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Abstract: A spatially uniform model of tumour growth after a single instantaneous radiative treatment is presented in
this paper. The ordinary differential equation model presented may be obtained from an equivalent partial
derivative equation model, by integration with respect to the radial distance. The main purpose of the paper
is to study its identifiability properties. In fact, a preliminary condition, that is necessary to verify before
performing the parameter identification, is the global identifiability of a model. A detailed study of the identi-
fiability properties of the model is done pointing out that it is globally identifiable, provided that the responses
to two different radiation doses are available.

1 INTRODUCTION

The mathematical literature on solid tumour growth is
very wide. Looking through it, this evolution line can
be recognized: the earliest models were focused on
avascular tumour growth; then models of angiogene-
sis were developed; more recently, models of vascular
tumour growth are starting to emerge (Byrne, 2003).

With reference to mathematical models of avascu-
lar tumour growth we can underline the presence of
two different kinds of models: the spatially uniform
models and the spatially structured models.

The first class of models concerns with models in
which details of the spatial structure of the tumour are
neglected and the attention is focused, for instance, on
the tumour overall volume or on the total number of
cells present within the tumour itself.

On the other hand, the second class concerns with
models in which the spatial coordinates are taken into
account, in order to investigate the role of rate limit-
ing, diffusiblegrowth factorson the tumour develop-
ment.

In this paper a spatially uniform model of tumour
growth, after a single instantaneous radiative treat-
ment is presented, with the main purpose of studying
its identifiability properties. This model comes from
the integration with respect to the spatial coordinate
of the partial derivative equations of a spatially struc-
tured model (Bertuzzi et al., 2009), when it is possible

to neglect the distribution of oxygen concentration in-
side the tumour. In fact, the oxygen concentration is
generally very important in such models because it
influences the radiosensitivity of cells (Wouters and
Brown, 1997) and it determines the cell death when
its level is too low. Nevertheless, when the tumoral
spheroid, during all its growth, remains smaller than
a critical dimension at which an internal necrotic re-
gion starts to develop (‘small spheroids’), then it can
be assumed that:

1. the oxygen concentration is higher than the mini-
mum value necessary to the cell life

2. the initial distribution of oxygen inside the
spheroid is sufficiently uniform to be assumed
constant

In view of 1. the cell death for insufficient oxy-
genation can be neglected and the radiation is the only
cause of death. Moreover for 2. it can be assumed that
the radiosensitivity coefficients are constant for all the
tumoral cells inside the spheroid. With these two as-
sumptions, the ODE model presented in this paper is
completely equivalent to the original PDE model pro-
posed by Bertuzzi et al. (2009), and it may be ob-
tained from the latter by integration with respect to
the radial distance, as mentioned above.
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2 AN ODE MATHEMATICAL
MODEL OF THE TUMOUR
SPHEROID RESPONSE TO
RADIATION

Although quiescent cells have been evidenced in
tumour spheroids (Freyer and Sutherland, 1986),
(Sutherland, 1988), for simplicity we will assume that
all viable cells proliferate with the same rate and this
assumption is reasonable because the model is for-
mulated under the assumption of ‘small spheroids’,
where the oxygen level is sufficiently high and uni-
form. So in a spheroid we will distinguish: viable
cells, lethally damaged cells and dead cells.

Under the hypothesis of ‘small spheroids’, let us
consider the following ODE model (Papa, 2009), ob-
tained by integrating the PDE equations of the model
proposed by Bertuzzi et al. (2009):



































V̇(t) = χV(t) ,
V̇D1(t) = (χD −µD)VD1(t) ,
V̇D2(t) = (χD −µD)VD2(t)+µDVD1(t) ,
V̇D3(t) = (χD −µD)VD3(t)+µDVD2(t) ,
V̇N1(t) = µDVD3(t)−µNVN1(t) ,
V̇N2(t) = µNVN1(t)−µNVN2(t) ,
V̇N3(t) = µNVN2(t)−µNVN3(t) ,

(1)

where V(t) is the volume of viable cells,VD1(t),
VD2(t) andVD3(t) are the volumes of three subcom-
partments of lethally damaged cells andVN1(t), VN2(t)
andVN3(t) are the volumes of three subcompartments
of dead cells (Bertuzzi et al., 2009), (Papa, 2009);
with χ and χD we denote the constant proliferation
rates, respectively, of viable cells and of the three sub-
compartments of lethally damaged cells (that we sup-
pose to progress across the cell cycle and to divide
until they die), withµD andµN, respectively, the death
rate of lethally damaged cells and the degradation rate
of dead cells. All these dynamic parameters are pos-
itive and, since lethally damaged cells eventually die,
it is necessary to assume thatµD > χD. The output of
the model is the total volume of the spheroid, obtained
by summing the state variables:

y(t) = V(t)+
3

∑
i=1

VDi (t)+
3

∑
i=1

VNi (t) . (2)

Without loss of generality, cells are assumed to oc-
cupy all the volume of the spheroid.

Considering only impulsive irradiations, both the
direct action and the effect of binary misrepair will be
considered instantaneous and described by a non lin-
ear relation named linear-quadratic (LQ) model (Bris-
tow and Hill, 1987). Denoting byδ the surviving frac-
tion of cells after a single impulsive irradiation, the

LQ dose-response relation has the form:

δ = e[−αd−βd2]
, (3)

whered is the dose,α andβ the radiosensitivity pa-
rameters related, respectively, to the direct action of
radiation and to the binary misrepair of DSBs. Then
the initial conditions for the basic model, according to
(3), are:















V(0+) = e[−αd−βd2]V(0−) ,

VD1(0
+) = (1−e[−αd−βd2])V(0−) ,

VDi (0
+) = 0, i = 2,3,

VNj (0
+) = 0, j = 1,2,3,

(4)

whereV(0−) is the spheroid volume before irradia-
tion.

Equations (1), with their initial conditions (4), de-
fine a linear time-invariant dynamical system and (2)
is the corresponding linear output equation.

3 PARAMETRIC
IDENTIFIABILITY OF THE
MODEL

There are different methods for studying the identi-
fiability of dynamical systems. For the model pre-
sented above it has been used the similarity transfor-
mation method (Travis and Haddock, 1981), that can
be only used for linear dynamical systems. In gen-
eral, some parameters of a linear stationary dynam-
ical system are not known. Therefore the similarity
transformation method allows to determine the iden-
tifiability properties of system parameters when they
correspond to the elements of the model matrices or
when there is a univocal relationship between them.
It is easy to understand, looking at the structure of
the matrices given below, that a univocal relationship
exists between the parameters (χ,χD,µD,µN) and the
elements of the system matrices whereas it does not
happen for the radiological parameters (α,β). Con-
sidering the parameterδ, given by (3) and depending
on the radiological parameters (α,β), even if it was
identifiable, the parametersα andβ would not be uni-
vocally determined from its value. It will be shown
that α andβ can be univocally identified by exploit-
ing model responses to at least two different radiation
doses.

Let us study the identifiability of the parameter
vector

θ =
[

χ χD µD µN δ
]T

, (5)

ranging in the admissible setΘ ⊂ R5, where

Θ ={θ ∈ R5 | χ,χD,µD,µN > 0, µD > χD

and 0< δ < 1} .
(6)
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Taking model equations (1) - (4) into account, let us
denote by

x=
[

V VD1 VD2 VD3 VN1 VN2 VN3

]T
(7)

the state vector and byA(θ), cT(θ) andb(θ) respec-
tively the model dynamical matrix, the state-output
matrix and the fraction of the initial state vector inde-
pendent of the spheroid initial volume. In particular,
for the elements ofA(θ), cT(θ), andb(θ) we have
that:



































































a11(θ) = χ ,

a22(θ) = a33(θ) = a44(θ) = χD −µD ,

a55(θ) = a66(θ) = a77(θ) = −µN ,

a32(θ) = a43(θ) = a54(θ) = µD ,

a65(θ) = a76(θ) = µN ,

all other elements ofA(θ) are equal to zero,

ci(θ) = 1, i = 1, . . . ,7,

b1(θ) = δ , b2(θ) = 1− δ ,

bi(θ) = 0, i = 3, . . . ,7.

(8)

Then the model (1) - (4) can be written in a compact
form:
{

ẋ(t;θ) = A(θ)x(t;θ), x(0+;θ) = b(θ)V(0−),

y(t;θ) = cT(θ)x(t;θ).
(9)

It is useful to observe, at this point, that the output
y(t;θ) obtained by the model (9), in which no input
acts, is the same output obtainable by the following
model:











˙̄x(t;θ) = A(θ)x̄(t;θ)+b(θ)u(t),

x̄(0−) = 0,

ȳ(t;θ) = cT(θ)x̄(t;θ)

(10)

with u(t) = u0(t)V(0−), whereu0(t) is a Dirac unit
pulse function. In fact:

y(t;θ) = ȳ(t;θ) = cT(θ)eA(θ)tb(θ)V(0−) . (11)

Therefore, it is easy to understand from relation (11)
that the identifiability problem ofθ for the model
(9) is the same one for the model (10). In partic-
ular we can talk about controllability of the couple
(A(θ),b(θ)), since the role of the matrixb(θ) in the
model (9) is equivalent to the one in the model (10).

The similarity transformation method is based on
the following theorem (Papa, 2009):

Theorem 1 . Let the triples(A(θ),b(θ),cT (θ)) and
(A(φ),b(φ),cT(φ)) be observable and controllable.
Then

cT(θ)eA(θ)tb(θ) = cT(φ)eA(φ)tb(φ) , t ∈ [0,T] (12)

if and only if a nonsingular matrixP exists such that






PA(θ)P−1 = A(φ) ,
cT(θ)P−1 = cT(φ) ,
Pb(θ) = b(φ) .

(13)

Proof . It is immediate to see that (13) implies (12) by
taking into account the power expansion of the expo-
nential. The inverse implication, that requires the con-
trollability and observability properties, was proved
by Kalman (Kalman, 1963), (Kalman et al., 1969).

�

From Theorem 1 it is easy to understand that given
an indistinguishable couple(θ,φ) ∈ Θ for the system
(9), if it exists, the corresponding system matrices,
(A(θ),b(θ),cT(θ)) and (A(φ),b(φ),cT(φ)), have the
same structure and are linked by the algebraic rela-
tions (13). It is easy also to see that if (13) have a
unique solution(θ, I) then indistinguishable couples
do not exist. So the following obvious lemma follows:

Lemma 1 . Let the triples (A(θ),b(θ),cT (θ)) and
(A(φ),b(φ),cT(φ)) be observable and controllable.
Then the system (9) is globally identifiable inΘ if and
only if the equations (13), for all fixed vectorθ ∈ Θ,
have the unique solution(φ,P) = (θ, I).

The observability and controllability properties of
the triple(A(θ),b(θ),cT (θ)) of (9) have been proved
by Papa (2009). Now we can prove the following re-
sult.

Theorem 2 . The model (1) - (4) is globally identifi-
able with respect to the unknown parameter vectorθ
given by (5) and ranging in the setΘ defined by (6).
In fact∀θ∈ Θ it does not exist inΘ another parameter
vectorφ that gives the same output.

Proof . Givenθ ∈ Θ, let us consider a(1×5) vector
φ = [χ∗ χ∗

D µ∗D µ∗N δ∗] ∈ Θ and the(7×7) matrix P.
From the first equation of (13) it is easy to obtain the
following equation system:

[

r1 r2 r3 r4 r5 r6 r7
]T

=

=
[

c1 c2 c3 c4 c5 c6 c7
]

,
(14)

whereri andci are, respectively, a(1×7) row vector
and(7×1) column vector:
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ri =



















pi1χ
pi2(χD−µD)+ pi3µD
pi3(χD−µD)+ pi4µD
pi4(χD−µD)+ pi5µD

−pi5µN + pi6µN
−pi6µN + pi7µN

−pi7µN



















T

,

ci =



















p1iχ∗

p2i(χ∗
D −µ∗D)

p2iµ∗D + p3i(χ∗
D −µ∗D)

p3iµ∗D + p4i(χ∗
D −µ∗D)

p4iµ∗D− p5iµ∗N
p5iµ∗N − p6iµ∗N
p6iµ∗N − p7iµ∗N



















, i = 1, ...,7.

Furthermore, using the second and the third equation
of (13) it is easy to obtain, respectively, the following
relations:

p1i + p2i + ...+ p7i = 1, with i = 1, ...,7, (15)






p11δ+ p12(1− δ) = δ∗ ,

p21δ+ p22(1− δ) = (1− δ∗) ,
pi1δ+ pi2(1− δ) = 0, with i = 3, ...,7.

(16)

By solving equations (14) - (16), it can be shown
that (13) admits only the trivial solution(θ, I). For de-
tails see the proof of Theorem 4 given by Papa (2009).
Then, from Lemma 1, we can say that the model (1)
- (4) is globally identifiable with respect to the five
considered parameters. �

Theorem 2 does not establish the global identifia-
bility of the model (1) - (4) with respect to the radio-
logical parameters. In order to study the identifiability
of the radiological parametersα andβ it is necessary
to consider two different dosesd1 andd2 and the cor-
responding parametersδ1 andδ2:

{

δ1 = e[−αd1−βd2
1] ,

δ2 = e[−αd2−βd2
2] .

(17)

It is easy to verify that the relation between(δ1,δ2)
and (α,β) is one to one ifd1 6= d2. Therefore, let
us consider two different initial statesx(1)(0+;θ) and
x(2)(0+;θ) related to two different doses and let us
observe parallely the two corresponding system re-
sponses. Let us define a new parameter vector

θ =
[

χ χD µD µN δ1 δ2
]T

(18)

ranging in the admissible setΘ ⊂ R6, where

Θ ={θ ∈ R6 | χ,χD,µD,µN > 0, µD > χD,

0 < δ1 < 1 and 0< δ2 < 1} .
(19)

Let us define byxT ∈ R14 the total state vector

xT =

[

x(1)

x(2)

]

, (20)

that is the union of two state vectors of the type (7),
x(1) andx(2), related to the two different initial states,
and the block matrices

AT(θ) =

[

A(θ) 0
0 A(θ)

]

,

CT(θ) =

[

cT(θ) 0
0 cT(θ)

]

,

BT(θ) =

[

b(1)(θ) 0
0 b(2)(θ)

]

,

(21)

whereA(θ) andcT(θ) are the same matrices defined
in (8), b(1)(θ) andb(2)(θ) are such that

b(1)(θ) =
[

δ1 (1− δ1) 0 . . . 0
]T

,

b(2)(θ) =
[

δ2 (1− δ2) 0 . . . 0
]T

.

(22)

Obviously,AT(θ), CT(θ) andBT(θ) are, respectively,
(14× 14), (2× 14) and (14× 2) matrices and the
model (1) - (4) can be written as:



















ẋT(t;θ) = AT(θ)xT(t;θ) ,

xT(0+;θ) = BT(θ)

(

V(0−)
V(0−)

)

,

yT(t;θ) = CT(θ)xT(t;θ) ,

(23)

whereyT(t;θ) ∈ R2 is the union of the two outputs
related to the two different initial states.

Using the observability and the controllability
properties of (9), it can be easily shown that the sys-
tem (23) is observable and controllable too (Papa,
2009).

Now we can prove the following result.

Theorem 3 . The model (1) - (4) is globally identifi-
able with respect to the unknown parameter vectorθ
given by (18) and ranging in the setΘ defined by (19),
exploiting the outputs of the model obtained from two
different radiation doses.

Proof . Givenθ ∈ Θ, let us consider a(1×6) vector
φ = [χ∗ χ∗

D µ∗D µ∗N δ∗1 δ∗2] ∈ Θ and the(14×14) matrix
P. Dividing theP matrix into four(7×7) blocks

P =

[

P11 P12
P21 P22

]

(24)

it is easy to show that from the matrix equations (13),
developing the block products, the following subsys-
tems are obtained:







Pii A(θ) = A(φ)Pii

cT(θ) = cT(φ)Pii

Pii b(1)(θ) = b(1)(φ)
with i = 1,2,







Pi j A(θ) = A(φ)Pi j

0 = cT(φ)Pi j

Pi j b(2)(θ) = 0
with i, j = 1,2, i 6= j.

(25)
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The first two subsystems of (25) are similar to the one
studied in the proof of theorem 1. So both the subsys-
tems have only the trivial solution(θ, I). Therefore it
results that

χ∗ = χ, χ∗
D = χD, µ∗D = µD, µ∗N = µN,

δ∗1 = δ1, δ∗2 = δ2 andP11 = P22 = I .
(26)

It is simple to verify that, with the results (26), the
latter two subsystems of (25) give the solutionsP12 =
P21 = 0.

Therefore we have that system (13) admits only
the trivial solution(θ, I). Thus, from Lemma 1, we
can say that the model (1) - (4) is globally identifiable
by exploiting the model responseyT(t;θ) to at least
two different dosesd1 andd2. �

4 CONCLUDING REMARKS

In this paper we have considered a spatially uniform
dynamical model of tumour growth after a single in-
stantaneous radiative treatment. In this model the
details of the spatial structure of the tumour are ne-
glected and the attention is focused on the temporal
evolution of tumour overall volume after the radia-
tive treatment. The model can be used for different
applications. For instance, to asses the efficiency of
the radiotherapeutic treatment, but for this applica-
tion it is necessary to identify the unknown param-
eters. A preliminary condition, that is necessary to
verify before performing the parameter estimation, is
the global identifiability of the model.

In this paper a detailed study of the identifiabil-
ity properties of the model is done, pointing out that
it is globally identifiable, provided that the responses
to two different radiation doses are considered. This
important property assures a correct formulation of
the parametric identification problem. The paramet-
ric identification of the model and the corresponding
validation, with respect to both the fitting and the pre-
diction capability of the experimental data, are treated
by Bertuzzi et al. (2009).
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