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Abstract: In this paper we show an unsupervised approach how to find the most natural organization of images. Previous
methods which have been proposed to discover the underlying categories or topics of visual objects create no
structure or at least the structure, usually tree-shaped, is defined in advance. This causes a problem since the
most relevant structure of the data is not always known. It is worthwhile to consider a generic way to find
the most suitable structure of images. For this, we apply the model of finding the structural form (among
eight natural forms) to automatically discover the best organization of objects in visual domain. The model
simultaneously finds the structural form and an instance of that form that best explains the data. In addition, we
present a generic structural form, so called meta structure, which can result in even more natural connections
between clusters of images. We show that the categorization results are competitive with the state-of-the-art
methods while giving more generic insight to the connections between different categories.

1 INTRODUCTION

As more and more images and image categories
become available, organizing them is crucial. By
learned organization we can enable a quicker iden-
tification of an unknown object, explore the relations
between the clusters of images and easily find cate-
gories similar to each other. This can help us to obtain
a better classification result.

Recent applications considering previous issues
are presented at least in (Sivic et al., 2008; Bart et al.,
2008; Marszalek and Schmid, 2008). Relations be-
tween categories can also be useful in object recog-
nition and detection, as shown in (Ahuja and Todor-
ovic, 2007; Parikh and Chen, 2007). A drawback here
is that all the previous methods deal with tree-shaped
structures only.

Unsupervised probabilistic latent topic discovery
models like probabilistic Latent Semantic Analysis
(pLSA) and Latent Dirichlet Allocation (LDA), ear-
lier used in text categorization (Blei et al., 2003; Hoff-
mann, 2001), are straightforward to employ in case of
visual data by using visual vocabulary (Sivic et al.,
2005; Bosch et al., 2006). These models create a flat
topic structure where each document has a probabil-
ity of belonging to each topic. To extract the relations
between topics, a hierarchical LDA has recently been
applied to image data in (Sivic et al., 2008). They

showed it to improve the classification accuracy but
this method exploits again only a tree-shaped struc-
ture to describe the relations between topics. A better
way still might be to look more inside the data and
find the structure that best describes it. This way we
can exploit the gained organization most.

In this paper, we simultaneously categorize im-
ages and find the best structure to describe the con-
nections between categories, all in an unsupervised
manner. In other words, we propose a method which
gives us a chance to learn automatically the most nat-
ural structure of images instead of using a fixed struc-
ture. The method we use is based on the algorithm
introduced in (Kemp and Tenenbaum, 2008).

We improve the algorithm to consider also a so
called meta structure. In theory, a meta structure can
adapt to any structure that exists. In addition, we pro-
pose how to add samples to a given structure and how
this algorithm can be applied to large datasets. The
experiments reveal a competitive classification accu-
racy, and furthermore, the generated structures fit the
data seemingly well.

This paper is organized as follows. Section 2 re-
views shortly the algorithm of discovering the struc-
tural form and shows the improvements we made. In
section 3, we show how to employ this method in vi-
sual domain. Section 4 then describes the experiments
made on two set of images: MSRC-B1 dataset and a
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set of faces. Finally, section 5 presents our conclu-
sions.

2 THE STRUCTURAL FORM

In this section, we first shortly review the basics of
the algorithm of discovering the structural form. This
algorithm tries to find a structure (among eight natu-
ral forms) which describes the data most likely. The
structures are presented by graphs and each graph is
characterised by a specific graph grammar. The nodes
of the graph represent categories and the edges repre-
sent similarities between the categories. A grammar
defines now a generative process to create a structure.
Note that each form has its own specific grammar
which can be described as a node splitting rule for
the generative process.

To go further on this subject, we prefer to have
a more flexible structure to describe the relations be-
tween categories than any of the used forms. Thus
the end of this section concentrates on how to make
it possible to learn an instance of a meta structure by
using a meta-grammar which consists of several node
splitting rules.

2.1 Discovering the Structural Form

The approach described here is adapted from (Kemp
and Tenenbaum, 2008) (matlab implementation avail-
able online) and we call it ”Kemp’s algorithm” or just
”the algorithm”.

We define form F to be any of the following
forms: partition, chain, order, ring, hierarchy, tree,
grid and cylinder. Structure S, generated from form
F , is presented by a graph with nodes corresponding
to clusters of entities. An entity graph, Sent , is a graph
where entities are included to cluster nodes by adding
an extra node for each entity and connecting it by an
edge to the cluster node which entity is assigned to.
An example is presented in figure 1.

Let D be an n×m entity-feature matrix and S a
structure of form F . We are now searching for a struc-
ture and form which together maximize the posterior
probability

P(S,F |D) ∝ P(D|S)P(S|F)P(F), (1)

where P(F) is a uniform distribution over all the pos-
sible forms considered.

Probability P(S|F) in equation (1) is the proba-
bility of that the structure is generated from a given
form. We define

P(S|F) ∝

{
θ|S|, if S is compatible with F
0, otherwise,

(2)

Figure 1: (A) Eight structural forms. (B) A structure on
the left is compatible with grid structure while the other one
is not. (C) The entity graph obtained from the left one in
spot(B).

where |S| is the number of nodes in graph S and
θ ∈ (0,1). Structure S is compatible with form F if it
can be generated using the generative process (graph
grammar) defined for F and if graph does not contain
empty nodes when projected along its component di-
mensions. The latter notion is relevant in the case of
grids and cylinders to prevent them from getting too
complex, meaning many empty nodes in the graph.

Probability P(S|F) is defined so that if the num-
ber of nodes in graph is large, it gives smaller values
(bigger penalty for the model). Let |S| be the number
of nodes in graph S. When we write θ = exp(−x),
x > 0, log likelihood logP(S|F) = |S| log(θ) =−|S|x
decreases by a constant x whenever an additional node
is introduced. This way we tend to get small and sim-
ple graphs when using bigger values of x.

Secondly, we want to find a structure of a given
form that fits best the data. This is achieved by maxi-
mizing the probability P(D|S) = P(D|Sent) by assum-
ing that feature values in data matrix D are indepen-
dently generated from a multivariate Gaussian distri-
bution with dimension for each node in the graph Sent .
This means that P(D|S) is high if the features in ma-
trix D vary smoothly over the graph S, that is, if enti-
ties nearby in S have similar feature values.

Let W = [wi j] be a weight matrix, i.e. a matrix
which is comparable with edge lengths in entity graph
Sent . We define wi j =

1
ei j

whenever nodes i and j are
connected by an edge with length of ei j, otherwise wi j
= 0. A generative model for a single feature vector f
that favours now the feature values fi to be similar in
nearby nodes in Sent is given by

P( f |W )∝ exp(−1
4 ∑

i, j
wi j( fi− f j)

2) = exp(−1
2

f t
∆ f ),
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where ∆ = E−W , is the graph Laplacian and E is a
diagonal matrix eii = ∑ j wi j.

Finally, by assuming that a feature value fi at any
entity node has an a priori variance of σ2, we obtain
a proper priori f |W ∼ N(0, ∆̂−1), where ∆̂ is ∆ with
1/σ2 added on the diagonal of the first n positions.
Note that the entity graph Sent and weight matrix W
are defined so that the entities are in the first n posi-
tions and the rest are the latent cluster nodes.

The priors for edge lengths ei j and for σ are drawn
from exponential distribution with parameter β = 0.4,
as in (Kemp and Tenenbaum, 2008). Now we can
compute the likelihood P(D|Sent ,W,σ) and

logP(D|Sent ,W,σ) = log
m

∏
i=1

P( f i|W ) =

=
mn
2

log(2π)− m
2

log |∆̂−1|− 1
2

tr(∆̂DDt),

(3)

where m is the number of feature vectors and f i is
the ith feature vector. By integrating out σ and edge
weights we obtain the likelihood P(D|Sent).

For further information, we refer on (Kemp and
Tenenbaum, 2008).

2.2 Assigning New Data to a Learned
Structure

It is interesting to notice that the algorithm does not
necessarily need the feature data D itself but can use a
covariance matrix 1

m DDt . As long as we know this
covariance matrix, this approach can be used even
though we actually do not have the actual features.
This means that we can learn structures from some
similarity matrix by assuming that this similarity ma-
trix represents a covariance matrix of the data. We
prefer to use similarity matrix due to its ability of be-
ing flexible to choose. If the metric of a feature space
cannot reveal the relations between observations, it is
worth using a suitable similarity measure. Later on,
we run into previous matter in case of histogram data.

For classification purposes it would be convenient
to be able to add new samples to a given structure. To
assign a new sample, first we compute the similarities
of the sample and the training samples used to build
the structure. One by one, we go through all the clus-
ter nodes and join the new sample by an edge to the
node we are visiting to. In each case at a time, we
can compute the likelihood in equation (3). The edge
weight between the new sample and a cluster node is
set to be the mean value of all edge weights in the
graph. Although edge weights can be optimized, we
found it to be quite ineffectual and slow when deal-
ing with hundreds of samples. Finally, the sample is
assigned to the cluster node which gives the highest

Figure 2: Node splitting rules for a meta-grammar. On the
right side the correspondences with the primitive forms hav-
ing the same grammar. Note that we cannot do the very first
split by the 4th rule, because we want graph to be connected.

likelihood score. The probability P(S|F) can obvi-
ously be forgotten since the cluster graph S is fixed.

2.3 A Meta-grammar

Using the eight presented forms can still lead to the
circumstances where the structures simply cannot re-
veal the true, possibly complex, nature of the data.
This leaves a room for a more generic form. As men-
tioned earlier, each form is characterised by the gram-
mar it uses to split the nodes. When a grammar is
an arbitrary mixture of several grammars, we call it
a meta-grammar and a structure that uses this meta-
grammar is called a meta structure. The idea of a
meta-grammar was introduced in (Kemp and Tenen-
baum, 2008) but was never used. The template of that
meta-grammar was a combination of grammars of the
six forms (all but grid and cylinder), so called primi-
tive forms, illustrated in figure 1.

In this paper, we propose a slightly different meta-
grammar and also put it into practice. The choices
for node splits that our meta-grammar uses are shown
in figure 2. First, we do not allow any nodes in the
graph to be empty. For example the node splitting rule
i.e. generative process used to create trees is not valid
since the branch nodes will be empty. Secondly, we
do not want to split the graph into two disjoint graphs
so the very first split cannot be done by the genera-
tive process designed for partition structure. These
notions allow us to make simple, connected graphs.

The two rightmost rules in figure 2 do not generate
any natural structure themselves but give a necessary
(and sufficient) complement to our meta-grammar.
Using this meta-grammar provides the graph with
more opportunities to organize itself. In practise, to
split a node, we try each splitting rule present in a
meta-grammar and choose the best one with respect
to the likelihood (3).

One problem we face now is the difficulty of com-
puting the probability P(S|F). The normalization
constant for the distribution in (2) is the sum

∑
S

P(S|F) =
n

∑
k=1

S(n,k)C(F,k)θk, (4)

where S(n,k) is the number of ways to partition n ele-
ments into k nonempty sets and C(F,k) is the number
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of structures of form F with k occupied cluster nodes.
When considering the form of meta structure and

the number of possibilities how the meta-grammar
can generate a structure with k nodes, we can clearly
see that computing the exact number C(F,k) is too
hard. Anyway, we can easily find a rough upper limit
for the number C(F,k), since we can easily verify that
the number of ways to draw edges in the case of k
cluster nodes is 2k(k−1)/2. Thus, we have a lower
boundary for likelihood P(S|F).

3 THE ORGANIZATION OF
VISUAL OBJECTS

We represent images as histograms of quantized de-
scriptors. This bag-of-words (BOW) method has
been successfully used in many papers such as (Sivic
et al., 2008; Marszalek and Schmid, 2008; Bosch
et al., 2006). Moreover, we extract descriptors from
a grayscale image by computing the SIFT-features
(Lowe, 2004) on a dense grid using an implementa-
tion available online (van de Sande et al., 2010).

As stated in section 2.2, we can use a similarity
matrix of the histograms as an input to the algorithm.
Besides, due to computational efficiency of the algo-
rithm, we found the similarity matrix behave better
than pure feature data. To compute the similarity ma-
trix we transform χ2 -distances between histograms to
similarity values within range [0,1].

For reasonable execution time of the algorithm,
we can use only a subset of samples to find the
best structure and assign the rest of the samples to
a learned structure, as described in section 2.2. More
specifically, the samples which have a small variance
in similarities are excluded from the training process.

Although, the algorithm decides itself which is the
best structure, we can also examine different struc-
tures manually by comparing extracted log likeli-
hoods, logP(S,F |D), of the model.

3.1 Assessing Structures using
Classification

In evaluation, we use the same ”classification overlap
score”, as described in (Sivic et al., 2008). Classifica-
tion overlap score indicates how well the entities of a
particular, manually labeled, object class are assigned
to a single node in a tree. Obviously, we want high re-
call and high precision, so we want most of the class
attributes to have a common node, which hopefully
does not contain attributes from another class. The
scale of this score is from 0 to 1. If score is 1 then

all object classes are fully separated at some node in
the structure. Disadvantage is that this score is not di-
rectly usable in case of the other structures than tree or
partition. One possibility is to modify the structures
to be tree-shaped in a way we next describe.

As we know, the results of the algorithm are ba-
sically weighted graphs. Cluster graphs are graphs
with no separate edges between entities and cluster
nodes, as we have declared earlier. For each cluster
graph, multiple clustering is obtained by running the
Normalized Cuts (Shi and Malik, 2002) with vary-
ing the number of clusters. After this, we create a
co-occurrence matrix of how many times each pair
of the nodes in the graph appears in the same clus-
ter. This matrix can be used as a similarity matrix
for the hierarchical agglomerative clustering (Hastie
et al., 2009), which creates a tree structure. After this
operation, we are able to assess the classification ac-
curacy based on the classification overlap score, re-
gardless of the structure type.

It is apparent that the nature of structures suffers
from this transformation and this measure suits better
for tree-shaped structures. However, we have no other
measure on hand at the moment so we trust that this
measure gives at least a good estimate of the classifi-
cation ability of each structure.

4 EXPERIMENTS

4.1 MSRC Dataset

We consider now a dataset MSRC-B1 (Winn et al.,
2005) consisting of 240 images which are manually
segmented to 12 different object classes. We use 543
segments of 9 different object classes: faces, cows,
grass, trees, buildings, cars, airplanes, bicycles and
sky. Other three classes: sheep, horses and ground
are represented by only so few samples that we ignore
them. This is exactly similar to (Sivic et al., 2008).

The SIFT-descriptors are computed at every 5th
pixel in an image. Each image segment is then de-
scribed by all visual words with centroids within the
segment. We use 150 segments as a training data for
finding the structure and assign the remainder to the

Figure 3: Log-likelihoods of each structure in case of data
MSRC-B1. A constant has been added along y-axis so that
the worst performing structure receives score close to zero.
The best performing structure is marked by an asterisk.
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Table 1: Image classification accuracy on MSRC-B1 data.
Accuracy is measured by classification overlap score. The
results of our method are the average of ten repeats.

method topics score
LDA 5/10/15/20 0.50/0.46/0.57/0.61a

hLDA - 0.72a

partition 8 0.53
tree, ring 15 0.65
meta 16 0.65
other structures 11-15 0.44-0.63
a (Sivic et al., 2008)

learned structure. We set θ = exp(−200) for all forms
considered and use a vocabulary of size one thousand
words. The vocabulary is obtained by using all the
samples.

4.1.1 Comparision of the Structures

In the case of the tree and partition structure we can
compute the classification overlap score directly. For
other structures we use the method described in sec-
tion 3.1. The results are shown in table 1.

When compared to the results of LDA, the parti-
tion structure gives a better score with respect to the
number of clusters. It gives eight clusters which is
much closer to the number (9) of manually labeled
classes than in the case of the best score (20 clusters)
achieved by LDA. Most of the other structures give
better results when compared to the best gained by
LDA. We also see that hLDA gives better results in
this case but our results are still comparable, in spite
of forcing a tree-shape to the structures.

Figure 3 indicates how the meta structure is the
model’s choice of the best structure now. However,
when comparing the classification accuracy, the ring,
tree and meta structures all get the same score. The
meta, ring and tree structures are presented in figures
4, 5. The clusters formed by each structure are quite
similar to each other but the relations between clus-
ters differ. It seems quite fair that meta structure wins
when looking at the graphs. Although, in this case
some of the clusters (for example buildings) are very
different from the rest and meaningful connections
are diffucult to draw even for a human.

When comparing the results with the hierarchy in
(Sivic et al., 2008), it appears that our approach cre-
ates more natural clustering than hLDA does. Unlike
in our results, the number of small, meaningless clus-
ters is large in their approach. We may say that by
making more compact categorization, we lose some
units in accuracy.

To return to the aspect of this paper, hLDA has
one disadvantage when it comes to the possible rela-
tionships which a tree structure or any other structure

Figure 4: Uppermost the meta structure learned on the
MSRC-B1 dataset of 543 image segments of 9 object
classes. The images presenting each cluster are chosen to
be the ones which are the most similar with the clusters’
majority class. The edge lengths correspond to the edge
weights. Down below a tree-shaped structure obtained from
the meta structure by combining normalized cuts and hier-
archical clustering.

Figure 5: The ring and tree structures learned on the MSRC-
B1 dataset. The images presenting each cluster are chosen
to be the ones which are the most similar with the clusters’
majority class. In the case of the ring structure, nodes are la-
beled by the number of images coming from the same class
as the representative image of the node versus the number
of all images in the node.

defined in advance cannot reveal. In the previous ex-
ample, a tree-shaped structure worked as well as any
since the image categories hardly shared anything in
common. What about when the categories really have
some underlying structure. How can we be sure that
a certain chosen structure really match the data then?
That is why it is good to consider a more generic view
on creating the structure of images to gain deeper in-
sight for any use of the structure.

4.2 Face Dataset

Let us then consider a situation where we have ex-
actly one feature that is assumed to describe a set of
images. If the values of this feature varies smoothly
between images, we can imagine that it is not easy or
even possible to get this information stored in a tree
structure.

Example of the effects of this one feature can be
found in case of faces. The feature is now the ori-
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Figure 6: Log-likelihoods in case of an individual from the
face data. A constant has been added along y-axis so that the
worst performing structure receives a score close to zero.
The best performing structure is marked by an asterisk.

Figure 7: Solid line represents the chain structure learned on
an individual of a dataset of faces. Each node is represented
by one face in the node. The dashed line correspond to the
extra edges which the meta structure creates.

entation of faces. We use the Sheffield (previously
UMIST) Face Database (Graham and Allinson, 1998)
which consists of 564 images of 20 individuals. The
range of poses vary from from profile to frontal views.
We discover that the chain structure is the most prob-
able, as indicated (for an individual) in figure 6.

The chain structure gives now a perfect solution in
organizing faces according to their orientation (figure
7). It is also remarkable that the meta structure creates
exactly the same clustering as the chain does and quite
similar likelihood too, only few extra edges have been
added to otherwise pure chain structure. However, we
can see the capability of the meta structure to adapt to
the natural structure of the data.

Another thing this example demonstrates (figure
6) is that tree-shaped structures cannot reveal the nat-
ural organization of face orientations. This concerns
not only the structures presented in this paper but
likely all the hierarchical organizations that exist.

5 CONCLUSIONS

We have presented a generic, unsupervised way to
find the structure to describe image data. Previous
methods in image categorization are able to create
only an instance of a single, predefined form, usu-
ally tree form. Kemp’s algorithm used in this paper
defines a more generic view of finding the underlying
structure in data. We have suggested how to apply the
algorithm for visual objects and shown how this might
help to find the more natural organization of a set of
unlabeled images. In addition, we proposed our pro-
totype for the most generic structure, meta structure.
This creates graphs which can capture the relations in
data even more accurately and can adapt to any un-
derlying structure. The categorization or classifica-

tion results are competitive with topic discovery mod-
els (LDA, hLDA). Moreover, the way we can present
image categories and the relations between categories
seems to be more natural and definitely more flexible
than in the state-of-the-art methods.
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