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Abstract: The major aim of this paper consists of a comprehensive quantitative evaluation of adaptive texture 
descriptors when integrated into an unsupervised image segmentation framework. The techniques involved 
in this evaluation are: the standard and rotation invariant Local Binary Pattern (LBP) operators, multi-
channel texture decomposition based on Gabor filters and a recently proposed technique that analyses the 
distribution of dominant image orientations at both micro and macro levels. The motivation to investigate 
these texture analysis approaches is twofold: (a) they evaluate the texture information at micro-level in 
small neighborhoods and (b) the distributions of the local features calculated from texture units describe the 
texture at macro-level. This adaptive scenario facilitates the integration of the texture descriptors into an 
unsupervised clustering based segmentation scheme that embeds a multi-resolution approach. The 
conducted experiments evaluate the performance of these techniques and also analyse the influence of 
important parameters (such as scale, frequency and orientation) upon the segmentation results. 

1 INTRODUCTION 

Texture-based image segmentation represents a 
major field of research in the area of computer 
vision that has been intensively investigated for 
more than three decades. This has been motivated by 
the fact that the robust detection of texture 
primitives in digital images plays a key role in the 
identification of the constituent image regions. 
Taking into consideration the large spectrum of 
applications based on texture analysis, an impressive 
number of approaches has been published in the 
computer vision literature. As indicated in several 
reviews on texture-based segmentation (Tuceryan 
and Jain, 1998; Materka and Strzelecki, 1998) the 
existent techniques can be classified into four major 
categories: statistical, model-based, signal 
processing and structural. From these approaches 
most attention received the statistical and signal 
processing texture extraction methods. 

Statistical methods are based on the evaluation of 
the spatial distributions and relationships between 
the pixel intensities in the image. Relevant statistical 
texture analysis techniques include the 
autocorrelation function (Haralick, 1979), texture 

energy features (Laws, 1980), grey-level co-
occurrence matrices (Haralick, 1979) and Local 
Binary Patterns (Ojala and Pietikainen, 1999). Based 
on the studies detailed in relevant papers focused on 
statistical texture analysis it can be concluded that 
these methods return adequate results when applied 
to synthetic images, but their performance is limited 
when applied to complex textured images.  

To address some of the limitations associated 
with standard statistical texture analysis techniques, 
a non-parametric approach that analyses the texture 
at micro-level based on the calculation of the Local 
Binary Patterns (LBP) has been introduced by Ojala 
and Pietikainen, 1999. This approach attempts to 
decompose the texture into small units where the 
texture features are represented by the distribution of 
the LBP values. In (Ojala et al, 2002) the authors 
extended the initial LBP approach to address its 
sensitivity to rotation by introducing a new multi-
resolution rotational invariant LBP texture descriptor 
whose performance was evaluated on standard 
texture databases.  

The signal processing methods represent another 
important category of texture analysis techniques. 
These techniques were developed as a consequence 
of the psychophysical investigations that indicated 
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that the human brain performs a frequency analysis 
of the image perceived by the retina. Building on 
this concept, the signal processing techniques 
formulate the texture extraction in terms of the 
frequency information associated with the texture 
primitives present in digital images. Representative 
methods that belong to this category are: spatial 
domain filtering, Fourier analysis, Gabor filtering 
and Wavelet analysis. Among these signal 
processing methods, the approach that involves 
filtering an image with a bank of Gabor filters has 
gained the largest interest from the vision 
researchers (Bovik et al, 1990; Jain and Farrokhnia, 
1991; Hofmann et al, 1998, Randen and Husoy, 
1999). This approach implements a multi-channel 
texture decomposition and it is achieved by filtering 
the input image with 2D Gabor filter banks. (Bovik 
et al, 1990) used quadrature Gabor filters to segment 
images defined by oriented textures. The main 
conclusion resulting from their investigation is that 
the spectral difference sampled by narrow band 
filters provides sufficient information for texture 
discrimination. (Jain and Farrokhnia, 1991) followed 
a similar approach and developed a multi-channel 
Gabor filtering technique that was applied for image 
segmentation. In their paper, each filtered image was 
subjected to a non-linear transform and the energy 
was calculated within a pre-defined window around 
each pixel in the image. The energy features were 
afterwards clustered using a standard algorithm to 
obtain the segmented image. This approach was 
further advanced by (Randen and Husoy, 1999) 
while noting that filtering the image with a bank of 
Gabor filters or filters derived from Wavelet 
transform is computationally intensive. In their 
paper they proposed a new methodology to compute 
optimised filters for texture discrimination that 
requires a reduced number of filters than the 
standard implementation developed by Jain and 
Farrokhnia. A different segmentation strategy is 
proposed by (Hofmann et al, 1998) where the texture 
segmentation is formulated as a data clustering 
problem. In their approach the dissimilarities 
between pairs of textured regions are computed from 
a multi-scale Gabor filtered image representation. 
The resulting unsupervised segmentation scheme 
was successfully applied on both Brodatz textures 
and natural images. 

Recently a novel hybrid statistical-structural 
approach was proposed where the texture is 
described in terms of the distribution of edge 
orientations calculated at micro and macro-level for 
all pixels in the image (Ilea et al, 2008; Ghita et al, 
2008). The quantitative evaluations were conducted 

on standard texture databases and the results 
indicated that the local image orientation based 
descriptor has a high discriminative power in the 
context of texture classification. In this study we will 
investigate its discrimination when applied to the 
unsupervised segmentation of complex textural 
arrangements.  

The unsupervised segmentation process is in 
particular challenging since the texture attributes are 
not uniformly distributed within image areas defined 
by similar objects and often the strength of the 
texture can vary considerably from image to image. 
In addition to this, complications added by the 
uneven illumination, perspective and scale 
distortions make the process of identifying the 
homogeneous image regions with similar texture 
characteristics extremely difficult. The quantitative 
evaluation of the texture extraction techniques 
investigated in this paper was carried out using a 
segmentation framework similar to the one proposed 
in (Ilea and Whelan, 2009). The selection of this 
clustering-based segmentation technique for texture 
segmentation is justified as it provides an attractive 
platform for generalization and it also performs a 
global data optimization.  

The selection of the texture analysis techniques 
evaluated in this study (the Local Binary Pattern 
Operators, texture decomposition using Gabor 
filtering and local orientation-based texture 
descriptor) is also justified, as they allow an adaptive 
texture analysis (at micro and macro-level) when 
integrated into an unsupervised clustering approach. 
The adaptive approach considered in this paper 
provides a robust scenario for texture segmentation 
and together with a comprehensive numerical 
evaluation of the above mentioned methods it 
represents a contribution of this paper in the study of 
texture features segmentation.   

This paper is organised as follows. Section 2 
briefly introduces the texture analysis methods 
investigated in this study and discusses the 
motivation behind their selection. Section 3 
describes the experimental setup and presents the 
numerical evaluation followed by a discussion of the 
obtained results. Section 4 concludes the paper. 

2 EVALUATED TEXTURE 
EXTRACTION METHODS 

The Standard LBP/C Operator - The LBP 
operator (Ojala and Pietikainen, 1999) is a powerful 
texture descriptor as it analyses the texture at micro-
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level, but at the same time the macro characteristics 
of texture are sampled by the distribution of the LBP 
values. The LBP texture unit is calculated by 
thresholding the values of the pixels in a 3×3 
neighbourhood with respect to the value of the 
central pixel, while the LBP value is calculated by 
multiplying the elements of the texture unit with 
binomial weights (that are powers of 2 with respect 
to the position of the pixels in the neighbourhood) 
and summing the result. 

To further improve the robustness of the LBP 
operator and allow the sampling of the illumination 
offsets between different textures, the standard LBP 
operator is used in conjunction with the contrast 
operator, C. The contrast measure C is calculated as 
the difference between the average grey-level of the 
pixels with values 1 and the pixels with values 0 
contained in the 3×3 texture unit. The main 
advantage of analysing the texture using the 
distribution of LBP/C values is given by the fact that 
they can be used to discriminate textures in the input 
image regardless the region size. The distribution of 
the LBP/C values calculated over an image region 
represents the texture spectrum that can be defined 
as a joint histogram of size (256 + bins), where the 
first 256 bins are required by the distribution of the 
LBP values and bins represents the number of bins 
employed to sample the contrast measure. Based on 
the experiments performed by Ojala and Pietikainen, 
the best results are obtained when the contrast 
distribution is quantised into 4 to 16 bins. The 
optimal selection of the number of bins is a difficult 
issue since for low values of bins the histogram will 
lack resolution, while for high values of bins the 
histogram will become sparse and unstable. Based 
on experimentation it has been demonstrated that a 
quantisation of the contrast measure in 8 bins returns 
the best results.  

The Rotation Invariant LBP Operator (LBPri) - 
The standard LBP values calculated for each texture 
unit are sensitive to texture orientation. This is 
motivated by the fact that the elements of the texture 
unit uniquely encode the position of each pixel in the 
3×3 neighbourhood. To remove the sensitivity to 
rotation, the texture descriptor is calculated within a 
circular neighbourhood and the texture is evaluated 
in terms of uniformity. A uniform pattern is defined 
as the number of transitions between 0 and 1 in the 
LBP mask obtained after thresholding the pixels 
from the circular neighbourhood with the intensity 
value of the central pixel. In this way, the authors 
defined a pattern as uniform if the binary LBP 
pattern has maximum two transitions; otherwise the 
pattern is labelled as non-uniform. To improve its 

discriminative power, the LBPri value is 
complemented with the contrast measure that is 
calculated as the variance of the pixels situated in 
the LBP mask. For more details regarding the 
calculation of the LBP operators, the reader can refer 
to (Ojala and Pietikainen, 1999; Ojala et al, 2002).  

Texture Analysis using Gabor Filters is an 
approach that implements a multi-channel texture 
decomposition and is achieved by filtering the input 
image with a two-dimensional (2D) Gabor filter 
bank that was introduced by (Daugman, 1988) and 
later applied to texture segmentation by (Jain and 
Farrokhnia, 1991). The 2D Gabor function that is 
used to implement the even-symmetric 2D discrete 
filters can be written as follows: 
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In equation (1)  sincos' yxx  , 

 cossin' yxy  , σ is the scale parameter of the 
Gabor filter,   is the orientation and f is the 
frequency parameter that controls the number of 
cycles of the cosine function within the envelope of 
the 2D Gaussian (  is the phase offset and it is 

usually set to zero to implement 2D even-symmetric 
filters). The parameters of the Gabor filters are 
chosen to optimise the trade-off between spectral 
selectivity and the size of the bank of filters. 
Typically, the central frequencies are selected to be 
one octave apart and for each central frequency is 
constructed a set of filters corresponding to four (00, 
450, 900, 1350) or six orientations (00, 300, 600, 900, 
1200, 1500). 

Texture Extraction using the Dominant Image 
Orientation at Micro and Macro-levels is an 
approach defined in terms of the distribution of the 
dominant edge orientations at micro and macro-level 
and was introduced in (Ilea et al, 2008; Ghita et al, 
2008). In this regard, the orientation for each pixel in 
the image is extracted using the partial derivatives of 
the Gaussian function (G) while the main focus is 
the evaluation of the local dominant orientation. 

An important parameter is the scale (σ) of the 
Gaussian function and its role is to control the 
amount of noise reduction. After the calculation of 
the partial derivatives, the weak edge responses were 
eliminated by applying a non-maxima suppression 
procedure (Canny, 1986) and the edge orientation is 
calculated. As indicated in (Ilea et al, 2008), the 
problem of analysing the texture orientation at a 
given observation scale is not a straightforward task 
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as the orientation of textures may be isotropic at 
macro-level but having a strong orientation at micro-
level. Therefore, we propose to evaluate the 
dominant orientation of the texture calculated at 
micro-level for all texture units that are defined as 
the local neighbourhood around each pixel in the 
image, while the distribution of the dominant 
orientations calculated for all texture units is 
employed to capture the dominant orientation of 
texture at macro-level. 

In this implementation, the orientation of the 
texture is determined by constructing the histogram 
of orientations for all pixels in the local 
neighbourhood and the dominant orientation is 
selected as the dominant peak in the histogram as 
follows, 
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In equations (2) and (3), Θ is the local 
orientation, the symbol  defines the convolution 
operation, yGGy  / , xGGx  / , f(x,y) is the 

pixel value at position (x,y) in the original image, i is 
the orientation bin, D defines the orientation domain, 

H (x,y) is the distribution of the local orientations 

calculated around pixels situated at positions (x,y) 
and Θd is the dominant texture orientation in the 
neighbourhood w×w. The dominant orientation at 
macro-level (HΘd) is estimated by the distribution of 
the local dominant orientations that are determined 
over the region of interest as follows, 
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where Γ is the image domain. In equation (4) it 
should be noted that the texture orientation is 
sampled at a pre-defined observation scale that is 
controlled by the size of the neighbourhood w×w.   

The dominant orientation is not robust in 
sampling the difference between textures that are 
subjected to illumination variation. Thus, the local 
texture orientation is augmented with measures such 

as local orientation coherence and contrast (C) that 
are calculated in the local neighbourhood w×w 
where the dominant orientation of the texture has 
been estimated. The contrast measure (C) is sampled 
by the mean grey-scale value calculated in the w×w 
neighbourhood and the orientation coherence (Θc) is 
calculated using the weighted standard deviation of 
the edge orientation of all the pixels in the 
neighbourhood w×w. 

3 EXPERIMENTS AND RESULTS 

In this paper, we have modified the computational 
architecture of the segmentation framework 
proposed in (Ilea and Whelan, 2008) in order to 
provide a robust scenario for texture segmentation. 
The main steps of the proposed texture segmentation 
algorithm are illustrated in Figure 1. It is important 
to mention that the texture features are 
independently extracted from the luminance 
component of the input image to exclusively 
evaluate the texture information.  
 

Input Image

Number of 
 clusters k

 Texture
Features

ASKM
Segmented
    Image

 

Figure 1: Overview of the texture segmentation algorithm. 

The Adaptive Spatial K-means (ASKM) 
clustering is the main component of the 
segmentation method. The main idea behind ASKM 
is to minimise an objective function JT based on the 
fitting between the local texture distributions 
calculated for each pixel in the texture image and 
global texture distributions calculated for each 
cluster as follows, 
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In equation (5), k is the number of clusters, s×s 

defines the size of the local window, ),( yxH ss
T
 is the 

local texture distribution calculated for the pixel at 

position (x,y) and i
TH  is the texture distribution for 

the cluster with index i respectively. The number of 
clusters k is automatically calculated in conjunction 
with the number of textures in the image as indicated 
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Figure 2: The database of 33 mosaic images used in our experiments. 

in (Ilea and Whelan, 2008). The similarity between 
the local texture distribution and the global texture 
distribution of the clusters is evaluated using the 
Kolmogorov-Smirnov (KS) metric (Rubner et al, 
2001). The fitting between the local texture 
distributions and global texture distributions of the 
clusters is performed adaptively for multiple 
window sizes in the interval [3×3] to [25×25]. While 
textures in the image are not uniform, the multi-
resolution approach detailed in this paper offers an 
attractive scheme for texture segmentation as it 
allows the variation of the window size until the best 
fit between the global and local texture distributions 
is achieved. 
Experimental Setup - Since the ground truth data 
associated with complex natural images is difficult 
to estimate and its extraction is highly influenced by 
the subjectivity of the human operator, the texture 
segmentation evaluation was performed on mosaic 
data where the ground truth is unambiguous. 
Therefore, the segmentation algorithm described in 
the previous section was applied to a database of 33 
mosaic images (image size 184×184) that were 
created by mixing complex textures from (VisTex 
2000) and Photoshop databases. The mosaics used in 
these experiments consist of various texture 
arrangements that also include images where the 
borders between different regions are irregular. The 
suite of 33 mosaic images is depicted in Figure 2.  

The quantitative measurements were carried out 
using the Probabilistic Rand Index (PR) 
(Unnikrishnan and Hebert, 2005) that measures the 
agreement between the segmented result and the 
ground truth data and takes values in the range [0, 
1]. A higher PR value indicates a better match 
between the segmented result and the ground truth 
data. The PR Index is defined in the appendix of this 
paper. In this study, for every analysed texture 
analysis technique, the PR mean and standard 
deviation were computed for all images in the 
database.The construction of the texture vectors is 
illustrated in Figure 3. It can be noticed that the 
feature vectors are defined either by the LPB/C joint 
distributions or by the distributions calculated from 

the responses obtained after filtering the image with 
the multi-channel filter bank (the intensity values of 
the filtered images were normalised in the interval 
[0, 255] so the size of the feature vector is 
256×number of filters in the filter bank). For the 
edge orientation-based technique, the texture vector 
is given by the joint distribution defined by the 
dominant orientation (Θd), the contrast (C) and the 
orientation coherence (Θc). 

Texture Features

LBP operators      Gabor Filters

LBP Contrast

      ASKM

LBP C

4 or 6 oriented filters 

      ASKM

Local Orientation 
       Features

C

      ASKM

Θ Θd c

 

Figure 3: The calculation of the texture distributions. 

3.1 Results Returned by the LBP 
Technique 

The first set of tests evaluates the segmentation 
performance when using the standard Local Binary Pattern 
(LBP) and the rotation invariant LBPri

8,1, LBPri
16,2, 

LBPri
24,3 texture descriptors. As indicated above, the 

experiments were performed on a database consisting of 
mosaic images and the numerical results are illustrated in 
Table 1 (the LBPri

P,R defines the rotation invariant LBP 
operator where P is the number of pixels in the LBP mask 
and R is the radius of the mask ). 

The results illustrated in Table 1 indicate that the 
LBP/C operator provides better discrimination in its 
standard form than the rotation invariant LBPri

8,1, 
LBPri

16,2, LBPri
24,3 descriptors. The LBP/C operator 

returned the highest PR values for 21 out of 33 
mosaic images, while the LBPri

8,1 operator returned 
the lowest PR values for 13 images out of 33. The 
drop in segmentation accuracy for rotation invariant 
LBP descriptors indicates that the invariance to 
rotation, as expected, is attained at the expense of 
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the loss in discriminative power. This conclusion is 
justified since the LBP uniform patterns are not able 
to sample the directional characteristics of the 
texture. 

Table 1: Quantitative results when the LBP/C texture 
descriptors were evaluated in the proposed segmentation 
framework. 

Method PRmean PRstandard_deviation 

LBP/C  0.84 0.12 
LBPri

8,1/C 0.80 0.11 
LBPri

16,2/C 0.82 0.09 
LBPri

24,3/C 0.82 0.12 

3.2 Results Returned by the Gabor 
Filtering Technique 

In order to evaluate the multi-channel texture 
decomposition scheme based on Gabor filtering, the 
input image has been processed with a small bank of 
filters with four (00, 450, 900, 1350) and six (00, 300, 
600, 900, 1200, 1500) orientations. The central 
frequency and the scale parameters were also varied. 
The standard deviation (scale) parameter was set to 
the values 1.0, 2.0 and 3.0 respectively, while the 
central frequency parameter was varied by setting it 
to the following values 1.5/2π, 2.0/2π and 2.5/2π, 
respectively.  

Table 2: Quantitative results when the Gabor filtering 
(GF) technique was evaluated in the proposed 
segmentation framework. 

 

Scale (σ) 

 

Method 

 

PRmean 

 

PRst_dev 

 

 

 σ= 1.0 

GF f = 1.5/2π, 4 angles 0.46 0.24 
GF f = 2.0/2π, 4 angles 0.61 0.17 
GF f = 2.5/2π, 4 angles 0.81 0.12 
GF f = 1.5/2π, 6 angles 0.50 0.26 
GF f = 2.0/2π, 6 angles 0.62 0.18 
GF f = 2.5/2π, 6 angles 0.81 0.12 

 

 

σ = 2.0 

GF f = 1.5/2π, 4 angles 0.65 0.17 
GF f = 2.0/2π, 4 angles 0.83 0.10 
GF f = 2.5/2π, 4 angles 0.85 0.08 
GF f = 1.5/2π, 6 angles 0.65 0.17 
GF f = 2.0/2π, 6 angles 0.84 0.09 
GF f = 2.5/2π, 6 angles 0.85 0.08 

 

 

σ = 3.0 

GF f = 1.5/2π, 4 angles 0.78 0.13 
GF f = 2.0/2π, 4 angles 0.85 0.08 
GF f = 2.5/2π, 4 angles 0.85 0.11 
GF f = 1.5/2π, 6 angles 0.79 0.12 
GF f = 2.0/2π, 6 angles 0.84 0.08 
GF f = 2.5/2π, 6 angles 0.86 0.08 

3.3 Results Returned by the Local 
Orientation-based Texture 
Descriptor 

In (Ilea et al, 2008; Ghita et al, 2008) a texture 
descriptor based on the evaluation of the dominant 
image orientation calculated at micro and macro-
level was proposed. In this section, experimental 
results that quantify the performance of the image 
orientation based texture descriptor in the 
segmentation process are provided. For these 
experiments the value of the parameter σ (that sets 
the scale of the derivative of the Gaussian function) 
is set to 0.5 and 1.0. The experimental results 
illustrated in Table 3 indicate that the optimal results 
are obtained when the scale parameter σ is set to 0.5.  

Table 3: Quantitative results for the local orientation based 
texture extraction technique when the window size is 
varied. 

Scale 
(σ) 

Window 
size 

PRmean PR 
standard_deviation 

 
σ  = 0.5 

3×3 0.83 0.12 
7×7 0.82 0.11

11×11 0.82 0.12
 

σ  = 1.0 
3×3 0.81 0.12
7×7 0.81 0.12

11×11 0.81 0.11
 

There are two reasons behind the selection of this 
value for the σ parameter. The first is motivated by 
the fact that with the increase in the value of the 
scale parameter the edges derived from weak 
textures are eliminated and the second reason 
consists in the requirement to increase the size of the 
derivative of the Gaussian filters with the increase of 
the scale parameter σ. The feature vectors for the 
edge orientation technique are formed by the joint 
distributions (see Figure 3) constructed using the 
dominant orientation, the contrast and the orientation 
coherence. The experiments were conducted on the 
mosaic database when the size of the texture unit 
w×w is varied. The experimental data shown in 
Table 3 indicates that optimal performance is 
obtained when the texture orientation is sampled in 
small texture units and these results are motivated by 
the fact that the texture orientation is best analysed 
at micro-level. 
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4 CONCLUSIONS 

The aim of this paper was to evaluate the 
performance of a number of statistical and signal 
processing texture analysis techniques when applied 
to image segmentation. The techniques evaluated in 
this study are: the LBP/C operators, multi-channel 
texture decomposition based on Gabor filter banks 
and a recently proposed texture analysis technique 
based on the evaluation of the image orientation at 
micro and macro-level. The main novelty associated 
with this work resides in the evaluation of the 
analysed texture descriptors in a multi-resolution 
framework offered by the proposed texture 
segmentation algorithm and in the evaluation of the 
experimental results when the parameters associated 
with these techniques are varied. Our experiments 
show that the method based on texture 
decomposition using Gabor filters marginally 
outperformed the other analysed techniques. The 
experimental data reinforced the concept that texture 
is an important attribute of digital images and it also 
indicates that the local orientation is the dominant 
feature that provides the primary discrimination 
between textures. 
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APPENDIX 

The Probabilistic Rand index (PR) was proposed in 
(Unnikrishnan and Hebert, 2005) with the aim of 
obtaining a quantitative evaluation of the 

VISAPP 2010 - International Conference on Computer Vision Theory and Applications

140



 

segmentation result when compared to one or more 
ground truth (manual) segmentations. Let Stest be the 
segmented image that will be compared against the 
manually labelled set of ground truth images {S1, 
S2,…, SG} (where G defines the total number of 
manually segmented images). The segmentation 
result is quantified as appropriate if it correctly 
identifies the pairwise relationships between the 
pixels as defined in the ground truth segmentations.  

In other words, the pairwise labels testS
il and testS

jl  

(corresponding to any pair of pixels xi, xj in the 
segmented image Stest) are compared against the 

pairwise labels GS
il and GS

jl in the ground truth 

segmentations and vice versa. Based on this 
principle, the PR index is defined as follows:  
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In equation (6) N is the total number of pixels in 

the image,  testtest S
j

S
i ll   denotes the probability 

that the pair of pixels xi and xj have the same label in 
Stest and pij represents the mean pixel pair 
relationship between the ground truth images.  
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The PR index takes values in the interval [0, 1] 
and a higher PR value indicates a better match 
between the segmented result and the ground truth 
data. The PR index takes the value 0 when there are 
no similarities between the segmented result and the 
set of manual segmentations and it takes the value 1 
when all segmentations are identical. 
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