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Abstract: This paper presents a new method for fitting an ellipse to a point sequence extracted from images. It is widely
known that the best fit is obtained by maximum likelihood. However, it requires iterations, which may not
converge in the presence of large noise. Our approach is algebraic distance minimization; no iterations are
required. Exploiting the fact that the solution depends on the way the scale is normalized, we analyze the
accuracy to high order error terms with the scale normalization weight unspecified and determine it so that the
bias is zero up to the second order. We demonstrate by experiments that our method is superior to the Taubin
method, also algebraic and known to be highly accurate.

1 INTRODUCTION add a posterior correction to the solution (Kanatani,
2006), but the solution of all ML-based methods al-
Circular objects are projected onto camera images asready achieves the theoretical accuracy limit, called
ellipses, and from their 2-D shapes one can recon-the KCR lower bound (Chernov and Lesort, 2004;
struct their 3-D structure (Kanatani, 1993). For this Kanatani, 1996; Kanatani, 2008), up to high order er-
reason, detecting ellipses in images and computingror terms. Hence, there is practically no room for fur-
their mathematical representation are the first step ofther accuracy improvement. However, all ML-based
many computer vision applications including indus- methods have one drawback: Iterations are required
trial robotic operations and autonomous navigation. for nonlinear optimization, but they often fail to con-
This is done in two stages, although they are often in- verge in the presence of large noise. Also, an appro-
termingled. The first stage is to detect edges, test if a priate initial guess must be provided. Therefore, ac-
particular edge segment can be regarded as an ellipticcurate algebraic methods that do not require iterations
arc, and integrate multiple arcs into ellipses (Kanatani are very much desired, even though the solution may
and Ohta, 2004; Rosin Rosin and West, 1995). The not be strictly optimal.
second stage is to fit an equation to those edge points The best known algebraic method is the least
regarded as constituting an elliptic arc. In this paper, squares, also known as algebraic distance minimiza-
we concentrate on the latter. tion or DLT (direct linear transformation) (Hartley
Among many ellipse fitting algorithms presented and Zisserman, 2004), but all algebraic fitting meth-
in the past, those regarded as the most accurate ar@ds have an inherent weakness: We need to impose
methods based on maximum likelihood (ML), and a normalization to remove scale indeterminacy, yet
various computational schemes have been proposedhe solution depends on the choice of the normaliza-
including theFNS (Fundamental Numerical Scheme tion. Al-Sharadgah and Chernov (2009) and Rangara-
of Chojnacki et al. (2000), thEIEIV (Heteroscedas- jan and Kanatani (2009) exploited this freedom for fit-
tic Errors-in-Variable of Leedan and Meer (2000) and ting circles. Invoking the high order error analysis of
Matei and Meer (2006), and thaojective Gauss- Kanatani (Kanatani, 2008), they optimized the nor-
Newton iterations of Kanatani and Sugaya (2007). malization so that the solution has the highest accu-
Efforts have also been made to make the cost func-racy. In this paper, we apply their techniques to ellipse
tion more precise (Kanatani and Sugaya, 2008) andfitting. Doing numerical experiments, we demon-
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strate that our method is superior to the method of and rotated is the same as the originally fitted ellipse
Taubin (1991), also an algebraic method known to be translated and rotated afterwards (Bookstein, 1979).
very accurate (Kanatani, 2008; Kanatani and Sugaya,Equation (8) prevents Eq. (1) from representing a
2007). parabola AC — B? = 0) or a hyperbola4C — B? < 0)

(Fitzgibbon et al., 1999). Many other normalizations

are conceivable, but the crucial fact is that the result-
2 ALGEBRAICFITTING ing solution depends on which normalization is im-
posed. The purpose of this paper is to find the “best”
normalization. Write the 6-D vector of the unknown
coefficients as

6=(A B C D E F)', (9)

An ellipse is represented by
A + 2Bxy + Cy?+ 2fo(Dx+ Ey) + f8F =0, (1)

wherefy is a scale constant that has an ordex ahd

y: without this, finite precision numerical computa- and consider the class of normalizations written as

tion would incur serious accuracy IdssOur task is (6,NB) = constant (10)
to compute the coefficients, ..., F so that the ellipse
of Eq. (1) passes through given poifixg, yy ), a = 1, for some symmetric matriX, where and hereafter we

N, as closely as possible. The algebraic approachdenote the inner product of vectasanb by (a,b).
is to computé, ...,F that minimize the algebraic dis-  Equations (5), (6), and (7) can be written in this form

tance with a positive definite or semidefinitd, while for
N Eqg. (8)N is nondefinite. In this paper, we allow non-
J= 1 Z (Axé + 2BXqYq + CY2 + 2fo(DXy + Eyq) definiteN, so that the constant in Eq. (10) is not nec-
N & . essarily positive.

+f02F) . )
This is also known as the least squares, algebraic dis3 ALGEBRAIC SOLUTION

tance minimization, or the direct linear transforma-
tion (DLT). Evidently, Eq. (2) is minimized by = If the weight matrixN is given, the solutiorf that
.- =F = 0if no scale nomalization is imposed. Fre- Mminimizes Eq. (1) is immediately computed. Write

uently used normalizations include
a y E= (x> 2y y? 2fox 2foy fg)T. (11)

F=1 3) . , :
Equation (1) is now written as
A+D=1, 4) 6.6)—0 1
A +B*+CP+D*+E*+F2=1, (5 @8 =0 (12)
A2 41 B2+ C2 D2+ E2=1 (6) Let &y be the value of for (Xq,Yq). Our problem is
) > 4 ’ to minimize
A°4+2B°+C =1, (7) N \
2 1 1
AC-B =1 (8) J:Nz(e,zwzfﬁz "€a&y 8= (6,M8),
Equtation (3) reduces minimization of Eq. (2) to si- =1 a=1
multatneous linear equations (Albano, 1974; Cooper , ' (13)
' ' subject to Eq. (10), where we define the 6 matrix

and Yalabik, 1976, Rosin, 1993). However, Eq. (1)
with F = 1 cannot represent ellipses passing through
the origin(0,0). Equation (4) remedies this (Gander 1N

et al., 1994; Rosin, 1994). The most frequently used - N Z (14)

is? Eq. (5) (Paton, 1970), but some authors use Eq. (6) o=

(Gnanadesikan, 1977). Equation (7) imposes invari- Equation (13) is a quadratic form B so it is mini-
ace to coordiate transformations in the sense that themized subject to Eq. (10) by solving the generalized
ellipse fitted after the coordinate system is transalated eigenvalue problem

M as follows:

Lin our experiments, we sdp = 600, assuming images M6 = ANG. (15)
of one side less than 1000 pixels. . _
2Some authors write an ellipse &s2 + Bxy + Cy? + If Eq. (1) is exactly satisfied for allxs,Ya), i.€
Dx+Ey+F = 0. The meaning of Eq. (5) differs for this  (8,&a) = 0 for all a, Eq. (14) impliesM6 = 0 and
form and for Eq. (1). In the following, we ignore such small henceA = 0. If the weightN is positive definite or
differences; no significant consequence would result. semidefinite, the generalized eigenvaluis positive
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in the presence of noise, so the solution is given by the _ alXa DXG
generalized eigenvect6ifor the smallesh. Here, we 2Xa Ao +2YaAXg 2DXo Ay

allow N to be nondefinite, sa may not be positive. £y = 2YalYa Doy = Dy;

In the following, we do error analysis of Eq. (15) by “ 20Xy ) F25a 0

assuming thak ~ 0, so the solution is given by the 2folAyq 0
generalized eigenvect® for the A with the small- 0 0

est absolute valife Since the solutio® of Eq. (15) (19)
has scale indeterminacy, we hereafter adopt normal-The second term& is ellipse specific and was not
ization into unit norm|8|| = 1 rather than Eq. (10). considered in the general theory of Kanatani (2008).

The resulting solution may not necessarily repre- We define the covariance matrix & by V([&q] =
sent an ellipse; it may represent a parabola or hy- E[A1€q2184 ], whereE[-] denotes expectation. If the
perbola. This can be avoided by imposing Eq. (8) noise termd\xy andAyq are regarded as independent
(Fitzgibbon et al., 1999), but here we do not exclude random Gaussian variables of mean 0 and standard
nonellipse solution and optimizé so that the result-  deviationg, we obtain

ing solutionB is as close to its true valuzas possible.
g _ P V[Ea] = E[A1EatEl] = 0PVo[Ea],  (20)
Least Squares. In the following, we call the popu-

lar method of using Eq. (5) thkeast squares for where we put
short. This is equivalent to letting to be the unit

D L
matrix |. In this case, Eq. (15) becomes an ordi- o SaYo £ ;OX_“ fO_ 8
nary eigenvalue problem Xug’u Xax_;;_ya Xaiya oou foX_ox 0
r a o 0Ya
M6 = A6, (16) Vo[€a] = 4 foXe foya 0 f2 00 (21)
and the solution is the unit eigenvector Mf for 0 foxa foya O fo2 0
the smallest eigenvalue. 0 0O 0 0 0O

Taubin Method. A well known algebraic method  Here, we have noted thE{AX,] = E[Ayq] = 0, E[AXZ]
known to be very accurate is due to Taubin (1991), = E[ay2] = 62, andE[AxqAys] = 0 according to our

who used a$l assumption. We call the aboVg[¢] the normalized
X2 XaYa O foxq 0 O covariance matrix. Comparing Eqgs. (21) and (17), we
XaYa X + Y2 XaYa foYa foXa O find that the Taubin method usesMs
4 N 0 y2 0 foysO
Np = — Z XaYa  Ya 0Ya _ 1 N
N& | foxa foya O & 00 Nt = N > Vol&al, (22)
0 foXa foya O f2 0 &1

0 0 0O 0 00O
(17)
The solution is given by the unit generalized
eigenvecto® of Eq. (15) for the smallest gener-
alized eigenvalua.

after the observationgxy,yq) are plugged into
(XCUyC()'

5 PERTURBATION ANALYSIS

4 ERROR ANALYSIS Substituting Eq. (18) into Eq. (14), we have
We regard eaclXq,Yq) as perturbed from its true po- 1 N z T
sition ()?a’%) by (AXOhAyO() and write M = N a:l(ﬁa +Alzu +AZEG)(EG +A1£0( +AZEG)

Ea = Ea + Ao+ Doka, (18) =M +MM +05M -, (23)
WhereE_a is the true value ofy, andA;1&y, andAxE, where --- denotes noise terms of order three and

are the noise terms of the first and the second order,higher, and we definkl, A;M, andA>M by
respectively:

— 1 N _ =
3In the presence of noiseM is positive definite, so M= N A €ada (24)
(6,M0) > 0. If (6,NB) < 0 for the final solution, we have a=1
A < 0. However, if we replac® by —N, we obtain the 1 N
same solutio® with A > 0, so the sign ok does not have AM = — <_ MET LA _T) 25
a particular meaning. ! NGZI Sabida +Bkada ). (29)
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DM = 5 (oot +Akubafy + Bokal )

(26)
We expand the solutioghandA of Eq. (16) in the form

O=0+010-+000+---, A=A+DA+AA+ -,
(27)

where the barred terms are the noise-free values, andv[e]

symbolsA; andA; indicate the first and the second
order noise terms, respectively. Substituting Egs. (23)
and (27) into Eq. (15), we obtain

(M +01M +8oM + ) (B+ D10+ DB+ - )

= (M-DIA+AA+ - )N(B+A10+A20+---). (28)

Expanding both sides and equating terms of the same

order, we obtain

MO = ANS, (29)

MA10 4+ A;M O = ANA10 + A AN, (30)
MA20+ A M A8+ AM O

=ANA20 + A;ANA16 + AANS. (31)

The noise-free vglye% andésatisfy(ﬁ_a,é) =0, so

Eq. (24) impliesM 8 = 0, and Eq. (29) implied = 0.

From Eq. (25), we havéd,A1M8) = 0. Computing
the inner product 08 and Eg. (30), we find thak;A

= 0. Multiplying Eq. (30) by the pseudoinversé™

from left, we have

MO = —M"AMB, (32)

where we have noted thétis the null vector ofM
(i.e., MB = 0) and henceM—M (= Pg) represents
orthogonal projection alon§. We have also noted
that equating the first order terms in the expansion of
04218+ 0208+ ---||2 = 1 results in(8,A;8) = 0so
PgA10 = A16. Substituting Eqg. (32) into Eq. (31), we
can expresa,A in the form

Ak — (6,0,M8) — (,A\MM~A;MB)  (6,T6)
2 (6,N8) ~ (O,NB)’
(33)
where N
T =MM —AIMM ~A(M. (34)

Next, we consider the second order er/af.
Sinceb is a unit vector and does not change its norm,

we are interested in the error component orthogonal

to 6. We define the orthogonal componentnb by
D56 = Pgh8 (= M~ MAL8). (35)
Multiplying Eqg. (31) byM‘ from left and substituting
Eq. (32), we obtain
Ay8=DAM " NB+M~AMM ~A;MB — M ~AMO
(9 TO) —

M~N8— M T8.
~ (B,N9)

(36)

6 COVARIANCE AND BIAS

6.1 General Algebraic Fitting

From Eq. (32), we see that the leading term of the
covariance matrix of the solutidhis given by

E[A16A10"] = M E[(AMB)(A1MB) M~
1 — N _ N .
M E| Y (80t leng,eﬁg}m
1 - X C el
e GBZ (8,E[Aa0E;10)Eags M
2 _ N — -
=M ( 3 (0:Voleal0ats )
_ SN @37)
where we define
— Ny _ A
M= S BVolEOEEr (39
a=1

In the derivation of Eq. (37), we have noted thatis
independent for differerd and thatE[AlaaAlEg] =

5GBO'2V0[EQ], whered,g is the Kronecker delta. The
important observation is that the covarinace matrix

V6] of the solutionB does not depend on the nor-

malization weightN. This implies thatll algebraic
methods have the same the covariance matrix in the
leading order, so we are unable to reduce the covari-
ance off by adjustingN. Yet, the Taubin method is
known to be far accurate than the least squares. We
will show that this stems from the bias terms and that
a superior method can result by reducing the bias.
SinceE[A16] = 0, there is no bias in the first order:
the leading bias is in the second order. In order to
evaluate the second order bigf\5 6], we evaluate
the expectation of in Eq. (34). We first consider the
termE[A2M]. From Eq. (26), we see that

E[AM] = ;z(za (B8] +E[MaEaaE]]

+E[A28a)Eq )
0-2 N

N2,

—G (NT+25[ECe13]),

where we have noted the definition in Eq. (20) and
used Eq. (22). The symbgl[-] denotes symmetriza-
tion (S[A] = (A+AT)/2), and the vectorg ande;3
are defined by

(Eaelg +VO[EG] + 91320( )

(39)
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— N _ .
Ec:$ x e1— (101000, (40) 6.3 Taubin Method
a=1

_ _ Eq. (44) implies(é.,8) = 0 and (£4,0) = 0. Hence,
We next consider the terB[A;MM ~A;M]. Ithas the (8,E[T]@) can be written as

form (see Appendix for the derivation)

2w (B,E[T]6)
_ _ N _
E[AlMM AlM 2 Z (tl’M VO[EC(HE E :02<(8,NT )7$Z(EG;M Ea)(e;VO[ECI] ))
a=1
+(Bas M~ &a)VolEa] + 25 VolEaM “&aka]),  (42) e = 1N
—=0?((8,N18) — 5 UM ~EaEL](B.VolEa6))
where tf -] denotes the trace. From Egs. (39) and (41), d=1
the matrixT in Eq. (34) has the following expectation: - - 1 -
_ =0%((8.N18) — > t1[M~ Y (8. VolEal®)Eada] )
E[T] = 0-Z(NT + 25[&0313] , a=1
N - —a2(B.N8) — L trM M, 48
2 3 (110 Vool ] + (o M e Vol N MM (9
o=1 where we have used Eq. (38). If we t= N1, we
125 No[Ea]M~EqE, ])) (42)  obtain the Taubin method. Thus, the leading bias of
. the Taubin fit has form

Thus, the second order errdy 8 in Eq. (36) has the E[aL6
following bias:

]
a-((BE Ls a)Vo[€a]0+(8,Vo[Ea M~
E[A36] =M ((GNG Ne—E[T é) (43) *N—Z< )Vol&a]B+ (8, Vo[&a] Ea)Ea))
(49)

6.2 Least Squares

=—0’°M~ (qNT§+ (A+C)&c

where we put

Eq. (42) implies(&c,6) = 0 and (£4,6) = 0. Hence, 1M M 50
E[T]6 can be written as =N (6,N78) (50)
E[T|6= 02<NT5+ (A+C)Ec Comparing Egs. (49) and (47), we notice that the only
\ difference is thaN70 in Eq. (47) is replaced bgNt8
1 : - = 75 in Eq. (49). We see from Eq. (50) that< 1 whenN
— M TEVO[Ea]O+(8,Vp[Eg M . . .
Nzaé((za’ a)Vol2a]@+(6, YolZa] EG)EGD is large. This can be regarded as one of the reasons
(44) of the high accuracy of the Taubin method, as already
. d pointed out by Kanatani (2008).
If we let N =1, we obtain the least squares fit. Its
leading bias is 6.4 Hyperaccurate Algebraic Fit

l f— v~ 0 0 _7
ElAz6] =M ((G,E[T]e)e E[T]g) Now, we present our main contribution of this paper.
=—M~(1-68")E[T]p=—-M"E[T]6, (45) Our proposal is to chose the weidtito be
where we have used the following equality:
M (1-68") =M Pg=M" MM~ =M. (46)

From Egs. (44), and (45), the leading bias of the least  +(Ea,M ~&a)Vo[Ea] + 25 [Vo[Ea]M _EaEa])- (51)
square has the following form:

N = N7+ 25 [Ecefs] - sz(trM “VolEall€ads

y. _ _ Then, we haveE[T] = ¢°N from Eq. (42), and
E[A36] = —0°M ~ (NT9+(A+C)EC Eq. (43) becomes
1l —_ ((8,N6) )
2 2. ((Ba:M € VolEalB+ (B.NolEa M~ Ea)Ea ). Elaz6)=oM ( (G’NG)N—N)ezo. (52)

(“7) Since Eq. (51) contains the true vaILEésandl\Z, we

evaluate them by replacing the true valyrg,yq) in
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Figure 1: (a) 31 points on an ellipse. (b) Instances of fitter o
ellipses foro = 0.5. 1. Least squares. 2. Taubin method. 3.
Proposed method. 4. Maximum likelihood. The true shape @ (b)

Is indicated in dashed lines. Figure 3: The bias (a) and the RMS error (b) of the fitting to
the data in Fig. 1(a). The horizontal axis is for the standard
deviationo of the added noise. 1. Least squares. 2. Taubin
method. 3. Proposed method. 4. Maximum likelihood
(interrupted due to nonconvergence). The dotted line in (b)
shows the KCR lower bound.
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their definitions by the observatior{sa,ya). This 10000 a;
does not affect our result, because expectations ofyyhere8® is the solution in theth trial. The dot-
odd-order error terms vanish and hence the error inted line in Fig. 3(b) shows the KCR lower bound
Eq. (52) is at mosD(a*). Thus, the second order (Kanatani, 1996; Kanatani, 2008) given by
bias is exactly 0. After the terminology used by Al- —
Sharadqah and Chernov (2009) for their circle fitting b S tr[( 8 &g )‘] (55)
method, we call our method using Eq. (51) “hyperac- K§E £, (6. Vo[Ea]0)

curate algebraic fitting". Standard linear algebra routines for solving the
generalized eigenvalue problem in the form of
Eq. (15) assumes that the matihikis positive defi-
7 NUMERICAL EXPERIMENTS nite. As can be seen from Eq. (17), however, the ma-
trix Nt for the Taubin method is positive semidefinite
We placed 31 equidistant points in the first quadrant having a row and a column of zeros. The maiiin
of the ellipse shown in Fig. 1(a). The major and the Eq. (51) is not positive definite, e|ther._ This causes no
minor axis are 100 and 50 pixel long, respectively. Problem, because Eq. (15) can be written as
We added to the- andy-coordinates of each point NG — EMO (56)
independent Gaussian noise of mean 0 and standard A
deviationo and fitted an ellipse by least squares, the Since the matrisM in Eq. (14) is positive definite for
Taubin method, our proposed method, and maximum noisy data, we can solve Eq. (56) instead of Eq. (15),
likelihood. Figure 1(b) shows fitted ellipses for some ysing a standard routine. If the smallest eigenvalue of
noise instance of = 0.5. _ M happensto be 0, it indicates that the data are all ex-
Since the computed and the true val@esdo are act; any method, e.g., LS, gives an exact solution. For
both unit vectors, we define their discrepaddy by noisy data, the solutio8 is given by the generalized
the orthogonal component eigenvector of Eq. (56) for the generalized eigenvalue
1/\ with the largest absolute value.
A6 = Pgb, (53) / As we can see from Fig. 3(a), the least square

wherePg (= | — 00) is the orthogonal projection ma-  Solution has a large bias, as compared to which the
trix along®. (Fig. 2). Figures 3(a) and (b) plot for ~ Taubin solution has a smaller bias, and our solution

variouso the biasB and the RMS (root-mean-square) Nas even smaller bias. Since the least squares, the
Taubin, and our solutions all have the same covari-
4We used the FNS of Chojnacki et al. (2000). See ance matrix to the leading order, the bias is the deci-
Kanatani and Sugaya (2007) for the details. sive factor for their accuracy. This is demonstrated in

|A8(®)]2, (54)

10
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braic distance. However, the solution depends on
what kind of normalization is imposed. We exploited

this freedom and derived a best normalization in such
a way that the resulting solution has no bias up to the
second order, invoking the high order error analysis
of Kanatani (2008). Numerical experiments show that
our method is superior to the Taubin method, also an

) ) . - algebraic method and known to be very accurate.
Figure 4: Left: Edge image containing a small elliptic edge

segment (red). Right: Ellipses fitted to 155 edge points
overlaid on the original image. From inner to outer are the
ellipses computed by least squares (pink), Taubin method ACK NOWLEDGEMENTS
(blue), proposed method (red), and maximum likelihood
(green). The proposed and Taubin method compute almost
overlapping ellipses.
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Fig. 3(b): The Taubin solution is more accurate than EZEC\;V%E Vgﬁtjifpso rt:r?smsgz:]cbg g]r? d '\gl'ﬁtr%gf
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