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Abstract: This paper presents a new method for fitting an ellipse to a point sequence extracted from images. It is widely
known that the best fit is obtained by maximum likelihood. However, it requires iterations, which may not
converge in the presence of large noise. Our approach is algebraic distance minimization; no iterations are
required. Exploiting the fact that the solution depends on the way the scale is normalized, we analyze the
accuracy to high order error terms with the scale normalization weight unspecified and determine it so that the
bias is zero up to the second order. We demonstrate by experiments that our method is superior to the Taubin
method, also algebraic and known to be highly accurate.

1 INTRODUCTION

Circular objects are projected onto camera images as
ellipses, and from their 2-D shapes one can recon-
struct their 3-D structure (Kanatani, 1993). For this
reason, detecting ellipses in images and computing
their mathematical representation are the first step of
many computer vision applications including indus-
trial robotic operations and autonomous navigation.
This is done in two stages, although they are often in-
termingled. The first stage is to detect edges, test if a
particular edge segment can be regarded as an elliptic
arc, and integrate multiple arcs into ellipses (Kanatani
and Ohta, 2004; Rosin Rosin and West, 1995). The
second stage is to fit an equation to those edge points
regarded as constituting an elliptic arc. In this paper,
we concentrate on the latter.

Among many ellipse fitting algorithms presented
in the past, those regarded as the most accurate are
methods based on maximum likelihood (ML), and
various computational schemes have been proposed
including theFNS (Fundamental Numerical Scheme
of Chojnacki et al. (2000), theHEIV (Heteroscedas-
tic Errors-in-Variable of Leedan and Meer (2000) and
Matei and Meer (2006), and theprojective Gauss-
Newton iterations of Kanatani and Sugaya (2007).
Efforts have also been made to make the cost func-
tion more precise (Kanatani and Sugaya, 2008) and

add a posterior correction to the solution (Kanatani,
2006), but the solution of all ML-based methods al-
ready achieves the theoretical accuracy limit, called
the KCR lower bound (Chernov and Lesort, 2004;
Kanatani, 1996; Kanatani, 2008), up to high order er-
ror terms. Hence, there is practically no room for fur-
ther accuracy improvement. However, all ML-based
methods have one drawback: Iterations are required
for nonlinear optimization, but they often fail to con-
verge in the presence of large noise. Also, an appro-
priate initial guess must be provided. Therefore, ac-
curate algebraic methods that do not require iterations
are very much desired, even though the solution may
not be strictly optimal.

The best known algebraic method is the least
squares, also known as algebraic distance minimiza-
tion or DLT (direct linear transformation) (Hartley
and Zisserman, 2004), but all algebraic fitting meth-
ods have an inherent weakness: We need to impose
a normalization to remove scale indeterminacy, yet
the solution depends on the choice of the normaliza-
tion. Al-Sharadqah and Chernov (2009) and Rangara-
jan and Kanatani (2009) exploited this freedom for fit-
ting circles. Invoking the high order error analysis of
Kanatani (Kanatani, 2008), they optimized the nor-
malization so that the solution has the highest accu-
racy. In this paper, we apply their techniques to ellipse
fitting. Doing numerical experiments, we demon-
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strate that our method is superior to the method of
Taubin (1991), also an algebraic method known to be
very accurate (Kanatani, 2008; Kanatani and Sugaya,
2007).

2 ALGEBRAIC FITTING

An ellipse is represented by

Ax2+2Bxy+Cy2+2 f0(Dx+Ey)+ f 2
0F = 0, (1)

where f0 is a scale constant that has an order ofx and
y; without this, finite precision numerical computa-
tion would incur serious accuracy loss1. Our task is
to compute the coefficientsA, ...,F so that the ellipse
of Eq. (1) passes through given points(xα,yα), α = 1,
..., N, as closely as possible. The algebraic approach
is to computeA, ...,F that minimize the algebraic dis-
tance

J=
1
N

N

∑
α=1

(

Ax2
α +2Bxαyα +Cy2

α +2 f0(Dxα +Eyα)

+ f 2
0 F

)2
. (2)

This is also known as the least squares, algebraic dis-
tance minimization, or the direct linear transforma-
tion (DLT). Evidently, Eq. (2) is minimized byA =
· · · = F = 0 if no scale nomalization is imposed. Fre-
quently used normalizations include

F = 1, (3)

A+D = 1, (4)

A2+B2+C2+D2+E2+F2 = 1, (5)

A2+B2+C2+D2+E2 = 1, (6)

A2+2B2+C2 = 1, (7)

AC−B2 = 1. (8)

Equtation (3) reduces minimization of Eq. (2) to si-
multatneous linear equations (Albano, 1974; Cooper
and Yalabik, 1976, Rosin, 1993). However, Eq. (1)
with F = 1 cannot represent ellipses passing through
the origin(0,0). Equation (4) remedies this (Gander
et al., 1994; Rosin, 1994). The most frequently used
is2 Eq. (5) (Paton, 1970), but some authors use Eq. (6)
(Gnanadesikan, 1977). Equation (7) imposes invari-
ace to coordiate transformations in the sense that the
ellipse fitted after the coordinate system is transalated

1In our experiments, we setf0 = 600, assuming images
of one side less than 1000 pixels.

2Some authors write an ellipse asAx2 + Bxy +Cy2 +
Dx+Ey+F = 0. The meaning of Eq. (5) differs for this
form and for Eq. (1). In the following, we ignore such small
differences; no significant consequence would result.

and rotated is the same as the originally fitted ellipse
translated and rotated afterwards (Bookstein, 1979).
Equation (8) prevents Eq. (1) from representing a
parabola (AC−B2 = 0) or a hyperbola (AC−B2 < 0)
(Fitzgibbon et al., 1999). Many other normalizations
are conceivable, but the crucial fact is that the result-
ing solution depends on which normalization is im-
posed. The purpose of this paper is to find the “best”
normalization. Write the 6-D vector of the unknown
coefficients as

θ =
(

A B C D E F
)⊤

, (9)

and consider the class of normalizations written as

(θ,Nθ) = constant, (10)

for some symmetric matrixN, where and hereafter we
denote the inner product of vectorsa an b by (a,b).
Equations (5), (6), and (7) can be written in this form
with a positive definite or semidefiniteN, while for
Eq. (8)N is nondefinite. In this paper, we allow non-
definiteN, so that the constant in Eq. (10) is not nec-
essarily positive.

3 ALGEBRAIC SOLUTION

If the weight matrixN is given, the solutionθ that
minimizes Eq. (1) is immediately computed. Write

ξ =
(

x2 2xy y2 2 f0x 2 f0y f 2
0

)⊤
. (11)

Equation (1) is now written as

(θ,ξ) = 0. (12)

Let ξα be the value ofξ for (xα,yα). Our problem is
to minimize

J =
1
N

N

∑
α=1

(θ,ξα)
2 =

1
N

N

∑
α=1

θ⊤ξαξ⊤α θ = (θ,Mθ),

(13)
subject to Eq. (10), where we define the 6×6 matrix
M as follows:

M =
1
N

N

∑
α=1

ξαξ⊤α . (14)

Equation (13) is a quadratic form inθ, so it is mini-
mized subject to Eq. (10) by solving the generalized
eigenvalue problem

Mθ = λNθ. (15)

If Eq. (1) is exactly satisfied for all(xα,yα), i.e.,
(θ,ξα) = 0 for all α, Eq. (14) impliesMθ = 0 and
henceλ = 0. If the weightN is positive definite or
semidefinite, the generalized eigenvalueλ is positive
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in the presence of noise, so the solution is given by the
generalized eigenvectorθ for the smallestλ. Here, we
allow N to be nondefinite, soλ may not be positive.
In the following, we do error analysis of Eq. (15) by
assuming thatλ ≈ 0, so the solution is given by the
generalized eigenvectorθ for the λ with the small-
est absolute value3. Since the solutionθ of Eq. (15)
has scale indeterminacy, we hereafter adopt normal-
ization into unit norm‖θ‖ = 1 rather than Eq. (10).

The resulting solution may not necessarily repre-
sent an ellipse; it may represent a parabola or hy-
perbola. This can be avoided by imposing Eq. (8)
(Fitzgibbon et al., 1999), but here we do not exclude
nonellipse solution and optimizeN so that the result-
ing solutionθ is as close to its true valueθ as possible.

Least Squares. In the following, we call the popu-
lar method of using Eq. (5) theleast squares for
short. This is equivalent to lettingN to be the unit
matrix I. In this case, Eq. (15) becomes an ordi-
nary eigenvalue problem

Mθ = λθ, (16)

and the solution is the unit eigenvector ofM for
the smallest eigenvalue.

Taubin Method. A well known algebraic method
known to be very accurate is due to Taubin (1991),
who used asN

NT =
4
N

N

∑
α=1

















x2
α xαyα 0 f0xα 0 0

xαyα x2
α + y2

α xαyα f0yα f0xα 0
0 xαyα y2

α 0 f0yα 0
f0xα f0yα 0 f 2

0 0 0
0 f0xα f0yα 0 f 2

0 0
0 0 0 0 0 0

















.

(17)
The solution is given by the unit generalized
eigenvectorθ of Eq. (15) for the smallest gener-
alized eigenvalueλ.

4 ERROR ANALYSIS

We regard each(xα,yα) as perturbed from its true po-
sition (x̄α, ȳα) by (∆xα,∆yα) and write

ξα = ξ̄α +∆1ξα +∆2ξα, (18)

whereξ̄α is the true value ofξα, and∆1ξα, and∆2ξα
are the noise terms of the first and the second order,
respectively:

3In the presence of noise,M is positive definite, so
(θ,Mθ) > 0. If (θ,Nθ) < 0 for the final solution, we have
λ < 0. However, if we replaceN by −N, we obtain the
same solutionθ with λ > 0, so the sign ofλ does not have
a particular meaning.

∆1ξα =















2x̄α∆xα
2x̄α∆yα+2ȳα∆xα

2ȳα∆yα
2 f0∆xα
2 f0∆yα

0















, ∆2ξα =















∆x2
α

2∆xα∆yα
∆y2

α
0
0
0















.

(19)
The second term∆2ξα is ellipse specific and was not
considered in the general theory of Kanatani (2008).
We define the covariance matrix ofξα by V [ξα] =
E[∆1ξα∆1ξ⊤α ], whereE[ · ] denotes expectation. If the
noise terms∆xα and∆yα are regarded as independent
random Gaussian variables of mean 0 and standard
deviationσ, we obtain

V [ξα] = E[∆1ξα∆1ξ⊤α ] = σ2V0[ξα], (20)

where we put

V0[ξα] = 4

















x̄2
α x̄αȳα 0 f0x̄α 0 0

x̄αȳα x̄2
α + ȳ2

α x̄αȳα f0ȳα f0x̄α 0
0 x̄αȳα ȳ2

α 0 f0ȳα 0
f0x̄α f0ȳα 0 f 2

0 0 0
0 f0x̄α f0ȳα 0 f 2

0 0
0 0 0 0 0 0

















. (21)

Here, we have noted thatE[∆xα] = E[∆yα] = 0,E[∆x2
α]

= E[∆y2
α] = σ2, andE[∆xα∆yα] = 0 according to our

assumption. We call the aboveV0[ξα] thenormalized
covariance matrix. Comparing Eqs. (21) and (17), we
find that the Taubin method uses asN

NT =
1
N

N

∑
α=1

V0[ξα], (22)

after the observations(xα,yα) are plugged into
(x̄α, ȳα).

5 PERTURBATION ANALYSIS

Substituting Eq. (18) into Eq. (14), we have

M=
1
N

N

∑
α=1

(ξ̄α +∆1ξα +∆2ξα)(ξ̄α +∆1ξα +∆2ξα)
⊤

=M̄+∆1M+∆2M+ · · · , (23)

where · · · denotes noise terms of order three and
higher, and we definēM, ∆1M, and∆2M by

M̄ =
1
N

N

∑
α=1

ξ̄αξ̄⊤α , (24)

∆1M =
1
N

N

∑
α=1

(

ξ̄α∆1ξ⊤α +∆1ξαξ̄⊤α
)

, (25)
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∆2M =
1
N

N

∑
α=1

(

ξ̄α∆2ξ⊤α +∆1ξα∆1ξ⊤α +∆2ξαξ̄⊤α
)

.

(26)
We expand the solutionθ andλ of Eq. (16) in the form

θ = θ̄+∆1θ+∆2θ+ · · · , λ = λ̄+∆1λ+∆2λ+ · · · ,
(27)

where the barred terms are the noise-free values, and
symbols∆1 and∆2 indicate the first and the second
order noise terms, respectively. Substituting Eqs. (23)
and (27) into Eq. (15), we obtain

(M̄+∆1M+∆2M+ · · ·)(θ̄+∆1θ+∆2θ+ · · ·)

=(λ̄+∆1λ+∆2λ+· · ·)N(θ̄+∆1θ+∆2θ+· · · ). (28)

Expanding both sides and equating terms of the same
order, we obtain

M̄θ̄ = λ̄Nθ̄, (29)

M̄∆1θ+∆1Mθ̄ = λ̄N∆1θ+∆1λNθ̄, (30)

M̄∆2θ+∆1M∆1θ+∆2Mθ̄
= λ̄N∆2θ+∆1λN∆1θ+∆2λNθ̄. (31)

The noise-free values̄ξα andθ̄ satisfy(ξ̄α, θ̄) = 0, so
Eq. (24) impliesM̄θ̄ = 0, and Eq. (29) implies̄λ = 0.
From Eq. (25), we have(θ̄,∆1Mθ̄) = 0. Computing
the inner product of̄θ and Eq. (30), we find that∆1λ
= 0. Multiplying Eq. (30) by the pseudoinversēM−

from left, we have

∆1θ =−M̄−∆1Mθ̄, (32)

where we have noted that̄θ is the null vector ofM̄
(i.e., M̄θ̄ = 0) and henceM̄−M̄ (≡ Pθ̄) represents
orthogonal projection alonḡθ. We have also noted
that equating the first order terms in the expansion of
‖θ̄+∆1θ+∆2θ+ · · · ‖2 = 1 results in(θ̄,∆1θ) = 0so
Pθ̄∆1θ = ∆1θ. Substituting Eq. (32) into Eq. (31), we
can express∆2λ in the form

∆2λ =
(θ̄,∆2Mθ̄)− (θ̄,∆1MM̄−∆1Mθ̄)

(θ̄,Nθ̄)
=

(θ̄,Tθ̄)
(θ̄,Nθ̄)

,

(33)
where

T = ∆2M−∆1MM̄−∆1M. (34)

Next, we consider the second order error∆2θ.
Sinceθ̄ is a unit vector and does not change its norm,
we are interested in the error component orthogonal
to θ̄. We define the orthogonal component of∆2θ by

∆⊥
2 θ = Pθ̄∆2θ (= M̄−M̄∆2θ). (35)

Multiplying Eq. (31) byM̄− from left and substituting
Eq. (32), we obtain

∆⊥
2 θ=∆2λM̄−Nθ̄+ M̄−∆1MM̄−∆1Mθ̄− M̄−∆2Mθ̄

=
(θ̄,Tθ̄)
(θ̄,Nθ̄)

M̄−Nθ̄− M̄−Tθ̄. (36)

6 COVARIANCE AND BIAS

6.1 General Algebraic Fitting

From Eq. (32), we see that the leading term of the
covariance matrix of the solutionθ is given by

V [θ]=E[∆1θ∆1θ⊤] = M̄−E[(∆1Mθ)(∆1Mθ)⊤]M̄−

=
1

N2 M̄−E
[ N

∑
α=1

(∆ξα,θ)ξ̄α

N

∑
β=1

(∆ξβ,θ)ξ̄⊤β
]

M̄−

=
1

N2 M̄−
N

∑
α,β=1

(θ,E[∆ξα∆ξ⊤β ]θ)ξ̄αξ̄⊤β M̄−

=
σ2

N2 M̄−
( N

∑
α=1

(θ,V0[ξα]θ)ξ̄αξ̄⊤α
)

M̄−

=
σ2

N
M̄−M̄′M̄−, (37)

where we define

M̄′ =
1
N

N

∑
α=1

(θ̄,V0[ξα]θ)ξ̄αξ̄⊤α . (38)

In the derivation of Eq. (37), we have noted thatξα is
independent for differentα and thatE[∆1ξα∆1ξ⊤β ] =

δαβσ2V0[ξα], whereδαβ is the Kronecker delta. The
important observation is that the covarinace matrix
V [θ] of the solutionθ does not depend on the nor-
malization weightN. This implies thatall algebraic
methods have the same the covariance matrix in the
leading order, so we are unable to reduce the covari-
ance ofθ by adjustingN. Yet, the Taubin method is
known to be far accurate than the least squares. We
will show that this stems from the bias terms and that
a superior method can result by reducing the bias.

SinceE[∆1θ] = 0, there is no bias in the first order:
the leading bias is in the second order. In order to
evaluate the second order biasE[∆⊥

2 θ], we evaluate
the expectation ofT in Eq. (34). We first consider the
termE[∆2M]. From Eq. (26), we see that

E[∆2M]=
1
N

N

∑
α=1

(

ξ̄αE[∆2ξα]
⊤+E[∆1ξα∆1ξ⊤α ]

+E[∆2ξα]ξ̄⊤α
)

=
σ2

N

N

∑
α=1

(

ξ̄αe⊤13+V0[ξα]+ e13ξ̄⊤α
)

=σ2
(

NT +2S [ξ̄ce⊤13]
)

, (39)

where we have noted the definition in Eq. (20) and
used Eq. (22). The symbolS [ · ] denotes symmetriza-
tion (S [A] ≡ (A+A⊤)/2), and the vectors̄ξc ande13
are defined by
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ξ̄c =
1
N

N

∑
α=1

ξ̄α, e13 =
(

101000
)⊤

. (40)

We next consider the termE[∆1MM̄−∆1M]. It has the
form (see Appendix for the derivation)

E[∆1MM̄−∆1M] =
σ2

N2

N

∑
α=1

(

tr[M̄−V0[ξα]]ξ̄αξ̄⊤α

+(ξ̄α,M̄−ξ̄α)V0[ξα]+2S [V0[ξα]M̄−ξ̄αξ̄⊤α ]
)

, (41)

where tr[ · ] denotes the trace. From Eqs. (39) and (41),
the matrixT in Eq. (34) has the following expectation:

E[T] = σ2
(

NT +2S [ξ̄ce⊤13]

−
1

N2

N

∑
α=1

(

tr[M̄−V0[ξα]]ξ̄αξ̄⊤α +(ξ̄α,M̄−ξ̄α)V0[ξα]

+2S [V0[ξα]M̄−ξ̄αξ̄⊤α ]
))

. (42)

Thus, the second order error∆⊥
2 θ in Eq. (36) has the

following bias:

E[∆⊥
2 θ] = M̄−

( (θ̄,E[T]θ̄)
(θ̄,Nθ̄)

Nθ̄−E[T]θ̄
)

. (43)

6.2 Least Squares

Eq. (42) implies(ξ̄c, θ̄) = 0 and(ξ̄α, θ̄) = 0. Hence,
E[T]θ̄ can be written as

E[T]θ̄ = σ2
(

NTθ̄+(A+C)ξ̄c

−
1

N2

N

∑
α=1

(

(ξ̄α,M̄−ξ̄α)V0[ξα]θ̄+(θ̄,V0[ξα]M̄−ξ̄α)ξ̄α
))

.

(44)

If we let N = I, we obtain the least squares fit. Its
leading bias is

E[∆⊥
2 θ] = M̄−

(

(θ̄,E[T]θ̄)θ̄−E[T]θ̄
)

=−M̄−(I− θ̄θ̄⊤)E[T]θ̄ =−M̄−E[T]θ̄, (45)

where we have used the following equality:

M̄−(I− θ̄θ̄⊤) = M̄−Pθ̄ = M̄−M̄M̄− = M̄−. (46)

From Eqs. (44), and (45), the leading bias of the least
square has the following form:

E[∆⊥
2 θ] =−σ2M̄−

(

NTθ̄+(A+C)ξ̄c

−
1

N2

N

∑
α=1

(

(ξ̄α,M̄−ξ̄α)V0[ξα]θ̄+(θ̄,V0[ξα]M̄−ξ̄α)ξ̄α
))

.

(47)

6.3 Taubin Method

Eq. (44) implies(ξ̄c, θ̄) = 0 and(ξ̄α, θ̄) = 0. Hence,
(θ̄,E[T]θ̄) can be written as

(θ̄,E[T]θ̄)

=σ2
(

(θ̄,NTθ̄)−
1

N2

N

∑
α=1

(ξ̄α,M̄−ξ̄α)(θ̄,V0[ξα]θ̄)
)

=σ2
(

(θ̄,NTθ̄)−
1

N2

N

∑
α=1

tr[M̄−ξ̄αξ̄⊤α ](θ̄,V0[ξα]θ̄)
)

=σ2
(

(θ̄,NTθ̄)−
1

N2 tr[M̄−
N

∑
α=1

(θ̄,V0[ξα]θ̄)ξ̄αξ̄⊤α ]
)

=σ2(θ̄,NTθ̄)−
σ2

N
tr[M̄−M̄′], (48)

where we have used Eq. (38). If we letN = NT, we
obtain the Taubin method. Thus, the leading bias of
the Taubin fit has form

E[∆⊥
2 θ] =−σ2M̄−

(

qNTθ̄+(A+C)ξ̄c

−
1

N2

N

∑
α=1

(

(ξ̄α,M̄−ξ̄α)V0[ξα]θ̄+(θ̄,V0[ξα]M̄−ξ̄α)ξ̄α

))

,

(49)

where we put

q =
1
N

tr[M̄−M̄′]

(θ̄,NTθ̄)
. (50)

Comparing Eqs. (49) and (47), we notice that the only
difference is thatNTθ̄ in Eq. (47) is replaced byqNTθ̄
in Eq. (49). We see from Eq. (50) thatq < 1 whenN
is large. This can be regarded as one of the reasons
of the high accuracy of the Taubin method, as already
pointed out by Kanatani (2008).

6.4 Hyperaccurate Algebraic Fit

Now, we present our main contribution of this paper.
Our proposal is to chose the weightN to be

N = NT +2S [ξ̄ce⊤13]−
1

N2

N

∑
α=1

(

tr[M̄−V0[ξα]]ξ̄αξ̄⊤α

+(ξ̄α,M̄−ξ̄α)V0[ξα]+2S [V0[ξα]M̄−ξ̄αξ̄⊤α ]
)

. (51)

Then, we haveE[T] = σ2N from Eq. (42), and
Eq. (43) becomes

E[∆⊥
2 θ] = σ2M̄−

( (θ̄,Nθ̄)
(θ̄,Nθ̄)

N−N
)

θ̄ = 0. (52)

Since Eq. (51) contains the true valuesξ̄α andM̄, we
evaluate them by replacing the true values(x̄α, ȳα) in
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(a) (b)

Figure 1: (a) 31 points on an ellipse. (b) Instances of fitted
ellipses forσ = 0.5. 1. Least squares. 2. Taubin method. 3.
Proposed method. 4. Maximum likelihood. The true shape
is indicated in dashed lines.

θ

∆ θ

θ

O

Figure 2: The true valuēθ, the computed valueθ, and its
orthogonal component∆θ to θ̄.

their definitions by the observations(xα,yα). This
does not affect our result, because expectations of
odd-order error terms vanish and hence the error in
Eq. (52) is at mostO(σ4). Thus, the second order
bias is exactly 0. After the terminology used by Al-
Sharadqah and Chernov (2009) for their circle fitting
method, we call our method using Eq. (51) “hyperac-
curate algebraic fitting”.

7 NUMERICAL EXPERIMENTS

We placed 31 equidistant points in the first quadrant
of the ellipse shown in Fig. 1(a). The major and the
minor axis are 100 and 50 pixel long, respectively.
We added to thex- andy-coordinates of each point
independent Gaussian noise of mean 0 and standard
deviationσ and fitted an ellipse by least squares, the
Taubin method, our proposed method, and maximum
likelihood4. Figure 1(b) shows fitted ellipses for some
noise instance ofσ = 0.5.

Since the computed and the true valuesθ andθ̄ are
both unit vectors, we define their discrepancy∆θ by
the orthogonal component

∆θ = Pθ̄θ, (53)

wherePθ̄ (≡ I− θ̄θ̄) is the orthogonal projection ma-
trix along θ̄. (Fig. 2). Figures 3(a) and (b) plot for
variousσ the biasB and the RMS (root-mean-square)

4We used the FNS of Chojnacki et al. (2000). See
Kanatani and Sugaya (2007) for the details.

(a) (b)

Figure 3: The bias (a) and the RMS error (b) of the fitting to
the data in Fig. 1(a). The horizontal axis is for the standard
deviationσ of the added noise. 1. Least squares. 2. Taubin
method. 3. Proposed method. 4. Maximum likelihood
(interrupted due to nonconvergence). The dotted line in (b)
shows the KCR lower bound.

errorD defined by

B=
∥

∥

∥

1
10000

10000

∑
a=1

∆θ(a)
∥

∥

∥
,

D=

√

1
10000

10000

∑
a=1

‖∆θ(a)‖2, (54)

whereθ(a) is the solution in theath trial. The dot-
ted line in Fig. 3(b) shows the KCR lower bound
(Kanatani, 1996; Kanatani, 2008) given by

DKCR = σ

√

tr[
( N

∑
α=1

ξ̄αξ̄⊤α
(θ̄,V0[ξα]θ̄)

)−
]. (55)

Standard linear algebra routines for solving the
generalized eigenvalue problem in the form of
Eq. (15) assumes that the matrixN is positive defi-
nite. As can be seen from Eq. (17), however, the ma-
trix NT for the Taubin method is positive semidefinite
having a row and a column of zeros. The matrixN in
Eq. (51) is not positive definite, either. This causes no
problem, because Eq. (15) can be written as

Nθ =
1
λ

Mθ. (56)

Since the matrixM in Eq. (14) is positive definite for
noisy data, we can solve Eq. (56) instead of Eq. (15),
using a standard routine. If the smallest eigenvalue of
M happens to be 0, it indicates that the data are all ex-
act; any method, e.g., LS, gives an exact solution. For
noisy data, the solutionθ is given by the generalized
eigenvector of Eq. (56) for the generalized eigenvalue
1/λ with the largest absolute value.

As we can see from Fig. 3(a), the least square
solution has a large bias, as compared to which the
Taubin solution has a smaller bias, and our solution
has even smaller bias. Since the least squares, the
Taubin, and our solutions all have the same covari-
ance matrix to the leading order, the bias is the deci-
sive factor for their accuracy. This is demonstrated in
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Figure 4: Left: Edge image containing a small elliptic edge
segment (red). Right: Ellipses fitted to 155 edge points
overlaid on the original image. From inner to outer are the
ellipses computed by least squares (pink), Taubin method
(blue), proposed method (red), and maximum likelihood
(green). The proposed and Taubin method compute almost
overlapping ellipses.

Fig. 3(b): The Taubin solution is more accurate than
the least squares, and our solution is even more accu-
rate.

On the other hand, the ML solution, which mini-
mizes the Mahalanobis distance rather than the alge-
braic distance, has a larger bias than our solution, as
shown in Fig. 3(a). Yet, since the covariance matrix
of the ML solution is smaller than Eq. (38) (Kanatani,
2008), it achieves a higher accuracy than our solution,
as shown in Fig. 3(b). However, the ML computation
may not converge in the presence of large noise. In-
deed, the interrupted plots of ML in Figs. 1(a) and (b)
indicate that the iterations did not converge beyond
that noise level. In contrast, our method, like the least
squares and the Taubin method, is algebraic, so the
computation can continue for however large noise.

The left of Fig. 4 is an edge image where a short
elliptic arc (red) is visible. We fitted an ellipse to the
155 consecutive edge points on it by least squares,
the Taubin method, our method, and ML. The right
of Fig. 4 shows the resulting ellipses overlaid on the
original image. We can see that the least squares solu-
tion is very poor, while the Taubin solution is close to
the true shape. Our method and ML are slightly more
accurate, but generally the difference is very small
when the number of points is large and the noise is
small as in this example.

8 CONCLUSIONS

We have presented a new algebraic method for fitting
an ellipse to a point sequence extracted from images.
The method known to be of the highest accuracy is
maximum likelihood, but it requires iterations, which
may not converge in the presence of lage noise. Also,
an appropriate initial must be given. Our proposed
method is algebraic and does not require iterations.

The basic principle is minimization of the alge-

braic distance. However, the solution depends on
what kind of normalization is imposed. We exploited
this freedom and derived a best normalization in such
a way that the resulting solution has no bias up to the
second order, invoking the high order error analysis
of Kanatani (2008). Numerical experiments show that
our method is superior to the Taubin method, also an
algebraic method and known to be very accurate.
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APPENDIX

The expectationE[∆1MM̄−∆1M] is computed as fol-
lows:

E[∆1MM̄−∆1M]

=E[
1
N

N

∑
α=1

(

ξ̄α∆1ξ⊤α +∆1ξαξ̄⊤α
)

M̄− 1
N

N

∑
β=1

(

ξ̄β∆1ξ⊤β

+∆1ξβξ̄⊤β
)

]

=
1

N2

N

∑
α,β=1

E[(ξ̄α∆1ξ⊤α +∆1ξαξ̄⊤α )M̄
−(ξ̄β∆1ξ⊤β

+∆1ξβξ̄⊤β )]

=
1

N2

N

∑
α,β=1

E[ξ̄α∆1ξ⊤α M̄−ξ̄β∆1ξ⊤β+ξ̄α∆1ξ⊤α M̄−∆1ξβξ̄⊤β

+∆1ξαξ̄⊤α M̄−ξ̄β∆1ξ⊤β +∆1ξαξ̄⊤α M̄−∆1ξβξ̄⊤β ]

=
1

N2

N

∑
α,β=1

E[ξ̄α(∆1ξα,M̄−ξ̄β)∆1ξ⊤β

+ξ̄α(∆1ξα,M̄−∆1ξβ)ξ̄⊤β +∆1ξα(ξ̄α,M̄−ξ̄β)∆1ξ⊤β
+∆1ξα(ξ̄α,M̄−∆1ξβ)ξ̄⊤β ]

=
1

N2

N

∑
α,β=1

E[(∆1ξα,M̄−ξ̄β)ξ̄α∆1ξ⊤β

+(∆1ξα,M̄−∆1ξβ)ξ̄αξ̄⊤β +(ξ̄α,M̄−ξ̄β)∆1ξα∆1ξ⊤β
+∆1ξα(M̄−∆1ξβ, ξ̄α)ξ̄⊤β ]

=
1

N2

N

∑
α,β=1

E[ξ̄α((M̄−ξ̄β)
⊤∆1ξα)∆1ξ⊤β

+tr[M̄−∆1ξβ∆1ξ⊤α ]ξ̄αξ̄⊤β +(ξ̄α,M̄−ξ̄β)∆1ξα∆1ξ⊤β
+∆1ξα(∆1ξ⊤β M̄−ξ̄α)ξ̄⊤β ]

=
1

N2

N

∑
α,β=1

(

ξ̄αξ̄⊤β M̄−E[∆1ξα∆1ξ⊤β ]

+tr[M̄−E[∆1ξβ∆1ξ⊤α ]]ξ̄αξ̄⊤β
+(ξ̄α,M̄−ξ̄β)E[∆1ξα∆1ξ⊤β ]

+E[∆1ξα∆1ξ⊤β ]M̄
−ξ̄αξ̄⊤β

)

=
σ2

N2

N

∑
α,β=1

(

ξ̄αξ̄⊤β M̄−δαβV0[ξα]

+tr[M̄−δαβV0[ξα]]ξ̄αξ̄⊤β +(ξ̄α,M̄−ξ̄β)δαβV0[ξα]

+δαβV0[ξα]M̄−ξ̄αξ̄⊤β
)

=
σ2

N2

N

∑
α=1

(

ξ̄αξ̄⊤α M̄−V0[ξα]

+tr[M̄−V0[ξα]]ξ̄αξ̄⊤α +(ξ̄α,M̄−ξ̄α)V0[ξα]

+V0[ξα]M̄−ξ̄αξ̄⊤α
)

=
σ2

N2

N

∑
α=1

(

tr[M̄−V0[ξα]]ξ̄αξ̄⊤α +(ξ̄α,M̄−ξ̄α)V0[ξα]

+2S [V0[ξα]M̄−ξ̄αξ̄⊤α ]
)

(57)
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