given in the extended version
of (Auer et al., 2009), so we will not repeat it here
and only state that it can be shown that

A < 1+/Zlogg +2Dy/Telogt
+D - #episodes- \/Iog@ Z vV Ne(s,a). (8)
sa

with probability 1— 33, whereng(s,a) is the total
number of times actiom is chosen ins in episodes
in Me. Now we splity s 5 /Ne(s, @) into one sum han-
dling the actions oB-bad colorg Cg and another sum
for all other actions, where

Cp:=Usp{ceC(sp)[r*(s.p)—r'(c) > B+20}

with r'(s,p) := Maxyc@ecsp) (@) and rt(c) :=
MaX,c(a)—cf(@). Then similarly to the bandit case,
whenever the confidence interval cdsfc) of such

a f-bad colorc is smaller tharf3/4 at the beginning
of an episode, the respective color will not be part of
Ci (s, p). Consequently, by definition of cait$, c) the
number of times an action with that color is chosen
in statesis upper bounded bg,%z\cm, the addi-

tional factor 2 stemming from the fact that the confi-
dence intervals are only updated at the beginning of
an episode (in which the number of times the respec-
tive action is chosen may be doubled). Consequently,
for anyB-bad colorc ¢ Cg

ne(s,a) <
s,a:c(a)=c

whence one obtains by Jensen’s inequality that
Y Vne(sa) < \/|Ag[Te+ FV/IAlC]log(2[CIT),
sa

whereAg := {a€ A|c(a) € Cg}. This yields from (8)
that

Ae < y/Zlogl+2Dy/Telogl +D-#episodes
+1/|Ag|Telog 25T

+3/1AlICllog 25T log(2[CIT) +1, (10)

112log2|C|T)
BZ

; (9)

207



ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

so that it remains to upper bound the number of
episodes. By the doubling criterion for episode ter-

Assumption 5. There are 6;,6, > 0 such that
for each two actions @ € A(s) with se S: If

mination it is easy to see that generally there are notc(a) = c(&) then (i) [r(s,a) — r(s,&)| < 8, and

8r

more than|A| log, Al episodes (cf. Appendix A.2 of
the extended version of (Auer et al., 2009) for de-
tails). However, again considering actionsfjood
color € Cg and others separately, according to (9)
this can be improved to a bound MB“OQ% +

|A|Iog%§z‘cm. Putting this into (10) we get in

combination with (7)
(D?+|Ag|)log(T /3) L v/ |Al[C|loglog(T /3)
) 5 B

T < 2

D|Ag|logT+DI|A|loglogT

+C3- s (12)

As A is an upper bound on the regret with respect
to ane-optimal policy, we may plug (11) into (10) to
obtain after some calculations the following result.
Theorem 4. The regret of the colored MDP algorithm
with respect to are-optimal policy after T steps is
with probability at leastl — 36 upper bounded by (ig-
noring terms sublogarithmic in T)

o (D2+|Ag|) log ‘e \/|A||(;|Iog%

' £

(D+/IAg))¢/ACllog &
/Be

For sufficiently smalk, ane-optimal policy is also
optimal, which yields a corresponding bound wéth
replaced by the difference between the optimal and
the highest suboptimal average reward, ge= p* —

ma)ﬁ'cp(rr)<p* p(T[)-

Cs- + DJ|Ag|logT.

(") ZS’ES| p(S/|S, a) - p(S/|S, a/)‘ < ep-

Unlike in the settings considered so far, it is by
no means clear what happens if one simply chooses
a representative of each color and works ondgge
gregated MDPn this section we derive error bounds
that answer this question.

Definition 6. Given an MDPa = (S A p,r) and a
coloring function ¢ A — C for the actions, an MDP

M = (S,C,p,T) is called anaggregation ofr with
respect ta if for a € A(s) with c(a) = c:  |f(s.c) —
r(sa)| < 6, andyycs|p(ss.c) — p(s|s,a)| < Bp.
Thus beside picking an arbitrary reference action
a for each colorc one may also set e.gf(s,c) :
A Saca 1(5:2) andp(ss ) = & Taca, PSS a),
whereA. ;= {a€ A|c(a) =c}.
A policy Tton o is theaggregation of a policyt
on a with respect to a coloring function:cA — S,
if c(m(s)) = Ti(s) for all statess. In the following we
consider onlyergodic MDPs, where all policies in-
duce ergodic Markov chains. However, if an aggrega-
tion conserves the ergodicity structure of the MDP the
following results can be adapted to the general case.

Theorem 7. Let &4 = (S A, p,r) be an MDP and
M = (SC,p,f) an aggregation ofs with respect
to a coloring function ¢ A — C. Then for each pol-

icy mon s and the aggregatiomt of Tt on o/ with
respect to ¢, we have for the difference of the average
reward p(T1) of tin & and the average rewargd(Tt)

—

Thus, as in the bandit case the learner can benefitof TN &

from the color information (as can be seen when com-
paring the bounds to the case without color informa-
tion, i.e.|C| =1 andAg = A). The reason why there is

o~y

lp(m) —p(T)
whereky; is the mixing time of the Markov chain in-

| < 6+ (Kn—1)6p,

still some dependency on the total number of actions duced byrton as .

is that the doubling criterion for episode termination
concerns the actions and not their colors. However,
adapting the episode termination criterion to apply to

colors instead of actions, some other parts of the proof

do not work anymore.

3.2 Action Aggregation

Now let us consider the case where actions of the

same color have not identical but only similar tran-
sition probabilities. As before we are interested only

in similar actions that are available in the same state.

Thus we again assume for the sake of simplicity that
only actions contained in the same #¢§) have the
same color.

208

As for the bounds on the error of state aggrega-
tion of (Ortner, 2007), in the proof of Theorem 7 we
use the following result of (Hunter, 2006) on pertur-
bations of Markov chains.

Theorem 8. (Hunter, 2006) Let, ¢ be two ergodic
Markov chains on the same state space S with transi-
tion probabilities {-,-), p(-,-) and stationary distri-
butions pji, and le . be the mixing time of . Then

=Tl < (ke fl>n;€asxsgs\p(575’)f p(s.s)|-

Proof of Theorem 7: Writing p; andp; for the sta-

tionary distributions ofton #/ andTton a7, respec-
tively, and abbreviating(s, 11(s)) with ry(s), we have
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by (6)
|p(T[) -p ﬁ)| = | Zspﬂ(s) i’n(S) - ZS“ﬁ(S) rﬁ(s)‘
< 3 s|un(S) — Ba(9)| r(S) + Y sHa(S) |ra(S) — rn(9)]-

As rn(s) <1, using Theorem 8 together with our as-
sumptions on aggregation gives

lp() Esiun — (s |+Zsun

< (Kn—1)6p+6;.

Corollary 9. Let " be an optimal policy on an
MDP a1 with optimal average rewarg*, and letTt*
be an optimal policy with optimal average rewapd
on an aggregatiors of a¢ with respect to some col-
oring functionc. A— C. Then

() Ip"=P"] < B+ (Ka —1)6p,

(i) p* < p(T€) +26; + 2(Ks — 1) Bp,
wherek,, := max;Ky, and7i*® is any policy such that
Tt is the aggregation oft*® with respect to c.

Remark: As the role ofc and ¢ in Theorem 8
is symmetric, Theorem 7 and Corollary 9 hold also
when the mixing time off is replaced with the mix-

ing time of the aggregated MDP. Hence, the results
also hold for the minimum of the two mixing times.

The following theorem shows that the error in av-

erage reward indeed becomes arbitrarily large when

the mixing time approaches infinity.

Theorem 10. For each8, > 0 and each sufficiently
smalln > 0 there is an MDP# = (S A p,r) and

a coloring c: A — C of the action space such that

in each aggregatioms of a¢ with respect to c there
is some policyt on a¢ such that for the respective

aggregated policgton a7,
Ip(m —p(M)| = 1-n.

Proof. Fix someBp, > 0 and consider fod € (O, 2 )
an MDP with S = {s1,8}, A(s1) = {a1,a2}, and
A(sp) = {a3}. Define the transition probabilities (cf.
Figure 3) ins; as p(sl|sl,a1) =1-9, p(52|sl a;) =

3, p(silsi.a2) = 1- 5, and p(szls1,a2) = 5, and

those ins; as p(si|sz,as) = 2 and p(sz|sz,a3) =
1-2, wheren € N. Then the stationary distribu-
tion of the policyn with Ti(s1) = ap and1(s) = a3
is P = (524,77 ), Which forn — « converges to
(1,0). On the other hand, the poligy with 1(s;) =
a; and1l(s,) = ag has stationary distributiopy =
(71> 721 ). hich forn — « converges tq0,1).

Now, asd < 7", a coloring functionc may as-
sign (choosing an arbitrar§, > 0, cf. the choice of

Bandits and MDPs

o)
1-6
o/n - _
1-5/n2\'\_f\'1* \;/,/,0‘ :1-3/n
o/n2

Figure 3: The MDP in the proof of Theorem 10. Solid ar-
rows correspond to actica, dashed ones &y, and dotted
ones toag.

the rewards below) the same color to actionsa;
and ap in 5. We consider transition probabilities
P(+|s1,¢1) which are a convex combination of the re-
spective probabilitiep(-|s1,a1) andp(:|s1,az), i.e.

p(silsi,c1) = 1—A06— (1,)\)%
for A € [0,1]. (For transition probabilities outside

this convex set the error will clearly be larger.)
Then the stationary distribution of the aggregated
policy Tt with Ti(s;) = ¢1 and Ti(sp) = ag is

n nA—A+1 ; -
n2A+n—A+1’ PPA+n-A+1)" Thus, ifA >0 then pg

converges td0,1) for n — «. Otherwise forA =0
we haveps = (707, 751), Which for n — « con-
verges to(1,0). Now setting the rewardgs;,a;) :=
r(sy,a) ;=1 andr(sp,a3) := 0 (and choosing appro-
priate reward$) we obtain an error arbitrarily close
to 1 either with respect tmor to 17, which proves the

theorem. O

The lower bound of Theorem 10 indicates that ex-
ploiting similarity of transition probabilities is harder
than for rewards. Here we confirm this by showing
that an optimistic algorithm in the style of UCRL2
fails already in very simple situations.

Example: Consider a two state MDP witls =
{s1,%},A(s1) = {a1,a2}, andA(s;) = {s3} as shown
in Figure 4. The transition probabilities m are set
to p(sy|si,a1) = (SQ|31 a1) = 7,p(s1/s1, @) = 3,
and p(sz|sl,a2) = 2 In states, the transition proba-
bilities arep(s1|s2,a3) = p(%2|%, %) l . The mean
rewards are given by(s;,a1) = 2, (sl a) = 12,
andr(s,ag) = 3. Thus, settingdp > 1 and6; >

%2 we may color actiong; and a; with the same
color ¢;. The intervals of possible values of ac-
tions with colorc; are thenp(sy|s;,c1) € [%,%i

P(s2lst,c1) € [7,3], andF(s,c1) € [, 3.

An optimistic algorithm that handles this infor-
mation as in abounded parameter MDRTewari
and Bartlett, 2007) now would assume values
P(sils1,¢1) = P(selst, €1) = 3 andF(sy,c1) = 3 inor-
der to maximize the average reward of a policy play-
ing an action with color; in states;, which then is
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(3/4,1/2) (a,12) ever, in this setting lower bounds that resemble that of
(12,3/4) Theorem 10 have already been shown that state aggre-
= (V/2,3/4) e gation may cause arbitrarily large error as well (Ort-
o T ner, 2007). Still, regret bounds that consider mixing
(1/2,5/12) (1/2,5/12) time parameters of the MDP may be possible.

Figure 4: The MDP from the example. Solid arrows corre-
spond to actiomy, dashed ones &, and dotted ones ta.
For each arrow the respective transition probability ard th
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