
MICRO-RESOURCE
A Microformat Framework for Dual Restful Web Services

Li Li and Wu Chou
Avaya Labs Research, 233 Mt. Airy Road, Basking Ridge, New Jersey, U.S.A.

Keywords: Microformat, REST, Web service.

Abstract: RESTful architecture style that underlies the Web has gained rapid adoption as a way to develop web
services for machines. But the full potential of REST is hindered by the fact that HTML pages designed for
human interactions are not suitable for machine processing. To address this problem, we developed a
microformat framework, called micro-resource, to extend web sites into dual RESTful web services for both
human and machines alike with minimum changes. This framework avoids the pitfalls of alternative
“parallel” web services by keeping the correspondence and duality between human and machine webs. This
framework is simple, extensible and also composable with other existing microformats. Initial application of
this framework on some RESTful service composition shows that the approach is efficient and feasible.

1 INTRODUCTION

REST stands for REpresentational State Transfer,
the architecture style underlying the World Wide
Web. The architecture style and design principles of
REST are discussed and analyzed extensively in
(Fielding 2000, AWWW 2004, Richardson 2007). A
key concept in REST is resource, which is
addressable by URI and has representations
corresponding to its state. Each resource supports a
subset of the uniform interface, such as HTTP, that
manipulates its state through representations. A
resource is typically connected with other resources
through URIs. A web service hosted on a web site
consists of a collection of resources. A client,
typically a browser, interacts with the service by
exchanging representations with those resources. In
these interactions, the service is stateless as the
client maintains the application states. In other
words, a representation obtained from a resource
contains complete information and instructions on
how to interact with the service at that point. This
self-describing ability is an important feature of
REST and is referred to as the “hypermedia as the
engine of application state” axiom of REST.

Due to its proved scalability and robustness over
the Web and inherent simplicity, REST has gained
rapid recognition as an alternative to the message-
oriented web service architecture based on SOAP
and WSDL.

In principle, REST can support both human-
machine and machine-machine interactions.
However, some technologies that implement REST,
namly HTML and XHTML, are designed for
humans, rather than for machines (For convenience,
this paper uses HTML to refer to both HTML and
XHTML henceforth). Therefore, it is difficult for a
program to extract meaningful data and instructions
from these HTML documents. This difficulty creates
a gap that prevents us from treating a human web
site as a programmable web service for machines,
even though such convergence is beneficial and
feasible.

To close this gap, we adopt the microformat
approach and propose a microformat framework,
called micro-resource, to annotate HTML
documents such that a HTML document becomes
suitable for both human and machine processing. A
microformat is a set of tags embeded in a HTML
document without affecting the visual display of the
page, while a program can extract semantic
information based on these tags and the predefined
rules. The major advantages of microformat are:

1. it normalizes semantic data represented in
different formats;

2. it minimizes changes to HTML pages by
reusing the information in them;

3. it creates a dual representation for both human
and machine;

56
Li L. and Chou W.
MICRO-RESOURCE - A Microformat Framework for Dual Restful Web Services.
DOI: 10.5220/0002805500560063
In Proceedings of the 6th International Conference on Web Information Systems and Technology (WEBIST 2010), page
ISBN: 978-989-674-025-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

However, most microformats are designed to
extract a specific type of semantic data, such as
business card. They are not sufficient as a
framework for RESTful services. Despite some
initiatives to develop microformats for RESTful
services, we have not seen a comprehensive
technical proposal so far. In current approaches,
each microformat requires a special parser that
understands the tags and rules of that microformat.
But a service framework needs to be extensible to
include any type of semantic data from different
domains. To address this issue, our framework
employes a two-level microformat such that a
general parser can extract and compose the semantic
information for different services.

Because microformat offers dual representation,
it can mitigate the cost of converting a human web
site into a machine web service. In this case, we just
add microformats to the HTML pages without
changing the rest of the service implementation. The
cost of maintaing a dual web service is also
relatively low especially when the HTML pages are
generated automatically at desgin time or runtime. It
seems that a dual web service creates overhead as
the service has to transmit extra data that are ignored
by the machine, but this overhead keeps the
correspondence between human and machine webs
and eliminates the need to create parallel web
services, in which resource representations and
service flows are duplicated. Because of the
correspondence, dual web services offer a much
more user friendly self-describing facility for
developers. When designed properly, a dual web
service can significantly increase its usability by
allowing a developer to interact with the service in
the same way a regular user interact with a web
application. From a developer’s point of view, a web
service effectively becomes “What You See Is What
You Get,” where “What You See” is the HTML
pages and “What You Get” is the services embeded
in the pages.

The rest of this paper is organized as follows.
Section 2 surveys related work to our approach.
Section 3 describes the general micro-resource
framework. Section 4 introduces the rules of micro-
resource. Section 5 is dedicated to the aggregation
and composition of micro-resource with other
microformats. Section 6 presents our experimental
study and results. We conclude this paper in Section
7.

2 RELATED WORK

Microformat is an on-line community effort
(microformat.org) to develop microformats for
different applications. As of today, there are 9
specifications and 15 drafts. Each microformat
specifies a set of tags (properties) and rules on how
to annotate semantic data with those tags. These tags
can be embedded into a HTML document, using
HTML attributes class and rel, to assign
semantic meanings to the document without
affecting its rendering. For example, the hCard
(microformat.org) microformat has 2 required
properties and 24 optional ones, collectively
describing a business card. Since all HTML
elements have these two attributes, we can tag any
element in a HTML document,that has semantic
data. If necessary, the HTML grouping elements
<div> and can be used to create additional
tagging points.

To illustrate the power of microformat, a
telephone number 5555 that occurs in three
different places: plain text, a table cell and an anchor
text of a hyperlink, can be normalized with one tag
of the hCard microformats:
5555
<td class="tel">5555</td>
5555

Such microformats in HTML pages can be
transformed into semantic representations, such as
JSON or RDF, by special parsers or using W3C
GRDDL (GRDDL 2007) framework. In this sense,
microformat can be regarded as a binding
mechanism of abstract Infoset (Li 2009).

There are some initiatives to develop
microformats for describing RESTful web services
(REST microformat) as well.

REX (REST-Enabled XHTML) (REX) is an
effort to develop a dual-use XHTML profile using
microformats. Its goal is to cover a subset of REST
services that can be represented by XHTML with
microformats. The REX project page outlines some
interesting questions, challenges and general
directions, but we did not find a proposed
specification or draft in the official microformat site.
For this reason, it is difficult to compare our
approach with REX, but REX encourages our
pursuit of microformat based approach.

Peter Williams proposes (Williams 2008) a
JSON based framework to describe REST services
in terms of concepts such as service, resource,
service provider and container. In this framework,
there is a top-level capability resource from which
services can be discovered through HTTP GET. On

MICRO-RESOURCE - A Microformat Framework for Dual Restful Web Services

57

the other hand, services can also register with the
capability resource. In some sense, the capability
resource is a directory service, like a Sitemap
(Sitemap). But its service description does not
contain any information about how to interact with
the services, which is the focus of our approach.

WADL (Web Application Description
Language) (Hadley 2006) is a XML dialect that
describes REST services, as an equivalent of WSDL
for SOAP based web services. The key elements of
WADL include <resources>, which is a collection of
<resource> elements that describe resources of the
web application. Each <resource> element has a
URI path attribute, a list of <params> elements and
may contain other resources. A <resource> is also
associated with a set of <method> elements, each
having a HTTP verb, <request> and <response>
elements. The <request> and <response> elements
are associated with <representation> elements which
define the media type and root XML element of the
representation. In addition, a <response> element
also contains <fault> element that lists the HTTP
status codes. While WADL codifies the basic
concepts of REST services, it only describes the
static aspects of resources within a web service. If a
web service creates new types of resources, as it
often happens when a web site upgrades, the
corresponding WADL has to be updated
accordingly. This paradigm therefore misses the
dynamic and self-describing facility of REST
services.

hRESTS (Kopecky 2008) is an effort to use
microformat to describe REST services in HTML.
The proposed microformat is based on a functional
service model similar to WSDL. The model is
defined as RDF classes such as service, address,
operation, method, input and output. These class
labels are then used to annotate HTML pages,
including links and forms, in the microformat
fashion. Using the GRDDL framework (GRDDL
2007), XSLT transformations are applied to the
HTML with microformat to extract RDF graph
about the services, to be consumed by the clients.
Although the goal of this approach is very similar to
ours, its service model does not have the notion of
resource. Without modelling resource explicitly, it is
difficult to model the representation of resources and
relations between resources, which in our opinion
are the corner stones of REST.

RDFa (RDFa 2008) and eRDF (eRDF 2006),
both derived from RDF, are more powerful
mechanisms to insert semantic information into
HTML pages, in a fashion similar to microformats.
However, since our primary purpose is to interact
with a web service, instead of inferring properties

about the service, we choose microformat over RDF
for this project. But our approach can use semantic
web if necessary, as a microformat can always be
converted to RDF triples.

Realizing that HTML is not suitable to encode
machine-readable data, many web sites create
“parallel” web services where two types of services,
HTML for human users and XML for machine APIs
are developed. While this approach satisfies both
human and machine, as dual web services intend to
do, it has some drawbacks. First, it increases
development and maintenance cost because the two
web services offer different URIs, representation
formats, functionalities and access methods
(Richardson 2007, page 27). Second, parallel web
services tend to drift apart. As pointed out by
(Richardson 2007, page 96), most web service APIs
are not connected through links and forms, as human
web sites do. The loss of connectedness decreases
the self-describing facility and usability of the
service. Third, the machine APIs cannot be learned
and tested in a web browser as easily as surfing a
web site. Developers have to read manuals and write
code to understand the services. Even though we can
create XSLTs to transform XML documents for
machines into HTML pages for humans, writing
XSLT rules is not a trivial amount of work and it
does not put the human needs first. The dual web
service that we promote is centred on human users
and developers. This is one of the principles of
microformat: “human first and machine second.”
(microformat.org wiki)

3 MICRO-RESOURCE
FRAMEWORK

Our goal is to develop a microformat framework to
enable dual web services, such that one service
implementation is used for both human and machine
consumption. The high-level interactions of duality
of a web service are illustrated in Figure 1, where
the arrows indicate the flow of data between
components.

A micro browser is part of an automaton that
interacts with web services through microformats
and forms. The automaton can be a stand-alone
client application or a component within web
services. But in the dual web service, these use cases
are treated the same.

A human user can interact with a well-designed
web application he never visited before without any
problem. This is because 1) the web pages clearly
describes the interactions using a natural language,

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

58

such as English, that is understood by the user; and
2) the user already has some background knowledge
about the basic mechanics of web browsers, for
example, what happens if a link is clicked, or a
submit button is pushed.

Figure 1: Dual web service architecture.

For the dual web service to work, a micro
browser has to “mimic” the human-machine
interactions with the same services. For this “mimic”
to be feasible, we have to make more stringent
assumptions because machines can only understand
precise and well-defined data and protocols.

Without losing generality, we can assume an
automaton is implemented as a finite-state machine
(FSM) that controls the micro browser. Because
each web service is different, we assume the finite-
state machine is service specific. However, the
micro browser is independent of specific services,
just as a web browser is independent of web sites.

Figure 2: Components of micro browser.

The architecture of automata based on this idea
is depicted in Figure 2, where a micro parser parses
the microformats into the micro-resource data model
proposed in this paper. The JSON (http://json.org/)
is used as the intermediate language between the two
layers. The reason we choose JSON is that it is a
standard, simple and yet powerful data structure that
can be serialized, transmitted and manipulated by a
variety of programming languages, including Java,
C++, C#, Perl and JavaScript. For this reason, a
micro browser can be implemented in those

languages and executed in various environments,
including inside a web browser.

To support this architecture, the microformat has
to be service independent yet powerful enough to
convey the useful semantic information about the
service. Otherwise, the micro browser cannot be
service independent and the FSM layer does not
have sufficient information to act on.

Based on our analysis using REST principles,
HTML documents contain the following three types
of information that are useful to interact with the
resources in a service:

1. properties: the state and schema of a resource;
2. composition: the subordinate resources of a

resource;
3. interface: the methods supported by a

resource;

To capture this information, we propose a

resource-oriented microformat, called micro-
resource. A micro-resource is a microformat
representation of a resource. The data model of
micro-resource can be defined by the following
UML class diagram (Figure 3).

Figure 3: Data model of micro-resource microformat.

This data model specifies that each micro-
resource has a type, a collection of properties and
some methods. Each property has a set of attributes,
modelled after HTML field elements (input, textarea
and select). Each method is associated with a URI
and is a subset of the uniform interface (GET,
POST, PUT, DELETE, etc.). Each micro-resource
can recursively contain other subordinate micro-
resources. Each property can have recursive child
properties as well.

Unlike most current microformats that has a
closed set of tags, micro-resource is a generic
microformat with open ended tags. This is necessary
because we want to use micro-resource to different
web services, each with its own set of resources.
Consequently, you can treat a hCard and a
hCalendar both as micro-resource. We need to tell
which tags are for micro-resources, since micro-
resource allows open ended tags, and tags from

HTML
(microformat)

Dual
Web

Service

web
browser

micro
browser

HTML
(Form)

automaton

HTML
(microformat)

HTML
(Form)

FSM

micro browser
micro parser
 HTTP client

micro-resource (JSON)

MICRO-RESOURCE - A Microformat Framework for Dual Restful Web Services

59

different microformats can be mixed in one HTML
page. With this piece of information, a generic micro
parser can be used to instantiate the data model in
Figure 3. Otherwise, we have to 1) know all the
resource types of all services; 2) build a special
micro parser for each service; or 3) disallow mixture
of microformats. But none of these choices is
practical or necessary.

The micro-resource therefore has a two-level
structure: the first level uses the HTML <meta>
element to list the micro-resources present in the
document and the second level are actual micro-
resources tagged by using the HTML class and
rel attributes. Figure 4 is an example HTML file
with embedded micro-resources.

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>
 <meta name="resource" content="subscriptions

subscription"></meta>
 <title>Subscriptions</title>
 </head>
 <body>
 <p class="subscriptions">
 The subscriptions:
 <table border="1" >
 <thead>
 <tr>
 <th>Title</th>
 <th>Direction</th><th>Author</th><th>Updated</th>
 </tr>
 </thead>
 <tbody>
 <tr class="subscription">
 <td class="title"><a href="…"

rel="GET">title</td>
 <td class="direction">1</td><td

class="author">author</td><td class="updated">2009-09-
22T17:05:35.979-0400</td>

 </tr>
 </tbody>
 </table>
 Post New Subscription
 </p>
 </body>
</html>

Figure 4: A HTML page with micro-resource
microformat.

In this HTML document, the micro-resource tag
resource in the second <meta> element (in bold
font) declares there are two micro-resources in this
document: subscriptions and
subscription. The subscriptions micro-
resource has a subordinate micro-resource
subscription, and supports POST method to a
URI. The subscription micro-resource has
properties title, direction, author and
updated, and accepts GET method to a URI.

The above semantic information about resources
is extracted by the micro parser into a JSON
representation (Figure 5):

{
 "POST": {"_uri": "…"},
 "_children": [
 {
 "GET": {"_uri": "…"},
 "_type": "subscription",
 "author": {"_value": "author"},
 "direction": {"_value": "1"},
 "title": {"_value": "title"},
 "updated": {"_value": "2009-09-22T17:05:35.979-0400"}
 },
],
 "_type": "subscriptions"
}

Figure 5: JSON representation of a micro-resource data
model.

In the JSON representation, micro-resource built-
in attributes have an underscore prefix (_type,
_children, for example) whereas others are service
specific tags outside the micro-resource
microformat.

The micro-resource microformat normalizes the
resource representations embedded in the HTML
documents, making these representations accessible
to the micro browser while keeping the
correspondence between HTML and micro-resource
data model.

4 MICRO-RESOURCE RULES

The micro-resource microformat does not specify
what tags can be used for a micro-resource, but only
constrain the relations between the tags in a HTML
document according to the data model depicted in
Figure 3. By default, it assumes all resource and
property tags in the class attribute and all method
tags in the rel attribute, because almost all
microformats use these two tags exclusively. Due to
space limit, we only list the main rules of micro-
resource tagging below:

Definition 1: Main Rules of micro-resource.

declaration: the micro-resources to occur in
the document are declared in a HTML <meta>
header element:
<meta name=”resource”
content=”list of tags” />

resource: a tag R in a class attribute of
element P is treated as a micro-resource if R is
declared so.

children: any child element of P tagged as a

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

60

micro-resource is treated as a child resource of
R.

properties: any child element of P has a class
tag but is not a declared micro-resource is treated
as a property of R or a child property. The value
of a property can be 1) href attribute of <a>
element; 2) value attribute of an <input>
element; or 3) content of an element.

method: an element, P or its child, with rel
attribute is treated as the methods of micro-
resource R. The URI of the element, including the
 and <form action=URI>
elements, becomes the URI of the methods.

form: a form can be tagged as a micro-
resource and its fields as the properties of the
micro-resource. Only information useful for
filling the fields and submitting the form is
collected based on the following template:
<form class={resource}
method={method} action={uri} >
 <input|textarea|select
name={input} type={type}
value={value} class=”{property}
required?” lang={lang}
maxlength={maxlength} />+
</form>

These rules essentially map a HTML page with

micro-resource tags into a tree, where each node is a
micro-resource decorated with properties and
methods. We believe majority of HTML pages can
be mapped to such micro-resource trees. For
example, a Google search result page, if tagged with
micro-resource, can be rendered into a micro-
resource tree like the following, where each
directory /R represents a micro-resource R whose
properties and methods are highlighted inside the
square brackets:

/result
 /search [input: q, POST: uri]
 /matches
 /match [preview: text, GET: uri]
 /cached [GET: uri]
 /similar [GET: uri]
 …
 /more
 /page [index: 1, GET: uri]
 …
 /next [GET: uri]
 /related
 /term [term: text, GET: uri]
 …

Figure 6: Micro-resource tree for Google search results.

5 AGGREGATION AND
COMPOSITION

Microformats can be aggregated and composed.
Aggregation is the process that merges the semantic
data from the same or different HTML documents.
For example, we can aggregate XFN microformats
(microformat.org) in a person’s home page and work
page to infer his social relationships. Composition is
the process that builds a microformat from other
ones. For example, hReview microformat is built
upon three microformats: 1) hCard that designates
the person who reviews an item, 2) rel-tag that
assigns a tag to the item being reviewed; and 3) rel-
license the associates a license with the review.

Figure 7: Part of the aggregated micro-resource map for a
dual web service.

Micro-resource can be aggregated and composed
in the same way. The micro-resource trees obtained
from the HTML pages of a web site can be
aggregated into a micro-resource map, where the
nodes in individual micro-resource trees are linked
based on methods of the micro-resources. For
example, Figure 7 shows a portion of the cross-
linked micro-resource map for a web service we
developed. For clarity, only the GET links are
displayed for each micro-resource. This micro-
resource map provides a snapshot of the web
services that can help developers to find entry points
to the services and how to consume them
accordingly.

Aggregation can be achieved in several ways.
For example, a web crawler that recognizes the
micro-resource and other microformats can search
the HTML documents and parses the microformats
in them. A plug-in to the browser can also be used to
parse the retrieved microformats while a developer
interacts with the service.

Micro-resource can also be composed with other
existing microformats. We can declare that hCard,

GET

GET

Tree 1

/topics
 /topic
 /subscriptions
 /notifications
 /topics

Tree 2

/subscriptions
 /subscription

Tree 3

/notifications
 /notification

GET

GET

GET

MICRO-RESOURCE - A Microformat Framework for Dual Restful Web Services

61

hCalendar, hAtom, hReview, or any proper
microformat as micro-resource, using the declaration
rule in Definition 1. In such composition, each
composed microformat data model is treated as a
“super class” of the micro-resource data model in
Figure 3. In other words, the micro-resource data
model extends the composed microformat (hCard
for instance) with additional data, including property
attributes and methods. This inheritance relation is
illustrated in Figure 8.

Figure 8: Composition of micro-resource as inheritance.

Such composed data model can be built by
coordinating multiple microformat parsers. Given a
HTML document, we can activate the parsers for
declared micro-resources. Once the root class of a
microformat is detected (vcard for hCard, for
example), the parser for that microformat is used to
process the corresponding HTML section to build
one data model. The micro-resource parser is also
used to process the same section to build another
data model. The two models are then merged into
one.

<html>
<head>
 <meta name="resource" content="vcard" />
</head>
<body>
<form class="vcard" action="..." rel="PUT">

 Your name: Li Li
 <li class="email">
 Your work email: <input
type="text" name="work-email" class="value"
value="lli5@avaya.com" />

 <li class="tel">
 Your home phone number:
 <input type="text" name="home-phone" value="5555"
class="value required"/>
 </form></body></html>

Figure 9: A form tagged as vCard micro-resource.

To illustrate this process, Figure 9 is a small
HTML document in which a form used to update a
person’s contact is tagged as a hCard which is also
declared as a micro-resource. For clarity, micro-

resource tags are in bold font and vCard tags are in
italics. Notice that the <input> element is tagged
by both hCard property tel and micro-resource
property required. The merged micro-resource
JSON representation is shown in Figure 10.

{
 "PUT": {"_uri": "..."},
 "_type": "vcard",
 "email": {
 "type": {"_value": "work"},
 "value": {
 "_input": "work-email",
 "_type": "text",
 "_value": "lli5@avaya.com"
 }
 "fn": {"_value": "Li Li"},
 "tel": {
 "type": {"_value": "home"},
 "value": {
 "_input": "home-phone",
 "_required": true,
 "_type": "text",
 "_value": "5555"
 }
 }

Figure 10: The micro-resource composed with vCard.

6 APPLICATION AND
EXPERIMENTAL RESULTS

We have tagged a web service we developed for
event notifications with the micro-resource
framework. The tagging was made easy because it is
done on the HTML templates that generate all the
HTML pages. We also developed a prototype
general-purpose micro-resource parser based on
JAVA SAX parser. The micro-resource framework
was used to implement more complex web services
based on the primitive ones.

One such service is to move the subscriptions of
one topic to another topic such that the notifications
can be redirected to the new topic. This composed
service is hosted on a redirect resource that mediates
interactions between three types of resources
distributed across different web sites. A highlight
view of these interactions is illustrated in Figure 11,
where micro-resource is used to retrieve data from
HTML pages to update the involved resources.

We tested the performance of the micro-resource
parser on several sample HTML files, and the
experimental results, on a Windows 2003 Server
with dual 3 Ghz CPU and 2 GB RAM, are
summarized in Table 1. The results show that the
performance is acceptable and that parsing time
increases slowly compared to the file size and tag
number increases.

micro-resource data model

properties (attributes)

methods

microformat data model
properties (subproperties)

WEBIST 2010 - 6th International Conference on Web Information Systems and Technologies

62

Figure 11: Service composition with micro-resources.

Table 1: Performance of micro-resource parser.

File size (B) No. of tags Avg. Time (ms)
349 6 7
1943 15 10
2041 11 14
3662 19 14

7 CONCLUSIONS

This paper presented a microformat framework,
micro-resource, based on the fundamental principles
of REST, to support the development of dual web
services. For this purpose, we compared this
approach against others, including alternative
parallel web services, and described the framework,
rules, aggregation and composition of micro-
resources with illustrative examples. We
implemented a prototype parser and demonstrated its
performance for service composition. Our study
showed that micro-resource framework has the
potential to narrow or even close the gap between
human and machine web services such that the full
power of RESTful web services can be reached out
to applications in both environments with minimum
investment from service consumers and providers.

REFERENCES

AWWW 2004: Architecture of the World Wide Web,
Volume One, W3C Recommendation 15 December
2004, http://www.w3.org/TR/webarch/

eRDF 2006: Embeddable RDF, http://
research.talis.com/2005/erdf/wiki/Main/RdfInHtml

Fielding, Roy, Architectural Styles and the Design of
Network-based Software Architectures, Ph.D.

Dissertation, 2000, http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm

GRDDL 2007: Gleaning Resource Descriptions from
Dialects of Languages (GRDDL), W3C
Recommendation 11 September 2007,
http://www.w3.org/TR/grddl/

Hadley, Marc, Web Application Description Language
(WADL), http://research.sun.com/techrep/2006/
abstract-153.html

Khare, Rohit, Microformats, the Next (Small) Thing on
the Semantic Web? IEEE Internet Computing, vol. 10,
no. 1, pp. 68-75, Jan./Feb. 2006.

Kopecky, J., Gomadam, K., Vitvar, T., hRESTS: an
HTML Microformat for Describing RESTful Web
Services, 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent
Technology, pp. 619-625, 2008.

Khare, R., Celik, T., Microformats: a Pragmatic Path to
the Semantic Web, WWW 2006, pp. 865-866, 2006.

Li, L., Chou, W., Infoset for Service Abstraction and
Lightweight Message Processing, ICWS 2009, pages
703-710, Los Angeles, July 2009.

microformat.org: http://www.microformats.org
RDFa 2008: RDFa in XHTML: Syntax and Processing, A

collection of attributes and processing rules for
extending XHTML to support RDF, W3C
Recommendation 14 October 2008,
http://www.w3.org/TR/rdfa-syntax/.

REST microformat: http:/www.micrformats.org/wiki/rest
REX: http://microformats.org/wiki/rex-proposal-preso
Richardson, L. Ruby, S., RESTful Web Services, O’Reilly

Media, Inc. 2007.
Sitemap 0.90, http://www.sitemaps.org/.
Stolley, Karl, Using Microformats: Gateway to the

Semantic Web Tutorial, IEEE Transactions on
Professional Communications, Vol 52, No. 3, pp. 291-
302, 2009.

Williams, Peter: RESTful Service Discovery and
Description, http://barelyenough.org/blog/2008/01/
restful-service-discovery-and-description/, 2008.

MICRO-RESOURCE - A Microformat Framework for Dual Restful Web Services

63

