
A NICHED PARETO GENETIC ALGORITHM 
For Multiple Sequence Alignment Optimization 

Fernando José Mateus da Silva 
Dept. of Informatics Engineering, School of Technology and Management, Polytechnic Institute of Leiria, Portugal 

Juan Manuel Sánchez Pérez, Juan Antonio Gómez Pulido, Miguel A. Vega Rodríguez 
Dept. Tecnologías Computadores y Comunicaciones, Escuela Politécnica, Universidad de Extremadura, Spain 

Keywords: Multiple sequence alignments, Genetic algorithms, Multiobjective optimization, Niched Pareto, Equivalence 
class sharing, Bioinformatics. 

Abstract: The alignment of molecular sequences is a recurring task in bioinformatics, but it is not a trivial problem. 
The size and complexity of the search space involved difficult the task of finding the optimal alignment of a 
set of sequences. Due to its adaptive capacity in large and complex spaces, Genetic Algorithms emerge as 
good candidates for this problem. Although they are often used in single objective domains, its use in 
multidimensional problems allows finding a set of solutions which provide the best possible optimization of 
the objectives – the Pareto front. Niching methods, such as sharing, distribute these solutions in space, 
maximizing their diversity along the front. We present a niched Pareto Genetic Algorithm for sequence 
alignment which we have tested with six BAliBASE alignments, taking conclusions regarding population 
evolution and quality of the final results. Whereas methods for finding the best alignment are mathematical, 
not biological, having a set of solutions which facilitate experts’ choice, is a possibility to consider.  

1 INTRODUCTION 

The alignment of protein, DNA and RNA sequences 
is a very frequent task in bioinformatics. Multiple 
sequence alignment is an optimization problem 
which consists on finding the best alignment from 
large complex search spaces (Horng et al., 2005). Its 
main goal is to help in the comparison of sequence 
structure relationship, by identifying sequences’ 
similarities and differences (Pal et al., 2006). 

Genetic Algorithms (GAs) are search algorithms 
based on the principals of natural evolution and 
genetics (Goldberg, 1989). They are able to take 
advantage of gathering information about an initially 
unknown search space, in order to bias subsequent 
search into useful subspaces. This quality makes 
them suitable for problems with large, complex, and 
poorly understood search spaces (De Jong, 1988), 
such as multiple sequence alignment. Although GAs 
are often used in single objective problems, they can 
also be used in multiobjective problems, on which 
the GA is used to find all possible tradeoffs among 
the multiple conflicting objectives (Horn et al., 
1994). The resulting non-dominated solutions lie on 

the Pareto optimal frontier, meaning that there are no 
other solutions superior in all objectives.  

Niching methods, such as sharing, helps in 
maintaining the diversity of certain properties within 
the population, preventing the convergence to a 
single point in the Pareto front and allowing parallel 
convergence into multiple good solutions (Shir and 
Back, 2006). 

In our prior investigation we have developed 
AlineaGA, a genetic algorithm which performs 
multiple sequence alignment. In our first approach, 
we tested AlineaGA with a single objective fitness 
function – the sum-of-pairs (Silva et al., 2008). 
Later, we tested the weighted sum of the 
sum-of-pairs value with the number of fully identical 
columns to perform alignment evaluation (Silva et 
al., 2009). Now, we present a multiobjective strategy 
which tries to maximize both the sum-of-pairs and 
the number of fully identical columns by means of a 
niching mechanism named equivalence class sharing 
(Horn et al., 1994). Our objective is to evaluate the 
quality of the found solutions using this approach. 
For this matter, we have tested AlineaGA with six 
BAliBASE (Thompson et al., 1999) alignments. 
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This paper is organized as follows. In the next 
Section we introduce concepts underlying our 
research. In Section 3, we present a brief explanation 
regarding AlineaGA methods. Section 4 presents 
AlineaGA’s niched Pareto approach. The 
experiments performed in order to observe the 
impact of these strategy are discussed in Section 5. 
Finally, the concluding Section presents final 
considerations and topics for future work.  

2 BACKGROUND 

Although it may not be obvious, multiple sequence 
alignments are present in most of the computational 
methods used in molecular biology. They are used in 
different areas such as functional genomics, 
structure modelling, mutagenesis experiments, 
evolutionary studies and drug design.  

There are several approaches to the sequence 
alignment. The two most important ones are based 
on progressive and iterative methods.  

When progressive methods are used, the 
alignment is gradually built up by aligning the two 
most similar sequences first, and adding the less 
similar ones one after another. This fast and simple 
method has a critical problem: if a mistake is made 
at an intermediate step, it cannot be corrected later 
by adding the remaining sequences. Also, it does not 
provide a metric which allows the comparison of 
two different alignments of the same set of 
sequences, or which can be used to say that the best 
possible alignment, for a set of parameters, have 
been found (Notredame and Higgins, 1996). 

Iterative methods try to optimize a scoring 
function which reflects the biological events which 
took place in the evolution of the sequences. 
Optimizing this score leads to a correct alignment 
(Lassmann and Sonnhammer, 2002). One example 
of iterative methods are GAs, other examples may 
be found in our prior review (Silva et al., 2007). 

2.1 Alignment 

An alignment is an arrangement of two or more 
sequences in a way which reveals where the 
sequences are similar, and where they differ. An 
optimal alignment exhibits the most 
correspondences and the fewest differences, even if 
it will not be biologically meaningful (Pal et al., 
2006). Figure 1 shows an example of an alignment 
of four hypothetical protein sequences. 

 
Figure 1: Example of a multiple sequence alignment. 

Sequences may have different lengths and each 
one is represented in a different line. Columns with 
the same characters, presented in bold, show that in 
that specific position, no mutation occurs among the 
sequences. On the other hand, columns which 
present different characters show that mutation 
events have taken place. The characters used to 
represent the elements of the molecular sequences 
are often referred as residues. 

Gaps can be introduced in the sequences, 
allowing the alignment to be extended into regions 
where its sequences may have lost or gained 
residues. These gaps are usually represented by the 
symbol “–”. 

2.2 Genetic Algorithms 

GAs, are a class of evolutionary algorithms 
introduced by Holland (Holland, 1975). Its search 
methods model some natural facts: genetic 
inheritance and Darwinian strife for survival 
(Michalewicz, 1996). 

In GAs, the adaptation is done by keeping a 
population of structures from which new structures 
are produced through genetic operators, such as 
crossover and mutation(De Jong, 1988).  

In crossover, characteristics of two randomly 
chosen individuals (parents), are combined to form 
two similar offspring by swapping corresponding 
segments of parents. Mutation randomly alters some 
values within the individual by a arbitrary change 
(Anbarasu et al., 2000). Each structure of the 
population has a fitness score, which is used to 
choose which structures will be used to form new 
ones (De Jong, 1988). 

The ability to gather information about a search 
space, initially unknown, to direct the search for 
useful subspaces, is a distinguishing characteristic of 
GAs. This ability makes them suitable for solving 
problems with large, complex and unknown search 
spaces (De Jong, 1988). 

2.3 Fitness Sharing 

Fitness sharing (Goldberg and Richardson, 1987) is 
a mechanism for maintaining population diversity. It 
distributes the population over different peaks in the 
search space by reducing the fitness of highly 
similar solutions. 

-TISCTGNIGAG-NHVKWYQQLPG 
-RLSCSSIFSS--YAMYWVRQAPG 
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Equation 1 presents the shared fitness of an 
individual i, where fi is the individual raw fitness and 
mi is the nich count, representing how crowded is the 
neighborhood of individual i. 

i

ishare
i m

ff =  (1)

The nich count is computed by adding a sharing 
function over all members of the population as 
follows: 
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Where Sh(di,j) represents the sharing function, 
presented in Equation 3, and di,j is the distance 
between the i and j individuals, which can be based 
on either phenotype or genotype similarity. 

Sh(di,j) = 
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The niche radius is given by σshare. Solutions 
within this radius are in the same neighborhood, 
reducing each other’s fitness. 

3 AlineaGA METHODS 

In AlineaGA, the initial population is randomly 
generated, and then the individuals are selected, 
combined and mutated in order to produce new 
solutions through the course of a defined number of 
generations. This section presents a brief explanation 
regarding AlineaGA’s representation, evaluation, 
crossover and mutation. 

3.1 Representation 

We use a non-codified representation of the 
individuals. Real multiple sequence alignments, as 
the one presented in Figure 1, are used as data 
structures for each individual. Chromosomes are 
represented by arrays of characters on which each 
line corresponds to a sequence in the alignment, and 
each column represents a residue at a specific 
position. 

3.2 Evaluation 

To perform the evaluation of each solution, two 
attributes are used: the sum-of-pairs and the identity 
of the alignment. The sum-of-pairs function, 
presented in Equation 4, is assessed by scoring all of 
the pairwise comparisons between each residue in 
each column of an alignment and adding the scores 
together (Wang and Lefkowitz, 2005). 
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For this purpose, a scoring matrix which 
determines the cost of substituting a residue for 
another is used, as well as a gap penalty value to 
determine the cost of aligning a residue with a gap. 
We use the PAM 350 (Dayhoff et al., 1978) scoring 
matrix with a gap penalty of -10 (Silva et al., 2008). 

The identity of the alignment is simply the 
number of fully identical columns in the alignment. 

3.3 Crossover 

AlineaGA uses one of the two crossover operators, 
randomly selected within each generation. The One 
Point crossover derives from Goldberg’s standard 
one point crossover operator (Goldberg, 1989) with 
an extension that treats the existing gaps in each 
sequence. On RecombineMatchedCol (Chellapilla 
and Fogel, 1999), the fully identical columns of the 
first parent which do not appear in the second one 
are identified, and then, one of these fully aligned 
columns is randomly selected and is generated in the 
second alignment, originating the offspring. 

3.4 Mutation 

Each mutation operator is randomly selected from a 
pool of six operators and it is applied to an 
individual according with the defined mutation 
probability. Whenever the mutated solution is worst 
than the original one, a new mutation must be 
applied to the mutated individual. This process is 
repeated until the fitness improves or during a 
specific number of attempts. We opted for the 
maximum of 2 tries. This strategy allows a good 
tradeoff between speed and robustness, without 
transforming completely the solutions in a single 
generation. 

The Gap Insertion operator extends the 
alignments by inserting gaps into the sequences in a 
random fashion, such as in GenAlignRefine (Wang 
and Lefkowitz, 2005) gap insertion operator. 

Shifting gaps is another way to introduce new 
alignment configurations. In the Gap Shifting 
mutation operator, a gap is randomly chosen in an 
alignment and it is moved to another position in the 
same sequence (Notredame et al., 1997). 

The Merge Space operator merges together two 
or three spaces of a sequence (Horng et al., 2000). It 
randomly selects two or three consecutive gaps of a 
sequence, adjacent or not adjacent, and then merges 
these gaps together. After that, they are shifted to a 
randomly chosen position in the same sequence. 
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The Smart Merge Space is similar to the Merge 
Space operator, but it only applies the mutation if 
the fitness of the mutated solution is greater than the 
fitness of the original one (Silva et al., 2009). 

The Smart Gap Insertion is a variation of the Gap 
Insertion operator which only produces the mutation 
when the fitness of the mutated alignment is greater 
than the fitness of the original one (Silva et al., 
2008). The insertion of additional gaps is determined 
by a direction probability which reflects the success 
of inserting gaps at the beginning or at the end of the 
alignment. If the operator does not improve the 
alignment at the first attempt, it chooses a new 
random position of insertion and repeats the whole 
process. The defined number of maximum attempts 
is set to 3, but it can be customized according to 
user’s needs. 

The Smart Gap Shifting, tries to move the gaps 
of an alignment until its fitness improves (Silva et 
al., 2008). As in the Smart Gap Insertion operator, 
the shift direction is determined by a direction 
probability which is updated when better alignments 
are found. Likewise, the mutation occurs only if the 
fitness of the generated alignment is greater than the 
original one. 

The use of crossover and mutation operators can 
produce columns completely formed by gaps in the 
alignment. To remove these gap columns we use the 
Gap Column Remover (Silva et al., 2008), which is 
not conditioned by the mutation probability and it is 
applied at the end of each generation. 

4 NICHED PARETO GA 

The Niched Pareto GA is characterized by its 
selection mechanism. In previous works (Silva et al., 
2008, Silva et al., 2009), we use tournament 
selection to choose the solutions of the current 
generation that will prevail for the next one. 
However, throughout the generations, this technique 
tends to lead the population to a single point in the 
search space. To maintain multiple Pareto optimal 
solutions and avoid convergence, we use Pareto 
domination tournaments and equivalence class 
sharing (Horn et al., 1994), which we now present. 

4.1 Pareto Domination Tournaments 

In a normal binary tournament, two randomly 
selected individuals compete for domination. If one 
dominates the other, it wins. However, this condition 
does not produce a sufficient domination pressure. 
Pareto domination tournaments (Horn et al., 1994) 

use a sampling scheme which offers control over the 
domination pressure. In this method, two candidate 
solutions are randomly chosen from the population 
for selection purposes. Also, a comparison set is 
formed by randomly choosing individuals from the 
population. Then, each candidate solution is 
compared with every individual in the comparison 
set. The candidate which dominates all the 
individuals in the comparison set is selected for 
reproduction. If both candidates dominate or are 
dominated by the comparison set, then sharing is 
used to select the winner, as section 4.2 explains. 

Adjusting the size of the comparison set allows 
the control of the domination pressure. High values 
for this parameter tend to increase the pressure 
towards a small portion of the front. On the other 
hand, small comparison sets result in many 
dominated solutions. Typically, a comparison set 
with size of 10% of the population, yields a tight and 
complete distribution over the front (Horn et al., 
1994). 

4.2 Equivalence Class Sharing 

To avoid genetic drift, whenever the candidate 
solutions are both dominated or both non-dominated 
by the comparison set, the winner is selected by 
equivalence class sharing (Horn et al., 1994). 

This particular method of sharing does not 
degrade the fitness of the individuals. Instead, it 
assumes that candidates, mutually dominated or 
non-dominated, are equally fit. Therefore, in order to 
maintain diversity along the Pareto front, this 
method computes the nich count of both candidates 
and selects the one which has the smallest number of 
individuals on its neighbourhood. 

4.2.1 Distance Metric 

The distance metric may be based on either 
phenotype or genotype similarity. In our particular 
case, the genotype and phenotype representation are 
the same. As we are trying to maximize two 
different objectives represented in a 2 dimensional 
space, we opt for using the Euclidean distance as a 
similarity measure. 

4.2.2 Niche Radius σshare 

Defining the radius which determines each nich 
range is not a trivial mater. Such as (Shir and Back, 
2006), we determine the σshare value according with 
Equation 5. 

nshare q
r

=σ  (5)
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Table 1: Results for the AlineaGA Niched Pareto test configurations. 

Dataset BAliBASE Number of 
Peaks 

AlineaGA 
SOP ID Avg. Best SOP Avg. Best ID Best SOP Best ID 

1aho 2015 12 
81 1974,83 10,90 2155 13 
49 1974,60 11,03 2141 13 
4 1960,03 10,93 2112 13 

1fmb 1706 25 
36 1817,03 24,97 1864 27 
100 1811,07 24,93 1860 27 
4 1807 25,40 1864 27 

1plc 2403 18 
4 2356 17,33 2590 20 
25 2353,87 17,60 2589 20 
100 2340,60 17,10 2576 20 

1hpi 1208 10 
4 1135,43 12,17 1198 14 
81 1128,30 12,37 1198 14 
36 1120,17 12,64 1201 15 

1pfc 2216 13 
16 2442,97 14,23 2519 15 
4 2435,90 14,33 2536 17 
49 2425,17 14,17 2533 16 

1ycc 963 11 
36 883,93 6,9 1091 10 
9 864,03 7,2 1093 10 
64 859,47 6,7 1045 11 

SOP, sum-of-pairs; ID, identity; Avg., Average. Avg. Best SOP and Avg. Best ID were obtained by averaging the results of 30 runs. 

The existing theory for setting this value, 
assumes that the solution set has a previously known 
finite number of peaks q (Shir and Back, 2006). 

By knowing the upper and lower bounds of each 
objective, r is defined as follows: 

( )∑
=
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n
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kmsxk xxr
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2
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Where n defines the number of objectives, which 
in our particular case, is 2. 

The lower and upper bounds of each dimension 
are computed on every generation, presenting 
different values as population evolves. However, in 
multiple sequence alignment, there is no practical 
way of knowing the maximum number of peaks 
beforehand. Therefore, we opt to test several values 
for this parameter, as next section describes. 

5 TESTING AND RESULTS 

Our goal is to find the best possible solutions which 
maximize the sum-of-pairs and the identity of each 
alignment. We test the sharing function with 
different σshare values, which are obtained by 
computing the nich radius for various peak values. 

In our tests, we use six datasets from the 
Reference 1 alignments of BAliBASE (Thompson et 
al., 1999). Three of these datasets (1aho, 1fmb, 
1plc,) have more than 35% of identity among its 
sequences; and the rest (1hpi, 1pfc, 1ycc) present 
20% to 40% of identity. We have measured the 
sum-of-pairs score and the identity of each one of 
these datasets. Later we use these reference results to 
evaluate the different test configurations. 

 

5.1 Test Configurations 

Although we have tested all our datasets for 4, 9, 16, 
25, 36, 49, 64, 81 and 100 peaks, we only present 
the results for the 3 configurations which obtained 
the best results on each dataset. Also, we have 
started by executing the algorithm during 10000 
generations with a mutation probability of 0.05, but 
we have realized that an equivalent final solution set 
could be achieved in 2000 generations in less time, 
by increasing the mutation probability to 0.4. 
Therefore, we have opted for this latter setting. The 
remaining parameters are the same in all 
configurations: the population size is 100, the 
crossover probability is 0.8 and the number of 
inserted gaps by the Gap Insertion and Smart Gap 
Insertion operators is 10. Finally, the size of the 
comparison set for the Pareto domination 
tournaments is set to 10. 

5.2 Results 

Next we present the results of tests performed. All 
the results were obtained by averaging the 
sum-of-pairs and the identity scores, from 30 runs of 
AlineaGA, for each configuration/dataset. 

5.2.1 Performance 

Table 1 summarizes the performance of the top 3 
configurations  for  each  test dataset.  The “SOP” of 
BAliBASE alignment column, presents the 
sum-of-pairs score for the different datasets. This 
value was computed using the PAM 350 scoring 
matrix and a gap penalty of -10. The “ID” of 
BAliBASE shows the number of fully aligned 
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columns on each BAliBASE’s alignment. Columns 
“Avg. Best SOP” and “Avg. Best ID”, show the 
average sum-of-pairs and the average identity scores 
obtained in 30 runs of AlineaGA. The best values 
found for the sum-of-pairs and identity scores are 
presented in columns “Best SOP” and “Best ID”. 

As the results state, it is not possible to establish 
a direct relation between the number of peaks and 
the percentage of identity of the alignments. This 
parameter is directly related with each particular 
alignment and can not be determined in such generic 
way. Comparing with the BAliBASE alignments, 
and with the exception of 1hpi dataset, it is possible 
to find equal or higher values for both objectives 
simultaneously in our results. However, the average 
sum-of-pairs and average identity of the 30 
executions of each test are superior only in 1fmb and 
1pfc datasets. 

5.2.2 Population’s Evolution 

Figures 2 to 7, present the population’s fitness 
evolution for the best configurations on each dataset.  

These values were obtained by averaging each 
solution’s sum-of-pairs and identity scores from the 
30 runs of the program. Each figure shows the 
representation of the population throughout the 
generations in 4 particular moments: generations 
500, 1000, 1500 and 2000 - the final solution set.  

We can observe that high values for one of the 
objectives, will necessarily lower other objective’ 
score. Also, after 2000 generations, we can see that 
the majority of the population is tightly distributed 
along the front. Nevertheless, there are a few 
dominated solutions. These solutions result of 
crossover and mutation, but generally, they are not 
held. Dataset 1pfc, shown in Figure 6, presented the 
most atypical evolution, with the resulting front 
solutions distributed in a small space on which could 
have featured some individuals with higher identity 
values present in generation 1500. 

6 CONCLUSIONS 

By using a multiobjective approach in this domain, 
we try to offer a solution to a very significant 
limitation of multiple sequence alignment: its 
mathematical approach. As stated before, the best 
alignment is the one which presents the most 
correspondences and the fewest differences, but 
which may or may not be biologically meaningful 
knowledge is needed to validate the results of an 
alignment tool. By presenting a set of solutions 
instead of a single one, it is possible for a biologist 

to observe several hypotheses and so choose the one 
which is closer to the biological reality. 
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Figure 2: Population average fitness for 1aho, 81 peaks. 
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Figure 7: Population average fitness for 1ycc, 36 peaks. 

The main drawback of this method, as it is 
implemented, is its dependence of previously 
knowing the expected number of peaks in the search 
space. This problem may be overcome by trying to 
identify the number of peaks in the population 
dynamically, or by using a different approach when 
computing the nich radius, σshare. 

Alternative objectives, such as minimizing the 
number of gaps, may be used instead of maximizing 
the identity. However, this kind of approach may 
have poor results when several gaps are needed to 
maximize the similarity among the sequences. A 
possible solution is to increase the complexity of the 
problem by optimizing three objectives: maximize 
identity and sum-of-pairs scores, and minimize the 
number of gaps in the alignment. 
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