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Abstract: We present TopMesh, a tool for extracting topological information from non-manifold three-dimensional 
objects with parts of non-uniform dimensions. The boundary of such objects is discretized as a mesh of 
triangles and of dangling edges, representing one-dimensional parts of the object. The geometrical and 
topological information extracted include the number of elements in the mesh, the number of non-manifold 
singularities and the Betti numbers, which characterize the topology of an object independently of the 
discretization of its boundary. TopMesh also computes a decomposition of the mesh into connected parts of 
uniform dimension, into edge-connected components formed by triangles, and into oriented edge-connected 
sub-meshes. We describe the functionalities of TopMesh and the algorithms implementing them. 

1 INTRODUCTION 

A 3D object is most commonly described through a 
discretization of its boundary into a mesh consisting 
of triangles and of dangling edges, which do not 
bound any triangle. We call these meshes, known in 
algebraic topology as simplicial meshes, triangle-
segment meshes. They are common in a variety of 
application domains, including computer graphics, 
solid modeling, finite element analysis, virtual 
reality, animation and scientific visualization. 
Triangle-segment meshes are specifically well suited 
for describing complex non-manifold objects. 
Informally, a manifold 3D object is an object in 
which the neighbourhood of every point on its 
boundary is topologically equivalent to a disk, or to 
a half disk. If the boundary of the object is 
triangulated, the manifold condition translates into 
the fact that the set of triangles incident at any vertex 
form a disk, or a half disk. Objects, that do not fulfil 
this property at one or more points, are called non-
manifold, and if they also contain parts of different 
dimensionalities, are called non-regular. 

While  there exist tools to extract  geometric  and 

topological information from manifold shapes, much 
less work exists on extracting such information from 
non-manifold ones. TopMesh is a tool for the 
extraction of topological information about a 3D 
object based on an analysis of its combinatorial 
representation. The basic idea, here, is translating 
topological properties in the continuum case into 
combinatorial properties of the discrete 
representation of the object as a triangle-segment 
mesh.  

Triangle-segment meshes arise from the 
idealization of manifold triangular meshes obtained 
by the discretization of CAD models for finite 
element analysis.  

Features of TopMesh are related to the extraction 
of non-manifold singularities, parts of the object 
boundary with different degrees of connectivity, and 
with different dimensions. Moreover, TopMesh 
allows computing a topological signature for a 3D 
object, given by the so-called the Betti numbers. 
Betti numbers provide a characterization of the 
topology of the object independent of the 
discretization of its boundary, which is particularly 
useful in shape analysis and retrieval. Betti numbers 
are topological quantities corresponding to the 
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connectivity of the object and to number of through-
holes or handles, and of hollow cavities in the 
object.  

TopMesh is implemented based on a library for 
encoding and manipulating triangle-segment 
meshes, the Triangle-Segment (TS) Library, freely 
available in (AIM@SHAPE, 2007). 

The reminder of this paper is organized as 
follows. In Section 2, we provide the mathematical 
background with definitions and intuitive 
descriptions. In Section 3, we discuss related work, 
while in Section 4 we briefly describe the TS data 
structure. Section 5 is devoted to the description of 
the main functionalities of TopMesh, and in Section 
6 we focus on the extraction of the Betti numbers. In 
Section 7, we presents results obtained on specific 
non-manifold datasets. Finally, in Section 8 we draw 
some concluding remarks.  

2 BACKGROUND NOTIONS 

In this Section, we introduce fundamental definitions 
as basis for our work.  

We call a triangle-segment mesh any two-
dimensional mesh discretizing the boundary of a 
non-manifold and non-regular three-dimensional 
object. Thus, a triangle-segment mesh is a two-
dimensional simplicial complex embedded in the 
three dimensional Euclidean space (Agoston, 2005). 

The basic entities in a triangle-segment mesh are 
triangles, edges that do not bound any triangles, that 
we call wire-edges, and vertices. The collection of 
all the vertices and edges of a triangle-segment mesh 
 form the 1- skeleton of the mesh.  

The star of a vertex v is defined as the set of 
triangles and edges that are incident at v. The link of 
v is defined as the set of edges and vertices in the 
star of v which are not incident in v (Agoston, 2005). 
Figure 1(a) and Figure 1 (b) show, respectively, the 
star and the link of a vertex. In a similar way, the 
star of an edge e is the set of triangles that are 
incident at e. The link of e is the set of vertices of 
the triangles in the star of e which are not extreme 
vertices e. Figure 1 (c) and Figure 1 (d) show, 
respectively, the star and the link of an edge. 

A triangle-segment is connected when its 1-
skeleton is a connected graph. A triangle-segment is 
edge-connected when, for every pair of triangles t1 
and t2 of , there is a path in  composed of an 
alternating sequence of triangles and edges such that 
any edge in the path is shared by two triangles 
preceding and following it. A triangle-segment mesh 
without wire-edges is just a triangle mesh. If it 

contains at least one edge that is bounding exactly 
one triangle, it is called a triangle mesh with 
boundary.  

v v
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 (a)  (b) (c) (d) 

Figure 1: The star and the link of a vertex and an edge: (a) 
the star of vertex v; (b) the link of vertex v ; (c) the star of 
edge e; (d) the link of edge e. 

A vertex v in a triangle-segment mesh is a 
manifold vertex if its link consists of one or two 
vertices, i.e., v belongs only to one or two wire-
edges, or if the link of v consists of a closed or open 
chains of edges, i.e., v is shared by a fan of triangles 
forming a full disk (as in the example Figure 1(a)) or 
a half disk (in this latter case v is a boundary vertex). 
An edge is a manifold edge if its link consists of one 
or two vertices (as in the example Figure 1(c)). 

A vertex, or an edge which does not satisfy the 
above properties is called a non-manifold vertex or 
non-manifold edge, respectively. Examples of non-
manifold vertices and edges are shown in Figure 2, as 
their relative links.  

e  e
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     (a)    (b)      (c)      (d) 

Figure 2: (a) The star of non-manifold vertex v consists of 
three components, one of which is a wire-edge and two of 
which consist of triangles; (b) The link of v for the 
example in (a); (c) The star of non-manifold edge e 
consists of three triangles; (d) The link of e for the 
example in (c) consists of three vertices. 

The fundamental characterization of a three-
dimensional object is given by its Betti numbers β0, 
β1 and β2 (Agoston, 2005). Specifically, β0 is the 
number of connected components, β1 is the number 
of 1-cycles, and β2 is the number of 2-cycles. 
Intuitively, the 1-cycles define the independent 
tunnels, or handles, while the 2-cycles are parts of 
the object which enclose empty space (voids). A 2-
cycle C in a triangle-segment mesh  can be viewed 
as an edge-connected component of  without 
boundary, such that the three-dimensional region 
enclosed by C is connected, that is, every two points 
in the region can be joined by a curve which does 
not intersect any simplex of . Figure 3(a) shows an 
example of an object with one 1-cycle and one 2-
cycle (the cube), while Figure 3(b) shows an example 
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of an object with two 2-cycles (the two cubes 
sharing a face). The Betti numbers are topological 
invariants and are independent of the way the object 
boundary is discretized.  

On the other hand, the quantity β0-β1+β2, which 
is called the Euler characteristic of the object, is 
related by Euler Poincare’s formula 

 

n – e + f = β0 – β1 + β2 (1)
 

where n is the number of vertices, e the number 
of edges, and f the number of triangles in the 
triangle-segment mesh discretizing the object 
boundary. 

 
 (a)  (b) 

Figure 3: (a) An object formed by one 2-cycle and one 1-
cycle; for this object: β0=β1=β2=1); (b) an object with two 
2-cycles, each of which is the interior of a parallelepiped: 
for this object: β0=1 β1=0 and β2=2). 

3 RELATED WORK 

In this Section, we review some related work on 
topological segmentation of non-manifold shapes 
and on the computation of topological invariants. 

In the literature, several techniques have been 
proposed for segmenting the boundary of a 3D 
manifold shape, see (Shamir, 2006) for a survey. 
Such techniques try to decompose an object into 
meaningful components, i.e., components which can 
be perceptually distinguished from the remaining 
part of the object. Some methods have been 
developed in CAD/CAM for extracting the so-called 
form features, like protrusions, depressions or 
through-holes, which produce a boundary-based 
decomposition of a 3D object guided by geometric, 
topological and semantic criteria, see (Shah, 1991) 
for a survey. 

Much less work has been done on decomposition 
of non-manifold shapes. A common approach to 
represent a non-manifold shape consists of 
decomposing it into manifold components. Some 
techniques have been proposed in the literature for 
decomposing the boundary of regular non-manifold 
3D shapes (called r-sets), i.e., for non-manifold 
shapes which do not contain dangling faces or edges, 
which are described by their boundary. In 
(Falcidieno and Ratto, 1992), the idea of cutting a 

two-dimensional non-manifold shape into manifold 
pieces is exploited to develop compression 
algorithms. In (Delfinado and Edelsbrunner, 1995; 
Desaulnier and Stewart, 1992), a representation 
scheme based on the decomposition of an r-set into 
its manifold parts. In (Rossignac and Cardoze, 
1999), a decomposition algorithm for non-manifold 
shapes is presented which minimizes the number of 
duplications introduced by the decomposition 
process. In (Pesco et al., 2004) the authors propose a 
decomposition of a 2D cell complex based on a 
combinatorial stratification of the complex, inspired 
by Whitney stratification and a set of topological 
operators for manipulating it.  

In (Delfinado and Edelsbrunner, 1995) an 
incremental algorithm is proposed for computing the 
ranks of the homology groups (Betti numbers)  for  
simplicial 3-complexes embeddable in the three-
dimensional Euclidean space R3.  

The basic idea is to build a complex by adding 
one simplex at a time, and at each step the Betti 
numbers are updated to reflect the changes in the 
homology groups. 

The authors discuss implementations of the 
algorithm that run in time O(n(n)) and O(n), where 
n is the number of simplexes in the complex. 

(Dey and Guha, 1998) present an approach to 
compute the generators of the homology groups for 
compacted triangulated 3-manifolds in R3. Then, 
they show that this approach can be applied to 
arbitrary simplicial complexes in R3, after thickening 
the complex to produce a 3-manifold homotopic to 
it. Finally, a classical algebraic approach to the 
computation of homology groups is discussed in 
(Gueziec et al., 1998). 

4 THE TS LIBRARY 

We recall that a triangle-segment mesh is encoded as 
a Triangle-Segment (TS) data structure. The TS data 
structure is the non-manifold extension of the 
indexed data structure with adjacencies, which is the 
most common representation for triangle meshes. It 
is compact and scalable and it supports efficient 
navigation algorithms (De Floriani et al., 2004). The 
TS data structure encodes the triangles, wire-edges 
and vertices of the mesh. The wire-edges and the 
triangles are represented by encoding relations wire-
edge-vertex and triangle-vertex, respectively. 
 For each wire edge e, wire-edge-vertex relation 

associates the two extreme vertices with edge e;  
 For each triangle t, the triangle-vertex relation 

associates  triangle  t  with its  three  vertices (see 
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Figure 4 (a)). 
The relation among a triangle t and its edge-

adjacent triangles may involve an arbitrary number 
of triangles along each edge of t, since an edge can 
be non-manifold.  

For compactness, the TS data structure stores, for 
each edge e of a triangle t, the two triangles that are 
immediately preceding and succeeding t around e, 
when the triangles incident at e are sorted in counter-
clockwise order around e, as shown in Figure 4 (b)). 
We call such relation the partial triangle-triangle-at-
edge relation The counter-clockwise order of an 
edge e is defined by considering one of the two 
possible orientations of e and by applying the right-
hand rule with the thumb pointing consistently with 
vu, if e = (v, u) and the orientation vu is chosen 
for e. If edge e is an interior manifold edge, the 
predecessor and the successor are identical and 
consist of the only other triangle t′ which share e 
with t (see Figure 4 (c)). When there is no triangle 
adjacent to t along e, the predecessor and the 
successor of t are both t.  

 
 (a) (b) 

 
 (c) (d) (e) 

Figure 4: Topological information encoded in the TS data 
structure for a triangle t (a), for an edge e (b) (c) and for a 
vertex v (d) (e). 

To simplify the task of navigating the mesh 
around a vertex, the TS data structure encodes for 
each vertex v (see Figure 4 (d-e))  

(i) the vertex-triangle relation, which 
associates with v one triangle for each edge-
connected component in the star of v;  
(ii) the vertex-wire-edge relation which 
associates with v all the wire edges incident at 
vertex v. 
All the topological relations among the entities in 

the TS data structure (vertices, wire-edges and 
triangles) can be extracted in time linear in the 
number of entities involved in the relations (De 
Floriani et al., 2004).  The source code of the TS 
data structure library is freely available in an online 
tool repository (AIM@SHAPE, 2007).  

5 BASIC FUNCTIONALITIES 

We present here the basic functionalities of 
TopMesh, and describe the algorithms for extracting 
the topological information on which it is based. 
TopMesh extracts the following topological 
information from an object whose boundary is 
discretized as a triangle-segment mesh: 
 non-manifold singularities: non-manifold 
vertices, non-manifold edges and wire-edges; 
 components with various degrees of 
connectivity, namely connected components, 
wire-webs, which are maximal connected 
components formed by the wire-edges, and edge-
connected components, which describe the parts 
of the object which do not contain non-manifold 
vertices; 
In the following subsections we show how, 

relying on the TS data structure, TopMesh extracts 
the information listed above. In Section 6, we 
describe the computation of the Betti numbers, and 
specifically, we propose an algorithm for computing 
the number of 2-cycles. 

5.1 Extracting Non-manifold 
Singularities 

We consider a triangle-segment mesh encoded in a 
TS data structure. Wire-edges are explicitly encoded 
in the TS and thus their retrieval and counting is 
trivial.  

A non-manifold vertex v is identified by 
counting the number of connected components in the 
link of v. This is performed by considering the 
vertex-triangle and vertex-wire-edge relations at v 
encoded in the TS data structure: v is manifold if 
only one of the two relations is not empty, and  

(i) if the vertex-triangle relation is not empty, 
and it consists only one triangle; or  
(ii) if the vertex-wire-edge relation is not 
empty, and it consists of either one or two wire-
edges. 
Otherwise vertex v is non-manifold. 
A non-manifold edge e is detected by 

considering a triangle t incident at e and checking 
whether t has a predecessor and successor in the 
triangle-triangle-at-edge relation of t at e in the TS 
data structure, which are different. Otherwise edge e 
is manifold. 

5.2 Extracting Connected Components 
and Wire-webs 

Connected  components of a  triangle-segment  mesh 
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 are identified by applying a connected component 
labeling algorithm to . This is performed as a 
breadth-first traversal in the TS data structure. The 
traversal of each connected component starts at an 
arbitrary unvisited vertex v of , and visits all 
triangles in the vertex-triangle relation encoded in 
the TS data structure, and all the wire-edges in the 
vertex-wire-edge relation at v. Then, all the vertices 
which are bounding such triangles and wire-edges 
are considered, and if they are not visited, they are 
inserted in a queue Q.  

The traversal continues by extracting the first 
vertex in the queue and considering it as current 
vertex. A connected component is completely 
traversed when the queue is empty. By repeating this 
traversal process until no unvisited vertex is left, all 
the connected components are retrieved.  

Wire-webs are connected components formed 
only of wire-edges. To detect and count such 
components, a traversal similar to the one described 
above is performed, but, at each vertex v, only the 
incident wire-edges are considered. 

The edge-connected components are computed 
by considering the sub-mesh ′ obtained from the 
original one  by eliminating all the wire-webs. The 
edge-connected components correspond to 
connected components of the dual graph 
representing ′. In the dual graph, the nodes 
correspond to the triangles of ′ and the arcs to the 
edges shared by two or more triangles.  

Edge-connected components are extracted from 
the TS data structure starting from an arbitrary 
triangle t of ′. For each edge e of t, all the triangles 
incident at e are extracted, marked as visited and 
inserted in a queue Q. Then, the first triangle in Q is 
extracted and the traversal is repeated from such 
triangle.  

An edge-connected component is completely 
traversed when Q is empty. By repeating this 
traversal process until no unvisited triangle is left, all 
the edge-connected components are found.  

It can be easily seen that all the above algorithms 
have a time complexity which is linear in the size of 
the mesh. 

6 COMPUTING BETTI 
NUMBERS 

In this Section, we show how to compute a 
topological signature of a 3D object based on its 
Betti numbers β0, β1 and β2. Recall that β0 is the 

number of connected components, β1 is the number 
of 1-cycles, and β2 is the number of 2-cycles. 

Given a 3D object represented as a triangle-
segment mesh encoded with the TS data structure, β0 
can be computed as the total number of the 
connected components, β2 needs to be computed by 
extracting oriented sub-meshes of the edge-
connected components which enclose voids. Finally, 
β1 is obtained from Euler-Poincare’s formula by 
computing the number of vertices, edges and 
triangles in the mesh. Thus, the main step, here, is to 
compute β2. 

In the following subsections, we first provide 
basic definitions and successively we present the 
algorithm for computing the number of 2-cycles. 

6.1 Oriented and Folded Surfaces  

The algorithm for computing the Betti number β2 of 
a triangle-segment mesh  is based on the concepts 
of triangle sides, oriented surfaces and folded 
surfaces.  

A triangle t has two triangle sides (with opposite 
normals) defined by the two possible orderings of its 
vertices. Each triangle side induces an orientation on 
each of its edges. In Figure 5 (a) an example is shown 
where the edge connecting vertices a and b has 
orientation ab on one triangle side, and ba on 
the opposite side. Two triangle sides are adjacent at 
their common edge e if one is reachable from the 
other by crossing e.  

For each edge-connected component  in the 
mesh, we can extract connected collections of 
triangle sides for the triangles in , that we call 
oriented surfaces. An oriented surface is a maximal 
edge-connected set of triangles sides, such that, for 
each pair of triangle sides s′, s′′ in the set sharing an 
edge e, s′ is the successor of s′′ according to one 
orientation of e, and s′′ is the successor of s′ 
according to the opposite orientation of e. In other 
words, the two triangle sides that belong to two 
different triangles, which share a common edge, 
induce an opposite orientation on their common 
edge (see Figure 5 (b)). 

To clarify the definition of oriented surface, let 
us consider the example shown in Figure 5 (c). 
Imagine an ant walking on the upper side of triangle 
t (that is T1).  

It reaches the triangle side U1 by crossing edge 
(a, b). It reaches the opposite side of t (T2) by 
crossing edge (a, c), because (a, c) is a boundary 
edge. An oriented surface is basically the surface 
formed by all the triangle sides that are reachable by 
a walking ant. 
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An oriented surface may enclose a void. An 
oriented surface S with boundary, such that for each 
triangle side s that belongs to S the other side s′′ of 
the same triangle also belongs to S, cannot enclose 
any void.  

 

a 

b 

c
a 

b 

c 

 a 
 b 

 c   c 

 a 
b

 
 (a) (b) 
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c 
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V2

V1

U1  U2 

T2 

T1 

 
(c) 

Figure 5: (a) Example of the two possible triangle sides for 
a triangle t (b) example of adjacency between two triangle 
sides. (c) example for an oriented surface. An oriented 
surface is basically the surface formed by all the triangle 
sides that are reachable (via adjacency) by a walking ant. 

We call such oriented surface a folded surface. If 
an edge-connected component  consists of only one 
oriented surface, it must be a folded surface.  may 
consist of two surfaces, as it is always the case if it 
contains only manifold edges.  

For instance, if  is a triangulated sphere, it 
consists of two oriented surfaces, each of which 
corresponding to an orientation of the surface of the 
sphere. If  consists of two triangulated cubes 
sharing a face, then there are three oriented surfaces 
associated with it, namely the two cubes with 
normals pointing towards the inside and the oriented 
surface consisting of the union of the two cubes with 
the normals pointing towards the external empty 
space (see Figure 6). 

It can be easily seen that, if we consider an edge-
connected component  of the original mesh, there 
exists exactly one oriented surface in the set of 
oriented surfaces associated with it, that we denote 
Sout, such that the normals to the triangle sides 
forming it point towards the outside space.  

Sout defines a cycle of triangles which can be 
expressed as the linear combination of the other 
oriented surfaces associated with . Thus, unlike the 
other oriented surfaces in , Sout does not define a 2-
cycle, since it contains the remaining oriented 
surfaces. 

Note that, if  consists of one folded surface, this 
latter does not define a 2-cycle as well. Since there is 
exactly one oriented surface for each edge-
connected component which does not define a 2-
cycle, we have that the number of 2-cycles in the 
model is equal to the total number of oriented 
surface minus the number of 1-connected 
components. 

(a) 

(b) (c)   

Figure 6: (a) Two triangulated cubes sharing a face; (b) the 
oriented surface with normals pointing towards the 
external space; (c) one of the two oriented surfaces with 
normals pointing towards the enclosed void. 

6.2 Algorithm 

The oriented surfaces in an edge-connected 
component  can be computed by defining a  
di-graph GA on the collection of the triangle sides of 
, that we call the oriented adjacency di-graph of . 
In GA, the nodes are the triangle sides, while there is 
a directed arc from a node s′ to a node s′′ if and only 
if the two sides s′ and s′′ share an edge e, and side s′′ 
is the successor of s′ at e. Note that graph GA may 
contain parallel arcs oriented in the opposite 
direction since two sides of the same triangle can be 
the successors of each other at a boundary edge. 

Figure 7 (a)-(c) show three examples of oriented 
adjacency di-graphs for (a) three triangles sharing a 
non-manifold edge, (b) two triangles sharing a 
manifold edge and (c) a triangle with a boundary 
edge. 

Each strongly connected sub-graph of the 
oriented adjacency di-graph GA defines an oriented 
surface. A strongly-connected component of graph 
GA is any maximal subgraph HA of GA such that any 
node s′′ in HA can be reached from any other node s′ 
of HA through a directed path. If we consider all the 
triangle sides corresponding to the nodes in the 
strongly-connected component HA, they form a 
maximal edge-connected set of triangle sides such 
that any pair of triangle sides s′ and s′′ are connected 
through a path on the complex formed by edge-
adjacent triangles which are consistently oriented. 
Thus, they form an oriented surface. 
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We do not actually build the oriented adjacency 
di-graph, but we simulate it on the TS data structure. 
To this aim, we label each triangle t in the TS data 
structure with two bit flags. 

 
        (a)   (b)      (c) 

Figure 7: (a) Three triangles sharing a non-manifold edge 
e and the corresponding di-graph; (b) Two triangles 
sharing a manifold edge e and the di-graph at e; (c) A 
triangle with a boundary edge e and the di-graph at e. 

The first bit flag corresponds to the side of t 
defined by the order of the vertices of t as the they 
are encoded in the triangle-vertex relation, the 
second one to the opposite side of t. A bit flag is 
equal to 0 if the corresponding side has not been 
visited, it is equal to 1 otherwise. The traversal of 
the directed arcs emanating from a node s′ in the 
oriented adjacency di-graph corresponds to finding 
the successors of triangle side s′ in the TS data 
structure along its three edges which have an 
orientation consistent with s′. Let us consider an 
edge e of s′ and let s′′ be the successor of s′ in the 
oriented surface (and, thus, (s′, s′′) is an arc in GA). 
We consider the triangle t corresponding to s′. Let 
the orientation of e = (v, u) in the TS data structure 
be vu. We consider relation triangle-triangle-at-
edge of t at edge e, which returns the pair (f1, f2), 
where f1 is the successor of t in counter-clockwise 
and f2 is the successor of t in clock-wise order, 
according to the orientation of e.  

Now, s′′ will be a side of f1 chosen in such a way 
that s′′ induces an opposite orientation on edge e 
with respect to the one induced by s′. Note that, if e 
is a boundary edge, than f1=f2=t and s′′ is the other 
side of t with respect to s′. 

Also, since the algorithm performs a visit on the 
di-graph GA and the number of nodes in GA  is 
proportional to the number of triangles and edges in 
the input mesh, the algorithm complexity is linear in 
the size of the mesh. 

 
 
 
 

7 DISCUSSION 

TopMesh is a command line tool written in C++. It 
has been tested on several data sets on a dual-core 
2.66GHz CPU, 1GB RAM WinXP platform. 

In this Section, we show two examples of results 
of the application of TopMesh on non-manifold 
objects. 

Figure 8(a) shows a table fan. It has a wire-web 
component (see Figure 8 (b)) and an edge-connected 
component (see Figure 8 (c)). Figure 8 (d) shows the 
table fan connectivity at non-manifold edges. The 
geometrical and topological data extracted by 
TopMesh for this model are summarized in Table 1. 
TopMesh also extracts the sub-meshes of the input 
meshes forming connected components, wire-webs 
and edge-connected components and also the 
oriented surfaces generated in the process of 
computing β2. 

(a) (b) 

(c) (d)   

Figure 8: A non-manifold model representing a table fan 
(a). This model has a single wire-web in (b) and a single 
edge-connected component in (c). In (d) a zoom showing 
the non-manifold edges. 

Figure 9 (a) shows a non-manifold model 
representing a chandelier. It has a wire-web 
component (see Figure 9 (b)) and 10 different edge-
connected components (two of them are shown in 
Figure 9 (c)-(d)). Figure 9 (e) shows the chandelier 
connectivity at a non-manifold edge., The 
topological data extracted by TopMesh are 
summarized in Table 2. 
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Table 1: Topological information extracted by TopMesh 
from a non-manifold triangle-segment mesh representing a 
table fan. 

Property Value 

Number of triangles 380 

Number of Vertices 325 

Number of edges 846 

Number of wire-edges 272 

Number of non-manifold vertices 145 

Number of non-manifold edges 4 

Number of wire-webs 1 

Number of connected components (0) 1 

Number of edge-connected components 2 

Number of 1-cycles  (1) 143 

Number of 2-cycles  (2) 1 

 

(a) 

  (b)  (c) 

  (d)  (e)   

Figure 9: A non-manifold model representing a chandelier, 
which has a one wire-web (b) and 10 different edge-
connected components - two of them in (c) and (d). In (e) 
chandelier connectivity at a non-manifold edge. 

Table 2: Topological information extracted by TopMesh 
from a non-manifold triangle-segment mesh representing a 
chandelier. 

Property Value 

Number of triangles 18304 

Number of Vertices 9242 

Number of edges 27600 

Number of wire-edges 136 

Number of non-manifold vertices 80 

Number of non-manifold edges 264 

Number of wire-webs 1 

Number of connected components (0) 1 

Number of edge-connected components 10 

Number of 1-cycles  (1) 65 

Number of 2-cycles  (2) 10 

 
A web page presenting TopMesh and showing 

additional results, has been prepared and it is 
available at the following URL: http://ggg.disi. 
unige.it/topmesh/. On the web page the reader can 
eventually find additional material and images of the 
results. 

8 CONCLUDING REMARKS 

We addressed the problem of extracting topological 
characteristics from non-manifold 3D shapes 
containing parts of different dimensions, and 
discretized as simplicial complexes. 

We presented TopMesh as a tool for the 
extraction of topological information by analysing a 
3D object represented as a triangle-segment mesh 
encoded in the TS data structure. We showed how, 
by using the relations of the TS, we are able to 
extract topological information of the input mesh 
and we provived an algorithm for computing the 
topological 3D object signature via the Betti 
numbers.  

Actually, TopMesh is being integrated as a core-
module in a Semantic Web system (Papaleo et al., 
2007; De Floriani et al., 2007), for inspecting 3D 
shapes and for structuring and annotating such 
shapes according to ontology-driven metadata. This 
system has been designed to support researchers in 
reasoning on digital shapes and in improving their 
knowledge about multimedia data available on the 
web.  

As a further activity we want to extend the tool 
for performing a semantic-oriented decomposition of 
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a shape. This decomposition could be applied, for 
example, for classifying form features in simplicial 
shapes obtained as idealization of CAD models in 
the product analysis phase. Also, the decomposition 
can be the basis for a semantic-based annotation of 
complex 3D objects. We plan, also, to extend 
TopMesh in order to manage large non-manifold 
meshes using spatial indexing techniques.  
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