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Abstract: In this work, a new method for cognitive action selection is formally introduced, keeping into consideration 
an individual bias for the agents:  ego biased learning. It allows the agents to adapt their behaviour accord-
ing to a payoff coming from the action they performed at time t-1, by converting an action pattern into a 
synthetic value, updated at each time, but keeping into account their individual preferences towards specific 
actions. In agent based simulations, the many entities involved usually deal with an action selection based 
on the reactive paradigm: they usually feature embedded strategies to be used according to the stimuli com-
ing from the environment or other entities. The actors involved in real Social Systems have a local vision 
and usually can only see their own actions or neighbours’ ones (bounded rationality) and sometimes they 
could be biased towards a particular behaviour, even if not optimal for a certain situation. Some simulations 
are run, in order to show the effects of biases, when dealing with an heterogeneous population of agents. 

1 INTRODUCTION 

Multi agent models allow to capture the complexity 
by modeling the system from the bottom, by defin-
ing the agents’ behavior and the rules of interaction 
among them and the environment. Agent Based Si-
mulation (ABS), in this field, is not only about un-
derstanding the individual behavior of agents, or in 
optimizing the interaction among them, in order to 
coordinate their actions to reach a common goal, like 
in other Multi Agent Systems (MAS), but above all 
it’s about re-creating a real social system (e.g.: a 
market, an enterprise, a biological system) in order 
to analyze it as if it were a virtual laboratory for ex-
periments. Reactive agents or cognitive ones can be 
employed in multi agent systems (Remondino, 
2005); while the former model deals with the stimu-
lus-reaction paradigm, the latter provides a “mind” 
for the agents, that can decide which action to take at 
the next step, based on their previous actions and the 
state of the world. When dealing with the problem of 
action selection, reactive agents simply feature a 
wired behavior, deriving from some conditional em-
bedded rules that cannot be changed by the circums-
tances, and must be foreseen and wired into them by 
the model designer. For example given a set of 
agent’s states ܺሺݔଵ,  ଶሻ, and a set of agent’s actionsݔ
,ሺܽଵܣ ܽଶሻ, a deterministic reactive agent could con-
sist of a set of rules like: 

݂݅ ܺ ൌ ݄݊݁ݐଵݔ ܣ ൌ ܽଵ; ܣ ݁ݏ݈݁ ൌ ܽଶ (1)

Or, if we have a wider set of states ܺሺݔଵ,… ,  ,௡ሻݔ
with ݇ ൑ ݊, but again just a binary set of actions to 
be performed ܣሺܽଵ, ܽଶሻ, the rule could be as follows: 

݂݅ ܺ ൌ ,ଵݔሺ݁݃݊ܽݎ ௞ሻݔ ݄݊݁ݐ ܣ ൌ ܽଵ; ܣ ݁ݏ݈݁ ൌ ܽଶ (2)

Where “range” is used to synthetically indicate the 
states among 1 and k, in the system. This can be ap-
plied in the same way with several discrete intervals, 
instead of just two. Of course, if the actions are more 
than two, like a set ܣሺܽଵ, … , ܽ௡ሻ, the rules can be 
simply multiplied as follows: 

൞

݂݅ ܺ ൌ ܣ ݄݊݁ݐଵݔ ൌ ܽଵ
݂݅ ܺ ൌ ܣ ݄݊݁ݐଶݔ ൌ ܽଶ 

…
݂݅ ܺ ൌ ܣ ݄݊݁ݐ௡ݔ ൌ ܽ௡

 (3)

And linear combinations of both sets. The state 
of the agent could be function of both a stimulus 
coming from the environment and of some action 
performed by other agents or by the agent itself. 

Reactive agents could also be stochastic, in the 
sense that they could have a probabilistic distribu-
tion connected to their action selection function. For 
each action/state combination a probability function 
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is defined, so that for a defined  ݔ௞ א ܺ and a de-
fined ܽ௛ א  :we have that ܣ

ܲሺݔ௞, ܽ௛ሻ ൌ where 0 ߣ ൑ ߣ ൑ 1 (4)

 And 

෍ܲሺݔ௞, ܽ௜ሻ
௡

௜ୀଵ

ൌ 1 (5)

As an example we may think of a simple situa-
tion in which we have two possible actions ܽଵ, ܽଶ so 
that for a particular state ݔ௞ we could have that 
ܲሺݔ௞, ܽଵሻ ൌ 0.2 and that ܲሺݔ௞, ܽଶሻ ൌ 0.8, meaning 
that the agent, when facing the state ݔ௞ will perform 
20% of the times the action ܽଵ and 80% of the times 
action ܽଶ, using a uniform distribution. 

Some actions could feature a probability of 0 for 
certain states, and others could have a probability of 
1 for a given state. If all the probabilities for the ac-
tions, given a state, are either 0 or 1, we are back at 
the deterministic situation presented above since, in 
that particular case, only one action could be per-
formed (probability equal to 1) while the others 
would never be performed (probability equal to 0). 

Reactive agents can be good for simulations, 
since the results obtained by employing them are 
usually easily readable and comparable (especially 
for ceteris paribus analysis).  Besides, when the 
agent’s behavior is not the primary focus, reactive 
agents, if their rules are properly chosen, can give 
very interesting aggregate results, often letting 
emergent system properties emerge at a macro level. 
Though, in situations in which, for example, learn-
ing coordination is important, or the focus is on ex-
ploring different behaviors in order to dynamically 
choose the best one for a given state, or simply 
agent’s behavior is the principal topic of the re-
search, cognitive agents could be employed, embed-
ded with some learning technique. Besides, if the 
rules of a reactive agent are not chosen properly, 
they could bias the results; these rules, in fact, are 
chosen by the designer and could thus reflect her 
own opinions about the modeled system. Since 
many ABS of social systems can formulated as stage 
games with simultaneous moves made by the agents, 
some learning techniques derived from this field can 
be embedded into them, in order to create more rea-
listic response to the external stimuli, by endowing 
the agents with a self adapting ability. Though, mul-
ti-agent learning is more challenging than single-
agent, because of two complementary reasons. 
Treating the multiple agents as a single agent in-
creases the state and action spaces exponentially and 
is thus unusable in multi agent simulation, where so 
many entities act at the same time. On the other 
hand, treating the other agents as part of the envi-
ronment makes the environment non-stationary and 

non-Markovian (Mataric, 1997). In particular, ABS 
are non-Markovian systems if seen from the point of 
view of the agents (since the new state is not only 
function of the individual agent’s action, but of the 
aggregate actions of all the agents) and thus tradi-
tional Q-learning algorithms (Watkins, 1989; Sutton 
and Barto, 1998) cannot be used effectively: the ac-
tors involved in real Social Systems have a local vi-
sion and usually can only see their own actions or 
neighbours’ ones (bounded rationality) and, above 
all, the resulting state is function of the aggregate 
behaviours, and not of the individual ones. 

While, as discussed in Powers and Shoham 
(2005), in iterated games learning is derived from 
facing the same opponent (or another one, with the 
same goals), in social systems the subjects can be 
different and the payoff could not be a deterministic 
or stochastic value coming from a payoff matrix. 
More realistically, in social systems the payoff could 
be a value coming from the dynamics of interaction 
among many entities and the environment, and could 
have different values, not necessarily within a pre-
defined scale. Besides, social models are not all and 
only about coordination, like iterated games, and 
agents could have a bias towards a particular beha-
vior, preferring it even if that’s not the best of the 
possible ones. An example from the real world could 
be the adoption of a technological innovation in a 
company: even though it can be good for the enter-
prise to adopt it, the managerial board could be bi-
ased and could have a bad attitude towards technol-
ogy, perceiving a risk which is higher than the real 
one. Thus, even by looking at the positive figures 
coming from market studies and so on, they could 
decide not to adopt it. This is something which is not 
taken into consideration by traditional learning me-
thods, but that should be considered in ABS of so-
cial systems, where agents are often supposed to 
mimic some human behavior. Besides, when the 
agents are connected through a social network, the 
experience behind a specific action could be shared 
with others, and factors like the individual reputation 
of other agents could be an important bias to indi-
vidual perception. In order to introduce these factors, 
a formal method is presented in the paper: Ego Bi-
ased Learning (EBL). Another paradigm is briefly 
described as a future development, called Reputation 
Based Socially Biased Learning. 

The purpose of this work is not that of supplying 
an optimized algorithm for reinforcement learning 
(RL); instead, the presented formalisms mimic as 
much as possible the real cognitive process taken by 
human agents involved in a social complex system, 
when needing to take an individual strategic deci-
sion; this is useful to study aggregate results. 
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2 REINFORCEMENT LEARNING 

Learning from reinforcements has received substan-
tial attention as a mechanism for robots and other 
computer systems to learn tasks without external su-
pervision. 
The agent typically receives a positive payoff from 
the environment after it achieves a particular goal, 
or, even simpler, when a performed action gives 
good results. In the same way, it receives a negative 
(or null) payoff when the action (or set of actions) 
performed brings to a failure. By performing many 
actions overtime (trial and error technique), the 
agents can compute the expected values (EV) for 
each action. According to Sutton and Barto (1998) 
this paradigm turns values into behavioral patterns; 
in fact, each time an action will need to be per-
formed, its EV, will be considered and compared 
with the EVs of other possible actions, thus deter-
mining the agent’s behavior, which is not wired into 
the agent itself, but self adapting to the system in 
which it operates. 
Most RL algorithms are about coordination in multi 
agents systems, defined as the ability of two or more 
agents to jointly reach a consensus over which ac-
tions to perform in an environment. In these cases, 
an algorithm derived from the classic Q-Learning 
technique (Watkins, 1989) can be used. The EV for 
an action – ܸܧሺܽሻ – is simply updated every time the 
action is performed, according to the following, re-
ported by Kapetanakis and Kundenko (2004): 

ሺܽሻܸܧ ՚ ሺܽሻܸܧ ൅ ݌ሺߣ െ  ሺܽሻሻ (6)ܸܧ

Where 0 ൏ ߣ ൏ 1 is the learning rate and p is the 
payoff received every time that action a is per-
formed.  
This is particularly suitable for simulating multi 
stage games (Fudenberg and Levine 1998), in which 
agents must coordinate to get the highest possible 
aggregate payoff. For example, given a scenario 
with two agents (A and B), each of them endowed 
with two possible actions ܽଵ, ܽଶ and ܾଵ, ܾଶ respec-
tively, the agents will get a payoff, based on a payoff 
matrix, according to the combination of performed 
actions. For instance, if ܽଵ and  ܾଵ are performed at 
the same time, both agents will get a positive payoff, 
while for all the other combinations they will receive 
a negative reward. 

Modifications of the (6) have been introduced to 
make the converging process faster and more effi-
cient under these conditions. 

 
 

 

2.1 Learning and Social Simulation 

ABS applied to social system is not necessarily 
about coordination among agents and convergence 
to the optimal behaviour, especially when focusing 
on the aggregate level; it’s often more important to 
have a realistic behaviour for the agents, in the sense 
that it should replicate, as much as possible, that of 
real individuals. 

The aforementioned RL algorithm analytically 
evaluates the best action based on historical data, 
i.e.: the EV of the action itself, over time. This 
makes the agent perfectly rational, since it will 
evaluate, every time he has to perform it, the best 
possible action found till then. If this is very useful 
for computational problems where convergence to 
an optimal behaviour is important, it’s not realistic 
when applied to a simulation of a social system. In 
this kind of systems, learning should keep into ac-
count the human factor, in the shape of perception 
biases, preferences, prejudice, external influences 
and so on. When a human (or an organization driven 
by humans) faces an alternative, the past results, 
though important for evaluation, are just one of the 
many components behind the action selection proc-
ess. As an example we could think of the innovation 
adoption process; while a technological innovation 
could provide money savings and improved life 
style, it often spreads much slower than it should. 
This is due mainly to the resistance to innovation, 
typical of many human beings. If the humans 
worked in the same way as expressed with equation 
(6), then an innovation bringing even the smallest 
saving should be adopted immediately. 

Another effective example is to be found in so-
cial systems; when deciding which action to per-
form, humans are usually biased by the opinion of 
their neighbours (e.g.: friends, colleagues, ad so on). 
This means that their individual experience is impor-
tant, but not the only driver behind the action to per-
form, while other variables are considered and 
should be introduced in the evaluation process, when 
dealing with a simulation of a social system, in order 
to improve the realism of the model and to focus on 
aggregate results. 

Traditional learning models can't represent indi-
vidualities in a social system, or else they repre-
sented all of them in the same way – i.e.: as focused 
and rational agents; since they ignore many other 
aspects of behaviour that influence how humans 
make decisions in real life, these models do not ac-
curately represent real users in social contexts. 
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3 EGO BIASED LEARNING 

While discussing the cognitive link among prefer-
ences and choices is definitely beyond the purpose 
of this work, it’s important to notice that it’s com-
monly accepted that the mentioned aspects are 
strictly linked among them. The link is actually bi-
directional (Chen, 2008), meaning that human pref-
erences influence choices, but in turn the performed 
actions (consequent to choices) can change original 
preferences. 

As stated in Sharot et al. (2009): “…past prefer-
ences and present choices determine attitudes of 
preferring things and making decisions in the future 
about such pleasurable things as cars, expensive 
gifts, and vacation spots”. 

Even if preferences can be modified according to 
the outcome of past actions (and this is well repre-
sented by the RL algorithms described before), hu-
mans can keep an emotional part driving them to 
prefer a certain action over another one, even when 
the latter has proven better than the former. Some of 
these can be simply wired into the DNA, or could 
have formed in many years and thus being hardly 
modifiable. A bias is defined as “a particular ten-
dency or inclination, esp. one that prevents unpreju-
diced consideration of a question; prejudice” 
(www.dictionary.com). That’s the point behind 
learning: human aren’t machines, able to analytically 
evaluate all the aspects of a problem and, above all, 
the payoff deriving from an action is filtered by their 
own perceptions. There’s more than just a self-
updating function for evaluating actions and in the 
following a formal RL method is presented, keeping 
into consideration a bias towards a particular action, 
which, to some extents, make it preferable to another 
one that would analytically prove. EBL allows to 
keep this personal factor into consideration, when 
applying a RL paradigm to agents.  

In the first formulation, a dualistic action selec-
tion is considered, i.e.: ܣሺܽଵ, ܽଶሻ. By applying the 
formal reinforcement learning technique described 
in equation (6) an agent is able to have the expected 
value for the action it performed. Each agent is en-
dowed with the RL technique. At this point, we can 
imagine two different categories of agents (ߙଵ,  :ଶሻߙ
one biased towards action ܽଵ and the other one bi-
ased towards action ܽଶ. For each category, a con-
stant is introduced (0 ൏ ଶܭ,ଵܭ ൏ 1ሻ, defining the 
propensity for the given action, used to evaluate 
 ሺܽଶሻ  which is the expected value ofܸܧ ሺܽଵሻ andܸܧ
the action, corrected by the bias. For the category of 
agents biased towards action ܽଵ we have that: 

 

:ଵߙ ቊ
ሺܽଵሻܸܧ ൌ ሺܽଵሻܸܧ ൅ ሺ|ܸܧሺܽଵሻ| כ ଵሻܭ
ሺܽଶሻܸܧ ൌ ሺܽଶሻܸܧ െ ሺ|ܸܧሺܽଶሻ| כ ଵሻܭ

 

 

(7) 

In this way,  ܭଵ represents the propensity for the 
first category of agents towards action ܽଵ and acts as 
a percentage increasing the analytically computed 
 ,ሺܽଶሻ. At the same wayܸܧ ሺܽଵሻ and decreasingܸܧ
 ଶ would represent the propensity for the secondܭ
category of agents towards action ܽଶ and acts on the 
expected value of the two possible actions as before: 

:ଶߙ ቊ
ሺܽଵሻܸܧ ൌ ሺܽଵሻܸܧ െ ሺ|ܸܧሺܽଵሻ| כ ଶሻܭ
ሺܽଶሻܸܧ ൌ ሺܽଶሻܸܧ ൅ ሺ|ܸܧሺܽଶሻ| כ ଶሻܭ

 (8)

The constant ܭ acts like a “friction” for the EV 
function; after calculating the objective ܸܧሺܽ௜ሻ it 
increments it of a percentage, if ܽ௜ is the action for 
which the agent has a positive bias, or decrements it, 
if ܽ௜ is the action for which the agent has a negative 
bias. In this way, the agent ߙଵ will perform action ܽଵ 
(instead of ܽଶ) even if ܸܧሺܽଵሻ ൏  ሺܽଶሻ, as longܸܧ 
as ܸܧሺܽଵሻ is not less than ܸܧሺܽଶሻ. In particular, by 
analytically solving the following: 

ሺܽଵሻܸܧ ൅ ሺ|ܸܧሺܽଵሻ| כ ଵሻܭ ൒ ሺܽଶሻܸܧ െ ሺ|ܸܧሺܽଶሻ| כ  ଵሻ (9)ܭ

We have that agent ߙଵ(biased towards action ܽଵ) 
will perform ܽଵas long as: 

ሺܽଵሻܸܧ ൒ ሺܽଶሻܸܧ כ
1 െ ଵܭ
1 ൅ ଵܭ

 (10)

Equation number 10 applies when both ܸܧሺܽଵሻ 
and ܸܧሺܽଶሻ are positive values. If ܸܧሺܽଵሻ is posi-
tive and ܸܧሺܽଶሻ is negative, then ܽଵ will obviously 
be performed (being this a sub-case of equation 10), 
while if ܸܧሺܽଶሻ is positive and ܸܧሺܽଵሻ is negative, 
then ܽଶ will be performed, since even if biased, it 
wouldn’t make any sense for an agent to perform an 
action that proved even harmful (that’s why it went 
down to a negative value). If ܸܧሺܽଵሻ ൌ  ሺܽଶሻ, byܸܧ 
definition, the performed action will be the favorite 
one, i.e.: the one towards which the agent has a posi-
tive bias.  

In order to give a numeric example, if ܸܧሺܽଵሻ ൌ
50 and ܭଵ ൌ 0.2 then ܽଵ will be performed by agent 
ሺܽଶሻܸܧ ଵ tillߙ ൐ 75. This friction gets even stronger 
for higher K values; for example, with a ܭଵ ൌ 0.5, 
ܽଵ will be performed till ܸܧሺܽଶሻ ൐ 150 and so on. 

In figure 1, a chart is shown with the various re-
sulting ܸܧሺܽଵሻ, calculated according to equation 8, 
for agent  ߙଵ, given  ܭଵ. When compared to the 
baseline results (ܭଵ ൌ 0) it’s evident that by increas-
ing the value of ܭଵ, the positive values of ܸܧሺܽଵሻ 
turns into higher and higher values of ܸܧሺܽଵሻ. At 
the same time, a negative value of ܸܧሺܽଵሻ gets less 
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and less negative by increasing ܭଵ, while never turn-
ing into a positive value (at most, when ܭଵ, ܸܧሺܽଵሻ 
gets equal to 0 for every ܸܧሺܽଵሻ ൏ 0). For example, 
with ܭଵ ൌ  .ሺܽଵሻܸܧ ሺܽଵሻ is 10% higher thanܸܧ ,0.1

 
Figure 1: ܸܧሺܽଵሻ for agent ߙଵ given ܸܧሺܽଵሻ, for various 
 .ଵܭ

 
Figure 2: ܸܧሺܽଶሻ for agent ߙଵ given ܸܧሺܽଶሻ, for various 
 ଵܭ

In figure 2, a chart is shown with the various re-
sulting ܸܧሺܽଶሻ, calculated according to equation 8, 
for agent ߙଵ, given ܭଵ. This time, when compared to 
the baseline result (ܭଵ ൌ 0), since ܽଶ is the action 
towards which the agent ߙଵ has a negative bias, it’s 
possible to notice that the resulting ܸܧሺܽଶሻ is al-
ways lower (or equal, in case they are both 0) than 
the original ܸܧሺܽଶሻ calculated according to equation 
6. In particular, higher ܭଵ corresponds to more bias 
(larger distance among the objective expected val-
ue), exactly opposite as it was before for action ܽଶ. 
Note that for a ܭଵ ൌ 1 (i.e.: maximum bias) ܸܧሺܽଶሻ 
never gets past zero, so that ܽଶ is performed if and 
only if ܸܧሺܽଵሻ - and hence ܸܧሺܽଵሻ - is less than ze-
ro. 

 
 

3.1 General Cases 

The first general case (more than two possible ac-
tions and more than two categories of agents) is ac-
tually a strict super-case of the one formalized in 
3.1. Each agent is endowed with an evaluation bi-
ased function derived from equations (7). Be 
,ଵߙሺߙ ,ଶߙ … ,  ௡ሻ the set of agents, andߙ
,ሺܽଵܣ ܽଶ, … , ܽ௠ሻ the set of possible actions to be 
performed, then the specific agent ߙ௞, with a posi-
tive bias for action ܽ௛ will feature such a biased 
evaluation function: 

:௞ߙ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ሺܽଵሻܸܧ ൌ ሺܽଵሻܸܧ െ ሺ|ܸܧሺܽଵሻ| כ ଵሻܭ

…
ሺܽ௛ିଵሻܸܧ ൌ ሺܽ௛ିଵሻܸܧ െ ሺ|ܸܧሺܽ௛ିଵሻ| כ ଵሻܭ

ሺܽ௛ሻܸܧ ൌ ሺܽ௛ሻܸܧ ൅ ሺ|ܸܧሺܽ௛ሻ| כ ଵሻܭ
ሺܽ௛ାଵሻܸܧ ൌ ሺܽ௛ାଵሻܸܧ െ ሺ|ܸܧሺܽ௛ାଵሻ| כ ଵሻܭ

…
ሺܽ௠ሻܸܧ ൌ ሺܽ௠ሻܸܧ െ ሺ|ܸܧሺܽ௠ሻ| כ ଵሻܭ

 (11)

This applies to each agent, of course by changing 
the specific equation corresponding to her specific 
positive bias. Even more general, an agent could 
have a positive bias towards more than one action; 
for example, if agent  ߙହ has a positive bias for ac-
tions ܽଵ and ܽଶ and a negative bias for all the others, 
the resulting equations will be: 

:ହߙ

ە
ۖ
۔

ۖ
ۓ ሺܽଵሻܸܧ ൌ ሺܽଵሻܸܧ ൅ ሺ|ܸܧሺܽଵሻ| כ ଵሻܭ
ሺܽଶሻܸܧ ൌ ሺܽଶሻܸܧ ൅ ሺ|ܸܧሺܽଶሻ| כ ଵሻܭ
ሺܽଷሻܸܧ ൌ ሺܽଷሻܸܧ െ ሺ|ܸܧሺܽଷሻ| כ ଵሻܭ

…
ሺܽ௠ሻܸܧ ൌ ሺܽ௠ሻܸܧ െ ሺ|ܸܧሺܽ௠ሻ| כ ଵሻܭ

 (12)

In the most general case, for each EVሺܽ௜ሻ: 

ሺܽ௜ሻܸܧ ൌ ሺܽ௜ሻܸܧ ט ሺ|ܸܧሺܽ௜ሻ| כ  ୨ሻܭ
(13)

In case that two or more EVሺaሻ have the same 
value, the agent will perform the action towards 
which it has a positive bias; in the case explored by 
equation (12), in which the agent has the same posi-
tive bias towards more than one action, then the 
choice among which action to perform, under the 
same EVሺaሻ, could be managed in various ways 
(e.g.: randomly, stochastically and so on). 

As a last general case, the agents could be a dif-
ferent positive/negative propensity towards different 
actions. In this case, the ܭ variable to be used won’t 
be the same for all the equations regarding an indi-
vidual agent. For example, given a set of 
,ଵܭሺܭ …,ଶܭ ,  ௡ሻ and a set of actionsܭ
,ሺܽଵܣ ܽଶ, … , ܽ௠ሻ, for each agent (ߙ௞ሻ we have: 
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:௞ߙ ቐ
ሺܽଵሻܸܧ ൌ ሺܽଵሻܸܧ ט ሺ|ܸܧሺܽଵሻ| כ ଵሻܭ

…
ሺܽ௠ሻܸܧ ൌ ሺܽ௠ሻܸܧ ט ሺ|ܸܧሺܽ௠ሻ| כ ୬ሻܭ

 (14) 

Besides being a fixed parameter, K could be a 
stochastic value, e.g.: given a mean and a variance. 

4 SIMULATED EXPERIMENTS 

Some experiments were done in order to text the ba-
sic EBL equations introduced in paragraph 3.1. The 
agents involved in the simulation can perform two 
possible actions, ܽଵ and ܽଶ. The agents in the simu-
lation randomly meet at each turn (one to one) and 
perform an action according to their EV. A payoff 
matrix is used, in the form of: 

Table 1: Example of payoff matrix. 

 ૛ࢇ ૚ࢇ 
 ଶ݌ ଵ݌ ૚ࢇ
 ସ݌ ଷ݌ ૛ࢇ

Where ݌ଵ is the payoff originated when both 
agents perform ܽଵ, ݌ଶ is the payoff given to the 
agents when one of them performs ܽଵ and the other 
one performs ܽଶ and so on. Usually ݌ଶ and ݌ଷ are set 
at the same value, for coherency. For each time-step 
in the simulation, the number of agents performing 
ܽଵ and ܽଶ are sampled and represented on a graph. 

Table 2: Payoff matrix for experiments 1 and 2. 

 ૛ࢇ ૚ࢇ 
 ૚  1 -1ࢇ
 ૛ -1  2ࢇ

 
The first baseline experiment reproduces the 

classical RL equation (6), i.e.: with both ܭଵ and ܭଶ 
equals to zero. A total of 100 agents are used, with a 
learning rate (ߣ) set to 0.2. The payoff matrix used for 
the experiment is shown in Table 2. Action ܽଶ is clearly 
favored by the matrix, and coordination, in the form 
of performing the same action, is rewarded, while 
miscoordination punished. 

In the first experiment, 50 agents start perform-
ing action ܽଵ and 50 agents start performing action 
ܽଶ. The results are depicted in figure 3; convergence 
is subtle and stable, once the equilibrium is reached. 

In the second experiment, a small bias towards 
action ܽଵ is introduced for fifty ߙଵ agents (ܭଵ = 0.1), 
while the payoff matrix remains the same as in pre-
vious experiment. Agents ߙଶ do not have a bias, but 
all start playing action ܽଶ; this will be different in 

the following experiments, where unbiased agents 
will start performing a random action. The results 
are quite interesting, and depicted in figure 4. 

 
Figure 3: Baseline experiment: no biased agents. 

 
Figure 4: Experiment 1: biased Vs unbiased agents. 

Even if action ܽଶ is clearly favored by the payoff 
matrix, after taking an initial lead in agents’ prefe-
rences, all the population moves towards action ܽଵ. 
This is due to the resilience of biased agents in 
changing their mind; doing this way, the other 50 
non-biased agents find more and more partners per-
forming action ܽଵ, and thus, if they perform ܽଶ they 
get a negative payoff. In this way, in order to gain 
something, since they are not biased, they are forced 
to move towards the sub-optimal action ܽଵ, preferred 
by the biased agents. In order to give a social expla-
nation of this, we can think to the fact that often the 
wiser persons adapt themselves to the more obstinate 
ones, when they necessarily have to deal with them, 
even if the outcome is not the optimal one, just not 
to lose more. This is particular evident when the 
wiser persons are the minority, or, as in our case, in 
an equal number. At this point we wonder how 
many “rotten apples” (i.e.: biased agents) are needed 
to ruin the entire barrel (i.e.: turn away all the agents 
from the optimal convergence), given the same 
payoff matrix. With a series of ceteris paribus expe-
riments, we found the critical division to be 20/80; 
the results are shown in figure 5. The unbiased 
agents now start by performing a random action, in 
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order to probe for the best move, and then adapt 
themselves on the basis of their perceptions. On the 
other hand, the  biased agents start by performing 
action ܽଵ. In this way the agents performing ܽଶ, both 
biased and un-biased ones, when they meet an agent 
performing ܽଵ get a negative bias. Even if the op-
timal combination would be ܽଶ ൅ ܽଶ, once again the 
equilibrium is found on the suboptimal joint action, 
which is ܽଵ ൅ ܽଵ. 

 
Figure 5: Experiment 2: Critical threshold. 

Till now the advantage of performing join action  
ܽଶ ൅ ܽଶ over ܽଵ ൅ ܽଵ was evident (payoff 2 vs 1) 
but not huge; in the next experiment, a new payoff 
matrix is used, in the joint action ܽଶ ൅ ܽଶ is re-
warded 3, instead of 2. The purpose is investigating 
how much the previous threshold would increase 
under these hypotheses. The empirical finding is 
25/75, and the convergence is again extremely fast, 
and much similar to the previous experiment. Even a 
bigger advantage for the optimal action is soon nulli-
fied by the presence of just 25% biased agents, when 
penalty for miscoordination exists. This explains 
why sometimes suboptimal actions (or non-best 
products) become the most spread and common. In 
the real world, marketing could be able to bias a part 
of the population, and a good distribution or other 
politics for the suboptimal product/service could act 
as a penalty for unbiased players when interacting 
with biased ones. The following experiment investi-
gates the case with no penalty for miscoordination.  

Table 3: Payoff matrix for experiments 3. 

 ૛ࢇ ૚ࢇ 
 ૚ 1 0ࢇ
 ૛ 0 2ࢇ

To explore the differences with experiment 1, 
twenty biased agents were employed, out of 100. 
The results are shown in figure 6. 
 

 
Figure 6: Experiment 3: No penalty for miscoordination. 

As it’s evident, now the results are less extreme, 
in the sense that a part of the agents succeed in per-
forming the optimal action; though, many unbiased 
agents are dragged along by the biased ones, to the 
suboptimal action. Numerically speaking, about 50% 
of unbiased agents become supporter of the subop-
timal action, even if the biased agents are a small 
part of the population (20%). 

This shows that penalty for miscoordination is 
important, but not crucial, for averting the majority 
of the population from the best possible choice. 

5 FUTURE DEVELOPMENTS 

While individual preferences are very important as a 
bias factor for learning and action selection, when 
dealing with social systems, in which many entities 
operate at the same time and are usually connected 
over a network, other factors should be kept into 
consideration. In particular, the preferences of other 
individuals with which a specific agent is in touch 
can affect her choices, modifying the perception 
mechanism described in equation 6. Once again, if 
the goal is that of representing agents mimicking 
human behaviour, then it’s not realistic to consider 
perfect perception of the payoffs deriving from past 
actions. Besides, Fragaszy and Visalberghi (2001) 
agree that socially-biased learning is widespread in 
the animal kingdom and important in behavioural 
biology and evolution. It’s important to distinguish 
between imitation and socially biased learning; 
while the former is limited to de facto imitating the 
behaviour of another individual (possible with some 
minor changes), the second is referred to modifying 
the possessed behaviour after the observation of oth-
ers’ behaviours. While imitation is most passive and 
mechanical, social learning supposes a form of intel-
ligence in selecting how to modify the past behav-
iour, taking into account others’ experience. 
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Box (1984) defines socially biased learning as: a 
change in behaviour contingent upon a change in 
cognitive state associated with experience that is 
aided by exposure to the activities of social compan-
ions. The first part of this is already taken care by 
RL methods (equation 6) and by the EBL proposed 
in the previous sections. What is still lacking is the 
bias coming from social companions, i.e.: other 
agents coexisting in the same environment. In future 
works a reputational based approach will be used, to 
embed a form of social bias into the agents. This will 
keep into consideration the payoffs deriving from 
other agents’ actions, weighted by agents’ individual 
reputations, acting as a bias for the equation defining 
the RL strategy, along with EBL. 

6 CONCLUSIONS 

In this work a formal method for action selection is 
introduced: it’s based on one step QL algorithm 
(equation 6), but it takes into account individual 
preference for one or more actions. This method is 
designed to be used in simulation of social systems 
employing MAS, where many entities interact in the 
same environment and must take some actions at 
each time-step. In particular, traditional methods do 
not take into account human factor, in the form of 
personal inclination towards different strategies, and 
consider the agents as totally rational and able to 
modify their behaviour based on an analytical payoff 
function derived from the performed actions. 

Ego biased learning is formally presented in the 
most simple case, in which only two categories of 
agents are involved, and only two actions are possi-
ble. That’s to show the basic equations and explore 
the results, when varying the parameters. 

After that, some general cases are faced and 
equations are supplied, where an arbitrary number of 
agents’ categories is taken into account, along with 
an equally discretionary number of actions. There 
can be many sub-cases for this situations, e.g.: one 
action is preferred, and the others are disadvantaged, 
or an agent has the same bias towards more actions, 
or in the most general situation, each action can have 
a positive or negative bias, for an agent.  

Some simulations are run, and the results are 
studied, showing how, even a small part of the popu-
lation, with a negligible bias towards a particular ac-
tion, can affect the convergence of a RL algorithm. 
In particular, if miscoordination is punished, after 
few steps all the agents converge on the suboptimal 
action, which is the one preferred by the biased 
agents. With no penalty for miscoordination, things 

are less radical, but once again many non-biased 
agents (even if not all of them) converge to the 
suboptimal action. This shows how personal biases 
are important in social systems, where agents must 
coordinate or interact. 
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