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Abstract: The paper concerns a framework of an estimation of multijoint human arm viscoelasticity in a small sufficient
time period. The uncertainties have to be considered in estimating the viscoelasticity of the multijoint human
arm. In general, the uncertainties existing in the structure of the human arm and the motor command from
the central nervous system are subject to the non-Gaussian noises. A generalized Gaussian ratio function is
brought in to deal with the non-Gaussian noises. The momotonicity of the generalized Gaussian ratio function
is studied based on the approximation formula of Gamma functions, then a robust condition is proposed for
the computation of even moments using shape parameters. That is, we can guarantee the accuracy of the
simulation results and experimental results by the robust condition. The effectiveness of the proposed method
is confirmed by the experimental results.

1 INTRODUCTION

One of the key characteristics that human beings sur-
pass the animals is the human arm. According to the
central nervous system (CNS), human can do many
things by making full use of human arm. Simply,
when human beings want to do something by arm,
(e.g. taking something in front of him) the arms move
forward following the guide of the CNS, adjust the di-
rection and gradually reduce the distance between the
hand and the object, finally the object can be taken.
Actually, the human arm is derived by the multijoint
muscle generated torque, which is assumed to be a
function of angular position, velocity and motor com-
mand of CNS (Gomi and Kawato, 1996; Gomi and
Kawato, 1997). The change of the torque is caused by
multijoint arm viscoelasticity which consists of joint
stiffness. Joint stiffness is regulated by muscle inher-
ent spring-like properties, neural feedbacks, and vis-
cosity. In the fields of industrial robots and medical
service, the study of the human arm viscoelasticity
plays an important part. For example, if the knowl-
edge of how the arm moves according to the CNS is
known, some artificial limbs can be designed to help
the disabled. So in order to get some corresponding
knowledge about the moving human arms, the esti-
mation of the human arm viscoelasticity is discussed

in this paper.
The estimation of the viscoelasticity of the hu-

man arm has been studied by many researchers
(Deng, Inoue, Gomi and Hirashima, 2006; Gomi and
Kawato, 1996; Gomi and Kawato, 1997; Deng, Saijo,
Gomi and Inoue, 2006; Kim, Kang, Kim and Park,
2009). A high-performance manipulandum was de-
veloped to measure human arm stiffness based on
the equilibrium-point control hypothesis (Gomi and
Kawato, 1996). The authors discussed the manipu-
landum in details in (Gomi and Kawato, 1997): by
using the manipulandum and a new estimation al-
gorithm, human multi-joint arm stiffness parameters
during multi-joint point-to-point movements on a hor-
izontal plane were measured. Later, online estima-
tion algorithm of the human arm viscoelasticity was
proposed in (Deng et al, 2006), (Deng, Inoue and
Zhu) and (Iseki, Deng, Inoue and Bu, 2009). An in-
tegrated procedure to study on real time estimation
of time varying multijoint human arm viscoelastic-
ity was proposed in (Deng et al.) concerning the
uncertainty factor consisting of time-varying motor
command from central nervous system, measurement
noises and modeling error of the rigid body dynam-
ics. However, there exist some problems, for ex-
ample, in (Gomi and Kawato, 1996) and (Gomi and
Kawato, 1997), the stiffness, viscosity, and inertia pa-
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rameters of the human arm are estimated by applying
small perturbations which means a apparatus of a very
high cost. This may hinder many researchers from
the studying of human arm. So in order to reduce
the cost of the experiment, we consider to estimate
the viscoelasticity of the human arm in a small suffi-
cient time period without perturbation. Moreover, the
online estimation is based on the former experimen-
tal data, and there may be some difference or some
inaccurate information from the actual value. So in
this study, the monotonicity of the generalized Gaus-
sian function is proved to be monotonically decreas-
ing and a robust condition of the computation of the
even moment is given, that is: when the varying of the
shape parameter is bounded, the variance of the even
moment is guaranteed to be bounded. Then we can
guarantee the accuracy of the simulation results and
experimental results by the robust condition.

The outline of the paper is given as follows: the
human arm model and the estimation filter of vis-
coelasticity for human arm model are introduced in
Section 2; Section 3 includes the main results, the
monotonicity of the even moments and the robust
condition; The experimental results are shown in Sec-
tion 4, and the last part is the conclusion.

2 HUMAN ARM DYNAMIC
MODEL AND ESTIMATING
FILTER FOR
VISCOELASTICITY

Two-link rigid human arm dynamics on the horizontal
plane can be described as the following equation:

Ψ(q̈, q̇,q) = τin(q̇,q,u) (1)

Here,Ψ(·) denotes a two-link arm dynamics, andq, q̇
and q̈ are angular position, velocity and acceleration
vector, respectively.τin can be regarded as a function
of angular position, velocity, and motor command,u
descending from the supraspinal central nervous sys-
tem, where

q = (θ1(t),θ2(t))T

τin = (τs,τe)
T (2)

θ1(t) is shoulder angle andθ2(t) is elbow angle
shown in Fig. 2, whereτs = τ1, τe = τ2. Taking the
derivative of (1):

∂Ψ
∂q̈

dq̈
dt

+
∂Ψ
∂q̇

dq̇
dt

+
∂Ψ
∂q

dq
dt

=
∂τin

∂q̇
dq̇
dt

+
∂τin

∂q
dq
dt

+
∂τin

∂u
du
dt

(3)

If the arm is assumed to be rigid body serial link
system, such that:

Ψ(q̈, q̇,q) = I(q)q̈+ H(q̇,q) (4)

where,D andR present muscle viscosity and stiffness
matrix, and

−∂τin

∂q̇
= D =

(

Dss Dse
Des Dee

)

−∂τin

∂q
= R =

(

Rss Rse
Res Ree

)

(5)

The subscriptss of D and R represent the shoulder
single-joint effect on each coefficient. Similarly,se
andes denote cross-joint effects, andee denotes the
elbow single-joint effect. Then according to (3) (4)
and (5), the following equation can be established:

I(q)
dq̈
dt +

∂H(q̇,q)
∂q̇ q̈+[

∂I(q)q̈
∂q +

∂H(q̇,q)
∂q ]q̇

= −Dq̈−Rq̇+ ∂τin
∂u

du
dt (6)

Here the corresponding parameters ofI and H are
given as follows:

I =

[

I11 I12
I21 I22

]

(7)

I11 = m1l2
g1 + m2(l

2
1 + l2

g2)+ Ĩ1+ Ĩ2+2m2l1lg2cosθ2

= Z1 +2Z2cosθ2

I12 = I21 = m2l2
g2 + Ĩ2+ m2l1lg2cosθ2

= Z3 + Z2cosθ2

I22 = m2l2
g2 + Ĩ2 = Z3 (8)

H =

[

−m2l1lg2sinθ2(θ̇2
2
+2θ̇1θ̇2)

m2l1lg2θ̇1
2
sinθ2

]

=

[

−Z2sinθ2(θ̇2
2
+2θ̇1θ̇2)

Z2θ̇1
2
sinθ2

]

(9)

from the above equations (6)-(9), we can get the fol-
lowing relationship:

τin = −Dq̇−Rq+

∫ ∂τin

∂u
du (10)

Since the sampling time∆t → 0, thendu → 0, so the
value of

∫ ∂τin
∂u du → 0. By using a band-pass filter for

(10), the high frequency and low frequency measure-
ment noise can be removed. The filtered torqueτ f

in,

positionθ f
1(t) and θ f

2(t), vecocitiesθ̇ f
1(t) and θ̇ f

2(t)
satisfy the following relationship:

τ f
in = XU + ∆ + ζ1 (11)
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where X is the regression vector,U is the time-
varying parameter vector to be estimated, and

X =

(

θ1 θ2 θ̇1 θ̇2 0 0 0 0
0 0 0 0 θ1 θ2 θ̇1 θ̇2

)

U =
(

Rss Rse Dss Dse Res Ree Des Dee
)T

(12)

where ∆ = [∆1,∆2]
T consists of the structural un-

certainties which are assumed to be Gaussian.ζ1 =
[ζ̄11, ζ̄22]

T is the non-Gaussian measurement error
matrix of filtered measurement noise.

First, the above model needs to be converted into
its discrete time state-space form as follows.

U(t +1) = U(t)+ ζ2, t = 1,2, · · ·
τ f

in(t +1) = X(t +1)U(t +1)+ ∆(t +1)+ ζ1(t +1)

where,ζ2 is white noise. The shape parameters of
the probability density function (pdf) are known to
control the shape of the distribution. For the gener-
alized Gaussian uncertainty factor∆i(t) + ζ̄ii(t)(i =
1,2) with zero mean, varianceσ2

i and shape parame-
ter γi is given by:

pi(xi;σi,γi) =
αi(γi)γi

2σiΓ(1/γi)
e−[αi(γi)|xi/σi|]γi

xi ∈ R, i = 1,2 (13)

αi(γi) =

√

Γ(3/γi)

Γ(1/γi)
(14)

where Γ(·) is the Gamma function. In this paper,
the generalized Gaussian ratio function is given as
follows (Niehsen, 1999; Niehsen, 2002; Sharifi and
Leon-Garcia, 1995).

φ(2m)
i (γi) =

Γ(2m+1
γi

)Γm−1(1/γi)

Γm(3/γi)
,m = 1,2, · · · (15)

where

σ2
i = σ2

∆i
+ σ2

ζ̄ii
(16)

E(τ2m
i ) is a function ofσ2

∆i
, γ∆i , σ2

ζ̄ii
andγζ̄ii

. Variables

σ2
∆i

, γ∆i , σ2
ζ̄ii

andγζ̄ii
are variance of∆i, shape param-

eter of∆i, variance of̄ζii and shape parameter ofζ̄ii,
respectively. The odd moments vanish because of the
symmetrical pdf.

3 MAIN RESULTS

Before the robust condition is given, some mathemat-
ical preliminaries are given as follows:

First, the form of the Stirling’s formula is given as
follows:

n! ≈
√

2πn

(

n
e

)n

(17)

The Stirling’s formula can be applied to estimate the
Gamma functionΓ(z), if Re(z) > 0. The correspond-
ing approximation formula is in the following form:

Γ(z) =

√

2π
z

(

z
e

)z(

1+ O
(1

z

)

)

(18)

whereO denotes the BigO notation. In 2007, an esti-
mation form was proposed by Gergo Nemes (Stirling
approximation) which has the same computational ac-
curacy with formers’, but it is simpler for calculator.

Γ(z)≈
√

2π
z

[

1
e

(

z+
1

12z− 1
10z

)]z

=

√

2π
z

[

1
e

120z3+9z
120z2−1

]z

(19)

Next, let’s prove that the generalized Gaussian ra-
tio function decreases with the increasing of the shape
parameterγ.

Based on the former results about generalized
Gaussian ratio function, the following equality is es-
tablished:

φ(2m)(γ) =
Γ(2m+1

γ )Γm−1(1
γ )

Γm(3
γ )

(20)

whenm = 2, we get the equation (21):

φ(4)(γ) =
Γ(5

γ )Γ(1
γ )

Γ2(3
γ )

(21)

From the equation (21), we can find that the following
equation is satisfied ifz = 1

γ and named the equivalent

of φ(4)(γ) to beΦ(z):

Φ(z) =
Γ(5z)Γ(z)

Γ(3z)

=
3√
5
(
5
9
)5z(

1
9
)z

[ 1000z2+3
120×25z2−1

]5z[ 40z2+3
120z2−1

]z

[ 120z2+1
120×9z2−1

]6z

(22)

For simplicity, we consider the natural logarithm of
Φ(z):

f (z) = ln(Φ(z)) = ln3− 1
2

ln5+(5ln
5
9

+ ln
1
9
)z

+ [5ln(1000z2+3)+ ln(40z2+3)

+ 6ln(120×9z2−1)]z− [5ln(120×25z2−1)

+ ln(120z2−1)+6ln(120z2+1)]z (23)
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and take the derivative of the above functionf (z):

f ′(z)=5ln
5
9

+ ln
1
9

+5ln
1000z2+3

120×25z2−1

+ ln
40z2 +3
120z2−1

+6ln
120×9z2−1

120z2 +1

− 30
1000z2+3

− 6
40z2 +3

+
12

120×9z2−1

− 10
120×25z2−1

− 2
120z2−1

+
12

120z2+1

We can assume that

F(z) = 5ln
1000z2+3

120×25z2−1
+ ln

40z2 +3
120z2−1

+ 6ln
120×9z2−1

120z2+1

H(z) =− 30
1000z2+3

− 6
40z2 +3

+
12

120×9z2−1

− 10
120×25z2−1

− 2
120z2−1

+
12

120z2+1

According to the monotonicity of the functionsF(z)
andH(z), we can find that whenz ∈ [1

8, 2
3], H(z) ∈

[−0.84,−0.1558] and F(z) ∈ [ln792, ln1280], then
the estimation of thef ′(z) can be obtained:

f ′(z)≥ 5ln5−12ln3+ ln792−0.84

≥ ln
55×792

312 −0.84

≥ ln4.657−0.84

≥ 0.16≥ 0

Therefore, the functionf (z) is monotonically increas-
ing in z ∈ [1

8, 2
3], so the even momentφ(4)(γ) is mono-

tonically decreasing with the shape parameterγ in
γ ∈ [3

2,8], so the similar results can be obtained for
the case ofm = 3.

Then, the robust condition can be obtained as fol-
lows:

Using the result in (Deng et al, 2006), the follow-
ing relationship is established:

E(τ6
i )(γ) = σ6

∆i
φ(6)

i (γ∆i)+15σ4
∆i

φ(4)
i (γ∆i)σ

2
ζ̄ii

+ 15σ2
∆i

φ(4)
i (γζ̄ii

)σ4
ζ̄ii

+ σ6
ζ̄ii

φ(6)
i (γζ̄ii

)

whereφ(4)(γ∆i) = 3 andφ(6)(γ∆i) = 15. So the rela-
tionship can be simplified to be:

E(τ6
i )(γi)=15σ6

∆i
+45σ4

∆i
σ2

ζ̄ii
+15σ2

∆i
φ(4)

i (γζ̄ii
)σ4

ζ̄ii

+σ6
ζ̄ii

φ(6)
i (γζ̄ii

) (24)

Therefore, the similar results can be obtained for
the case ofγζ̄ii

= 1.5, whereφ(4)(1.5) = 3.76 and

φ(6)(1.5) = 26.7.

E(τ6
i )(1.5)=15σ6

∆i
+45σ4

∆i
σ2

ζ̄ii
+56.4σ2

∆i
σ4

ζ̄ii
(1.5)

+26.7σ6
ζ̄ii

(1.5) (25)

Then from the equations (24) and (25), the differ-
ence betweenE(τ6

i )(1.5+ ∆γ) and E(τ6
i )(1.5) is as

follows, whereγ = 1.5+ ∆γ:

∆E =E(τ6
i )(1.5+ ∆γ)−E(τ6

i )(1.5)

=45σ4
∆i

[σ2
ζ̄ii

(1.5+ ∆γ)−σ2
ζ̄ii

(1.5)]+15σ2
∆i

[φ(4)
i (1.5+ ∆γ)σ4

ζ̄ii
(1.5+ ∆γ)−3.76σ4

ζ̄ii
(1.5)]

+[σ6
ζ̄ii

(1.5+ ∆γ)φ(6)
i (1.5+ ∆γ)−26.7σ6

ζ̄ii
(1.5)]

(26)

Since the even momentsφ(4)
i (1.5+∆γ) andφ(6)

i (1.5+
∆γ) decrease with the increasing of∆γ, and the vari-
ance can be estimated using the method in (Iseki et
al, 2009), so there exists a boundedM to make the
following relationship satisfied:

∆E ≤ M (27)

Therefore, for∆γ≤ 6.5, the difference of the even mo-
ment∆E ≤ M, so the even momentE(τ6

i )(γ) is robust
for boundedness of the varying of the shape parameter
γ.

4 EXPERIMENTAL ISSUES

The experimental system is shown in Fig. 1. In the ex-
periment, the parameters are given as follows, where
the external force between the handle and horizontal
plane is omitted. The arm parameters of the objec-
tive arel1 = 0.26m, l2 = 0.30m. The cut-off frequen-
cies of the third-order band-pass filter to generateτ f

in,

θ f
i (t) and θ̇ f

i (t) are 0.5Hz and 9.5Hz. For designing
the filter, we use the case ofm = 3 in (15), then:

E(τ6
i )(γ)=σ6

∆i
φ(6)

i (γ∆i)+15σ4
∆i

φ(4)
i (γ∆i)σ

2
ζ̄ii

+15σ2
∆i

φ(4)
i (γζ̄ii

)σ4
ζ̄ii

+ σ6
ζ̄ii

φ(6)
i (γζ̄ii

) (28)

where,φ(4)(γ∆i) = 3 andφ(6)(γ∆i) = 15. The esti-
mated stiffness and viscosity are shown in Figs. 3 and
4, wherel11 = 9.472,l12 = 7.750,l21 = l22 = 1.034e9

are selected. From Figs. 3 and 4, we can find that
the proposed method is available to estimate the vis-
coelasticity of the human arm.
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Figure 1: The experimental system.

Figure 2: Schema of the experimental system and objective.

5 CONCLUSIONS

This paper considered the estimation of the viscoelas-
ticity of human arm and studied the monotonicity of
the generalized Gaussian ratio function, then a robust
condition of the generalized ratio function is proposed
for the varying of the shape parameter. So the ac-
curacy of the experimental data is guaranteed by the
robust condition. The effectiveness of the proposed
method is confirmed by the experimental results.
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Figure 3: Estimated viscosity by experiment.
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Figure 4: Estimated stiffness by experiment.
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