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Abstract: This paper presents the current state-of-the-art techniques for Max-SAT solving and points out new research
lines in order to exploit the benefits of the novel resolutionrule for Max-SAT.

1 INTRODUCTION

Given a propositional formula in conjunctive normal
form (CNF), determining whether there exists a vari-
able assignment such that the formula evaluates to
true is called the Boolean Satisfiability Problem, com-
monly abbreviated as SAT.

Max-SAT is the optimization variant of SAT:
Given a propositional formula , theunweighted Max-
SAT problem then is to find a variable assignment
that maximizes the number of satisfied clauses. In
weighted Max-SAT, each clause has an associated
weightand the goal is to maximize the total weight
of the satisfied clauses.

In this paper we focus on (weighted) Max-SAT
which is a well-knownNP Hardproblem. It is consid-
ered one of the fundamental combinatorial optimiza-
tion problems and many important problems can be
naturally expressed as Max-SAT. They include aca-
demic problems such asMax-Cutor Max-Clique, as
well as real problems in domains likerouting, bioin-
formatics, electronic markets, etc.

Search methods for Max-SAT solving are usu-
ally classified in two categories:systematicand lo-
cal search. For a given Max-SAT instance, a system-
atic search algorithm traverse the whole search space
and can either find the optimal solution or proves that
no solution exists. This is why they are considered
complete. On the other hand, a local search algo-
rithm initially selects a point of the search space, and
moves from the current solution to a neighbor candi-
date. Then, it stops when a solution is found or when
a limit is reached such as a time limit or a maximum
number of steps. Typically, local search solvers are
incomplete, because they do not assure to find a solu-

tion neither to prove its optimality.
An alternative way to solve problems isinference.

The aim of inference is to make explicit some implicit
information from the problem instance. Algorithms
purely based on inference are complete as systematic
search. However, they are prohibitive because of their
high memory requirements (Rish and Dechter, 2000).
In practice, limited forms of inference are applied in-
side search algorithms in order to reduce the number
of search steps. This small amount of inference is
usually calledincomplete (or limited) inference. Re-
cently, a general inference mechanism for Max-SAT
was introduced in (Larrosa et al., 2008) which extends
classical resolution. It is called the resolution rule for
Max-SAT. It is asoundandcomplete(Larrosa et al.,
2008; Bonet et al., 2007) rule.

Modern Max-SAT solvers based on systematic
search follow the well-knowbranch and bound
scheme and they apply a limited number of Max-SAT
resolution steps during search in order to simplify the
problem (Larrosa et al., 2008; Heras et al., 2008; Li
et al., 2007). As a consequence, the search process is
boosted several orders of magnitude. The limited res-
olution process affects to mutually inconsistent sub-
sets of clauses that are detected during search by pat-
terns or viaunit propagation(Larrosa et al., 2008;
Li et al., 2007; Heras et al., 2008). When we ana-
lyze current works on Max-SAT we observe they are
refinements to improve the pattern detection mecha-
nisms or the effectiveness of unit propagation and to
obtain better results (Lin et al., 2008).

The aim of this paper is to propose new solv-
ing techniques based on the recent resolution rule for
Max-SAT. First, we study the viability of a complete
inference-based algorithm. Second, we propose new
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methods of limited inference. Finally, we propose to
use inference in order to improve the performance of
local search algorithms.

2 PRELIMINARIES

In the sequelX = {x1,x2, . . . ,xn} is the set of boolean
variables. Aliteral is either a variablexi or its nega-
tion x̄i . The variable to which literall refers is noted
var(l). Given a literall , its negation̄l is x̄i if l is xi and
is xi if l is x̄i . A clause Cis a disjunction of literals. In
the following, possibly subscripted capital lettersA,
B, C, D, andE will always represent clauses. Thesize
of a clause is the number of literals that it has. An
assignmentis a set of literals not containing a vari-
able and its negation. Assignments of maximal size
n are calledcomplete, otherwise they are calledpar-
tial. An assignmentsatisfiesa literal iff it belongs to
the assignment, it satisfies a clause iff it satisfies one
or more of its literals and itfalsifies(or unsatisfies) a
clause iff it contains the negation of all its literals. In
the latter case we say that the clause isconflictingas
it always happens with the empty clause, noted�.

A weighted clause is a pair(C,w), where C
is a clause andw is the cost of its falsification,
also called itsweight. Many real problems contain
clauses thatmustbe satisfied. We call such clauses
mandatoryor hard and associate with them a special
weight⊤. Non-mandatory clauses are also calledsoft
clauses. Aweighted formulain conjunctive normal
form (WCNF) F is a multiset of weighted clauses.
A model is a complete assignment that satisfies all
mandatory clauses. Thecost of an assignmentis the
sum of weights of the clauses that it falsifies. Given
a WCNF formula,WeightedMax-SAT is the problem
of finding a model of minimum cost. Note that if a
formula contains only mandatory clauses, weighted
Max-SAT is equivalent to classical SAT.

Following (Larrosa et al., 2008; Bonet et al.,
2007), the resolution rule can be extended from SAT
to Max-SAT as,

{(x∨A,u),(x̄∨B,w)} ≡




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
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wherem= min{u,w}.
The identification of mandatory clauses with⊤ al-

lows to extend some well-known simplification rules
from SAT to Max-SAT such asunit propagation. Unit
propagation for Max-SAT (Larrosa et al., 2008) can
be applied as in SAT (Silva and Sakallah, 1996) only

when unit hard clauses exist on the formula. Given a
unit hard clause(l ,⊤), literal l is propagatedwhich
means that it is assigned accordingly to satisfy the
clause. Such an assignment can falsify literals in other
clauses that may become also hard unit clauses. The
procedure is repeated until no more hard unit clauses
are generated or until aconflict is detected, that is, a
hard clause is falsified.

We say that a weighted formulaF ′ is arelaxation
F (notedF ′ ⊑ F ) if the optimal cost ofF ′ is less
than or equal to the optimal cost inF (non-models
are considered to have cost infinity). We say that two
weighted formulasF ′ and F are equivalent(noted
F ′ ≡ F ) if F ′ ⊑ F andF ⊑ F ′.

Given a SAT or Max-SAT formula, a subset of
(weighted) clauses isinconsistentif all them can-
not be simultaneusly satisfied by any variable assign-
ment. The clauses involved in an inconsistent subset
of clauses can be determined with several steps of res-
olution. This process is calledrefutation. If all the
clauses involved in a refutation are used at most once,
it is called atree-like refutation, otherwise it is con-
sidered ageneral refutation.

Given an unsatisfiable SAT formula (i.e. a Max-
SAT formula that only contains hard clauses), a sub-
set of clauses whose conjunction is still unsatisfiable
is called anunsatisfiable coreof the original formula.
Unsatisfiability cores of SAT problem instances are
currently provided with general refutations, that is,
existing procedures do not assure to use each clause
just once at most (Liffiton and Sakallah, 2008).

3 NEW RESEARCH LINES

In this Section we propose different research venues
that exploit the novel resolution rule for Max-SAT.
Most recent works for Max-SAT present refinements
to improve the performance of the works in (Chu
Min Li and Planes, 2005; Li et al., 2007; Larrosa
et al., 2008; Heras et al., 2008). In what follows, we
propose new methods based on complete inference,
incomplete inference and local search.

3.1 Complete Inference

It would be interesting to investigate the effectiveness
of a complete inference-based algorithm for Max-
SAT and how it compares with local and systematic
search. It is well-known that this approach has se-
vere memory limitations but it may be effective for
problem instances with a very smallinduced width.
The induced width is a property associated to each
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problem instance. Its computation implies an NP-
Hard problem but accurate approximations are known
(Rish and Dechter, 2000). Given the information pro-
vided by the induced width we can decide whether a
problem instance can be solved only with inference or
not.

3.2 Incomplete Inference

To start with, we can limit the complete method intro-
duced in Section 3.1 using the value of the induced
width. Then, we can use it as a pre-processing or
during systematic search when the induced width of
the problem resulting of some variable assignments
is small enough. An initial work in this field can
be found Max-SAT in (Argelich et al., 2008). How-
ever, from previous approaches in other frameworks,
it seems that this approach is not very competitive in
general (Rish and Dechter, 2000).

Current approaches for solving the SAT problems
apply some kind of incomplete (or limited) inference.
For example, modern SAT solvers apply unit propaga-
tion in order to detect conflicting clauses and then to
learn new clauses in order to boost the search proce-
dure (Silva and Sakallah, 1996). Also, different pre-
processing methods based on limited inference are ap-
plied for local (Cha and Iwama, 1996) and systematic
search (Eén and Biere, 2005).

Recently some techniques from the SAT comunity
have been extended to Max-SAT. First, unit propa-
gation and clause learning can be applied directly to
Max-SAT when the clauses involved are hard (Lar-
rosa et al., 2008; Heras et al., 2008) (i.e, all clauses in-
volved are like(C,⊤)). But, unit propagation is used
also in Max-SAT to produce as many empty clauses as
possible (i.e.,(�,m)). As consequence, the problem
is simplified and search is boosted. In (Chu Min Li
and Planes, 2005) a method for detecting inconsis-
tent subsets of clauses via unit propagation is pre-
sented and then in (Heras et al., 2008) such subset
is transformed to an equivalent but simpler subset by
applying the resolution rule for Max-SAT. Note that
the clauses involved in the inconsistent subset are de-
tected via a tree-like refutation.

Observe that one of the most important differences
between the classical resolution rule for SAT and the
novel resolution rule for Max-SAT is that clauses in
SAT can be used once and again during a resolution
process returning an equivalent formula. Differently,
in the Max-SAT context clauses may disappear after a
resolution step and they should be used only once or
at most as many times as their weight is greater than
0 to assure a resulting equivalent formula.

Based on the same idea of using unit propagation

to produce new weighted empty clauses, we propose
to use techniques of detecting unsatisfiable cores to
produce empty clauses. The idea is to apply SAT tech-
niques in order to detect unsatisfiable cores and then
apply Max-SAT resolution if and only if the refutation
is tree-like to assure the correctness of the transfor-
mation. In particular, the Max-SAT problem is solved
assuming all clauses are hard with a SAT solver like
(Silva and Sakallah, 1996) and the information about
the unsatisfiable core is recorded during search. Once
the SAT solver has proved the unsatisfiability, a refu-
tation is built using the information of the unsatisfi-
able core. Then, Max-SAT resolution is applied as
dictated by the refutation if and only if it is tree-like.
However, we think this is unlikely to happen in gen-
eral and time can be prohibitive (each detection of an
unsatisfiable core requires solving a SAT instance).

A more specific recent work on 2-SAT (i.e.,
all clauses have size two) (Buresh-Oppenheim and
Mitchell, 2006) shows how minimum tree-like refuta-
tions can be built for 2-SAT inpolynomialtime. Ob-
serve that the same process can be applied for Max-
SAT but in order to simplify the formula as much as
possible. This may be specially powerful for prob-
lems with lots of weighted clauses of arity 2 such as
the generalMax-2-SAT problem, theMax-CUTprob-
lem or thespin-glassproblem.

Finally, we propose to study new forms of lim-
ited inference for problems with a very specific struc-
ture. In (Heras and Larrosa, 2008) we presented pre-
processing that exploits the synergy of two resolution-
based rules in order to simplify problems by a set of
hard clauses of size 2 and a set of soft clauses of size
1. Observe that prominent optimization problems can
be encoded in this way such as theMaximum Clique
Problem, Minimum Vertex Covering, Maximum Inde-
pendet Set, etc. Results indicated that a systematic
search solver is boosted several orders of magnitude
after the pre-processing for some problem instances.

3.3 Local Search

The first successful local search solver for SAT was
GSAT (Selman et al., 1992) that is a simple best-
improvement search algorithm. Performance im-
provements were achieved by the usage of techniques
to avoid falling in local minima, that is, areas where
no improvements can be reached. Major improve-
ments were obtained with the development of the
WALKSAT architecture (Selman et al., 1993). In each
search step, WALKSAT algorithms first choose a cur-
rently unsatisfied clause and thenflip a variable oc-
curring in this clause, that is, the value of the variable
is changed from true to false or viceversa. Current
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research is focused on proposing new schemes for
selecting the variable to beflippedand mechanisms
to avoid local minima. The use of inference in local
search is restricted to the classical resolution rule and
the SAT problem (Cha and Iwama, 1996).

We propose to apply the recent resolution rule to
simplify the problem in local search solvers so that
they can obtain better solutions in less search steps
or time. In (Heras, 2009) we have recently extended
the pre-processing in (Heras and Larrosa, 2008) and
the limited inference of (Heras et al., 2008) has also
been considered as a pre-processing. Preliminary re-
sults indicate that feeding a local search with the pre-
processed instance usually improve its performance
(Heras, 2009). In particular, algorithms based on the
WALKSAT architecture obtain substantially better so-
lutions. Furthermore, the hard instances presented in
(Xu et al., 2007)1 were all solved for the first time.

4 CONCLUSIONS

In this paper we have presented several ways to ben-
efit from the novel resolution rule for Max-SAT (Lar-
rosa et al., 2008). We have pointed out that com-
plete inference-based algorithms may be effective
on problems with small induced width. Regarding
incomplete inference, we have presented a general
method based on detecting unsatisfiable cores but re-
stricted to the case in which a tree-like refutation can
be built. We have also proposed incomplete infer-
ence techniques based on building minimum tree-like
refutations restricted to Max-2-SAT as introduced in
(Buresh-Oppenheim and Mitchell, 2006). We have
suggested that specific limited inference for problems
with a very particular structure can be very powerful
in practice (Heras and Larrosa, 2008). Finally, we
have argued that local search can also benefit from in-
ference (Heras, 2009).
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