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Abstract: This paper investigates the influence of physical stress on the physiological parameters of the cardiovascular 
system (CVS). The work aims at estimating the physiological variables such as the Heart Rate (HR), Blood 
Pressure (BP), Total Peripheral Resistance (TPR) and respiration in a subject underging physical workload. 
The core of the model was based on the model architecture previously developed by Luczak and his co-
workers. Luczak's model was first reconstructed and the original published figure plots were used to identify 
some of the missing parameters via Genetic Algorithms (GA). The model was then modified using real 
experimental data extracted from healthy subjects who underwent two-session experiments of cyclic-
loading based physical stress. Neuro-Fuzzy models were elicited via the data in order to describe the non-
linear components of the model. The model response has also been significantly improved by including a 
dynamics-based component represented by 'time' as an extra input. The final model, as well as being of a 
‘hybrid’ nature, was found to generalize better, to be more amenable to expansions and to also lead to better 
predictions. 

1 INTRODUCTION 

Life is full of stresses and human beings are more 
often than not likely to be exposed to one or more of 
stress types during their regular daily activities. 
Many studies revealed that the human physiological 
variables are affected by physical stress. Among 
these variables, which have a direct relationship with 
the physical workload, one can cite the 
Cardiovascular System (CVS) parameters and the 
brain activity. The CVS parameters of interest 
include the Heart-Rate (HR), blood-pressure (BP), 
total peripheral resistance (TPR), and respiration. 

CVS models are important for understanding 
cardiovascular physiology and the interactions 
among the different hemodynamics involved. CVS 
models usually integrate a circulatory model with a 
model of control mechanisms of the autonomous 
system (Chiu and Kao, 2001). One of the earliest 
models describing the relationships between the 
CVS physiological variables, such as HR, BP, TPR 
and respiration, was developed by Luczak and 
Raschke (Luczak and Raschke, 1975). This model 
describes the influence of physical and mental 

stresses on these signals. The original model was 
later extended by the same authors to take into 
account the effect of workload on the amplitude and 
frequency of the respiration (Luczak et al., 1980). 
This model was adopted in the present work because 
of its transparency (it leads to a relatively good 
understanding of CVS physiology) and also because 
it can be extended and modified easily.  

The research work described here consists of 
analyzing the original Luczak model and identifying 
the key sub-model components which should be 
updated in order to achieve better interpretability 
and prediction accuracy overall without adding too 
much complexity. This paper is organized as 
follows:  Section 2 overviews the original Luczak 
model. Section 3 outlines the modeling strategy 
adopted when substituting key sub-models in the 
original Luczak model and presents the simulation 
results. Finally, Section 4 draws some conclusions in 
relation to this overall study, including some future 
research issues. 
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2 RECONSTRUCTION OF THE 
ORIGINAL LUCZAK MODEL 

In earlier Luczak's publications, it was found that 
some of the equations parameter values were 
missing and no quantitative values were available 
(Luczak et al., 1980; Luczak and Raschke, 1975). 
Therefore, an optimisation procedure was used to 
identify these parameters. 

2.1 Signal Discretization 

A data discretization process has been applied to the 
original plots of Luczak's model output. There were 
two plots combining the model responses (HR, BP, 
TPR, and respiration) due to 50-W and 200-W 
physical workload. These plots were scanned using a 
high resolution scanner, to transform them to their 
digital format. Each curve image was then saved into 
a separate digital-image file. A discretization process 
was applied by recording, manually the curve plot 
point-by-point. This process was accomplished by 
using a program called “Discretizer” that works 
under the environment of “Origin6.0©” (OriginLab 
Corporation, USA). The time-series equivalents 
were finally obtained with a reasonable accuracy. 
Fig. 1 shows the resulting discretized signals related 
to the original 50-W workload data for a 300 sec 
time duration.  

 
Figure 1: Plots of the physiological signals after 
discretization; (a) Heart rate, (b) Blood pressure, (c) Total 
Peripheral Resistance. 

The reliability of this discretization process was 
verified by recalculating the frequency components 
of the reconstructed signals using a Fast Fourier 
Transform (FFT) algorithm. The power spectra of 
the reconstructed HR, BP and TPR due to a 
workload of 50-W in Fig. 2 shows clearly the 0.1 Hz 

frequency component (Mayer wave) (Penaz, 1978) 
thus confirming the  subject’s entrainment. 

 
Figure 2: The power spectrum of the reconstructed HR 
signal. 

2.2 Parameter Optimisation 

The Genetic Algorithm (GA) (Goldberg, 1989) was 
considered as a suitable candidate to estimate the 
unknown parameters.  

The sum of the Mean Squared Errors (MSE) of 
the three physiological variables was used as the 
cost-function, J: 

J = TPRerror)BPerror)HRerror) 22
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Where HRerror = Heart Rate error = HR – HR*, 
BPerror = Blood Pressure error = BP – BP*, 
TPRerror = Total Peripheral Resistance error = TPR 
–TPR*; HR, BP, and TPR are the assumed measured 
real data extracted from the plots; and HR*, BP*, and 
TPR* are the corresponding estimated signals 
respectively and n = Number of samples, k = the 
instantaneous time-index of the data point. 

Table 1 shows the GA parameters that were 
chosen as recommended by (Grefenstette, 1986). 

Table 1: GA optimisation parameters. 

Number of generations 500 
Number of populations 200 
Mutation factor 0.02 
Crossover factor 0.95 
Fitness scaling Rank 
Selection method Stochastic uniform 

The model output for the HR, BP and respiration 
signals, given an input excitation equivalent to a 50-
W physical workload is shown in Fig. 3.  
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Figure 3: The actual versus estimated HR, BP, and 
respiration signals for 50-W physical workload.  

Fig. 4 shows the respiration power spectrum and 
it can be seen that there are two frequency peaks; the 
first is at 0.25Hz which represents the rest frequency 
while the other is around 0.35 Hz which represents 
the load frequency. Thus, the accuracy of the 
estimated respiration signal was deemed reasonable. 

 
Figure 4: The respiration power spectrum due to a 50-W 
workload. 

Most of the studies relating physical stress to the 
CVS were concerned with models capable of 
simulating behaviour within a five (5) minute-period 
(Chiu and Kao, 2001, Elsamahy et al., 2003). 
However, to the best of knowledge of the authors of 
this paper, studies involving long-term physical 
workload and its effect on the CVS have not yet 
been explored. Therefore, the objective of this work 
is to build a model that includes the following 
features:  

1- The model must be able to estimate the 
physiological variables such as HR, BP, TPR, and 
respiration for simulating physical workload for time 
periods longer than five (5) minutes;  

2- The model must be reliable and able to 
generalise predictions by including intelligent blocks 
to replace the 'physical' non-linear blocks;  

3- The workload profile has to be designed so as 
to assess the effect of a stepwise cyclic-loading on 
the CVS. 

The reconstructed model was modified to suit 
such a long-term study and this is discussed in detail 
in the next section. 

3 MODELING WITH REAL TIME 
DATA 

To proceed with the current study, real-time 
experiments were conducted on 15 young and 
healthy volunteer subjects. All the experiments took 
place in the Human Performance Laboratory (HPL).  

3.1 Experimental Setup and Data 
Acquisition 

The experimental set-up included the following 
equipment: 

• Cateye Ergociser EC-3700 high performance fitness 
bicycle for simulating physical stress and equipped 
with an ear lobe sensor to acquire the average HR 
signal at sampling frequency of 1 Hz. 

• Ohmeda 2300 Finapres® blood pressure monitor for 
continuous measurements of blood pressure and  
beat-to-beat heart-rate; 

• Two PCs for data capture and analyses. 

 Each volunteer underwent two experiments, 
each lasing 31 min. The first and last 5-min periods 
were 'rest' states while the in between 21-min period 
was assigned for the workload state. The workload 
profile was a cyclic-loading scheme (stepwise) as in 
Table 2 and the subject was asked to pedal with a 
constant speed of 60 rpm with each step lasting 3 
min. 

Table 2: Workload values in kg-m. 

Step Number Workload Torque (kg-m) 
1 0.6 
2 1.1 
3 1.6 
4 2.1 
5 1.6 
6 1.1 
7 0.6 
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 The second experimental session was organised 
to be at the same time of the day to avoid any 
significant changes in the subjects' cardiac 
circulation. The first session data were used for 
model training while the second session data were 
for model checking. 

3.2 Data Pre-processing 

Data pre-processing was carried-out by removing 
the spurious values, caused by the sensor 
movements while pedalling. These unreliable data 
values were removed and then replaced by the 
average value of the data before and after the 
artefact. Additionally, another filtering operation 
was carried-out by using curve smoothing to remove 
the high frequency components (Moon, 1998). The 
most appropriate physiological signals needed for 
this study were HR, the mean arterial BP and the 
power consumption signals. 

3.3 Data Modeling 

A comparative study between TSK(Takagi-Sugeno)-
type fuzzy model (ANFIS) (Jang, 1993), Mamdani-
type fuzzy model, and neural-networks (NN) ability 
to reproduce the non-linear blocks in the Luczak's 
original model has been carried out. The non-linear 
blocks are normally found in the two controlling 
paths, i.e. in the TPR and the HR paths. More 
specifically in the sinus node and the vascular nerves 
blocks. For simplicity, the whole model was divided 
into two sub-models: the BP and HR sub-models. 
The blood pressure sub-model is responsible for 
predicting the BP signal and the heart-rate sub-
model predicts the HR signal. 

3.3.1 Training and Checking Data 
Reproduction 

The instantaneous HR is normally stimulated by the 
sinus node, which can be seen as the arithmetic unit 
combining the effect of several sympathetic and 
vagal pathways. The equations which regulate the 
HR signal using the vasomotor centre and the sinus 
node are as follows (Luczak et al., 1980, Luczak and 
Raschke, 1975): 

HR=HR0·(1-
veff
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   Fveff  = KK · Faff1             (3) 

Where HRo = heart rate at rest (without vagus 
activity) = 120 beats/min; Fveff = Efferent vagus 
activity; a  = 1.74; b = 0.96; KPF = 0.0074; Fseffo = 
efferent sympathetic activity at rest = 0.64;  
Ws = reference variable of sympathico-tonic activity 
under workload; ωn = 1 rad/s, η = 0.65; Faff1 = 
afferent impulses from presso-receptors. On the 
other hand, the BP equation is given as follows 
(Luczak et al., 1980): 

BP = TPR · Q · 2
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(4) 

 Where Q = Cardiac output (flow-rate) (L/min);  
ωn= 0.4 rad/s; η = 1. 

 
Figure 5: The model scheme for generating the training 
data of the input variables for the HR model; the cut-arrow 
in the Faff1 path denotes some hidden blocks which were 
omitted for clarity. 

The study focused initially on the HR signal path 
and the target was to select the best model type that 
is able to predict the HR signal as an output from the 
sympathetic activity (Ws) and the efferent signal 
(Faff1) as inputs (Fig. 5). To help capture the systems 
dynamics, a time index was added as an extra input 
to help improve the models' predictions. 

3.3.2 ANFIS-type Fuzzy Model 

The Adaptive Neuro Fuzzy Inference System 
(ANFIS)  (Jang, 1993) was used and the rule-base 
construction was based on Grid Partitioning (GP) 
and Subtractive Clustering (SC) techniques. Table 3 
summarizes the parameters assigned to each method.  

Table 3: Training parameters for the Grid Partitioning 
(GP) and Subtractive Clustering (SC) methods. 

 GP SC 
Number of input 
membership functions 
(MFs) 

[5 5] Radius = 0.3 to 
give [5 5] 

MFs shape Gaussian Gaussian 
Output function Linear Linear 
Optimisation method Hybrid Hybrid 
Training epochs 500 500 
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 The SC technique was adopted because it 
showed a smaller validation MSE than the GP 
technique in addition to the bounded 3D surface of 
the former over the later. 

3.3.3 Mamdani-type Fuzzy Model 

The general rule structure of the Mamdani-type 
model is: 

Ri: IF x1 is Ai1 AND x2 is Ai2 AND … AND xm is Aim,  
THEN yi  is Bi                (5) 

  Where [ ] mT
mxx ℜ⊂∈= Ux ,,1 is the input 

vector, y the output, Ai1, Ai2, ...., Aim, Bi are linguistic 
labels. 
For the sake of consistency in comparisons, the 
inputs were assigned 5 Gaussian MFs each, with 5 
rules, were applied. The same rules were chosen as 
in the case of the SC technique.  

3.3.4 Neural Networks Based Model 

The study started by training a feed-forward neural 
network (FFNN) with the training data from 
Group1. The NN includes 2 hidden layers each 
having 5 neurons. The tangent sigmoid was chosen 
as a transfer function for all hidden layers' neurons, 
and the output transfer function was chosen to be 
linear. The NN was trained with the back-
propagation optimisation method with the same 
inputs combination and the same training and 
validating data as for the previous two models. The 
number of training epochs was set to 500; however 
the training process stopped after 38 epochs as the 
minimum MSE was reached. Table 4 summarises the 
HR MSEs and the correlation values of the checking 
data for final comparison. The table shows that 
ANFIS model was the best choice, because it had 
the minimum MSE and the maximum correlation 
values in this case study. 

Table 4: The MSEs and correlations of the checking data 
for the proposed models. 

 ANFIS Mamdani NN 
MSE 119.05 608.26 130.44 
Correlation 0.9587 0.6677 0.9586 

 Due to the predominating dynamics in the BP 
signal, it was necessary to predict the BP signal as 
accurately as possible to ensure in turn the accurate 
prediction of the HR signal. In fact, the non-linear 
block located in the TPR path was deemed to be 
replaced by ANFIS. Therefore, the model was 
implemented by constructing an ANFIS model 

which was used to predict the TPR first, then 
predicting the BP signal using the mean arterial 
pressure equation (4). There was no available sensor 
for measuring the TPR signal; therefore, it was 
inferred via equation (6) which is a simplified 
version of equation (4): 

BP = TPR × Q                          (6) 

It was necessary to divide the ANFIS model into 
two sub-ANFIS models. The first sub-ANFIS was 
for predicting the 'rest' state and the other for the 
'load' state. From the input/output correlation test, 
the inputs of the TPR sub-ANFIS models were 
defined for the training procedure  as the workload 
(WL) and the blood flow rate (Q) in addition to the 
afferent signal (Faff2). The former is a mandatory 
input because it represents the feedback signal for 
controlling the BP through the slow control path. 

The HR sub-ANFIS models were elicited using 
the same procedure as the TPR sub-ANFIS and the 
candidate inputs were the WL and Faff1 in addition to 
the time-index. Faff1 is mandatory for feedback 
control. The estimated outputs of the final model 
versus the measured signals of a subject's data from 
'Session 2' are shown in Fig. 6. This figure shows 
that the model predictions are good during this long-
term case of 1800sec. Furthermore, Fig. 7 shows that 
the 0.1 Hz component clearly appears in all spectra 
which reinforces the previous argument that the 
elicited model is valid. 

 
Figure 6: The predicted versus the measured physiological 
variables of the final model. 
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Figure 7: Power spectra of the measured and estimated HR 
and BP signals. 

4 CONCLUSIONS 

The work described in this paper is concerned with 
modeling the cardiovascular system (CVS) in terms 
of its physiological variables such as the heart-rate 
(HR), blood-pressure (BP), total peripheral 
resistance (TPR) and respiration based on Luczak's 
models. The reconstructed model outputs and their 
power spectra showed that this model can be used as 
a kernel model for studying the influence of physical 
stress on the CVS physiological variables. The 
model was tuned using real-time data collected from 
a population of 15 healthy subjects.  A comparative 
study between the Neural Network (NN), the 
Mamdani-type fuzzy model, and the TSK-type 
model (ANFIS) was carried-out. The TSK- type 
model produced good predictions in terms of the 
MSE and input/output correlation values. The inputs 
pattern used for building the ANFIS model was 
chosen on the basis of their correlation values vis-à-
vis the desired output. A time-index was added as an 
extra input to the input pattern to incorporate the 
system dynamics and this improved the model 
predictions.  Two different ANFIS models were 
developed to predict the physiological variables 
during the rest and load periods separately. A time-
switch was then used to toggle between each period. 
The power spectra showed that the model captures 
the relevant frequencies of the system. It is 
envisaged to exploit this model as a mechanism for 
switching between human and machine for task 
allocation in high-risk environments via the use of 
predefined HR and/or BP thresholds, similarly to the 
study  used in the case of mental stress (Ting et al., 
2008).  
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