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Abstract: This paper presents the novel GPU-accelated image retexturing approach for both high and low dynamic 
range images using our newly invented fast NLM filtering. Integrating the fast Maclaurin polynomial kernel 
filter and the latest GPU-CUDA acceleration, our approach is able to produce real-time high quality 
retexturing for objects of the interest, while preserving the original shading and similar texture distortion. 
We apply our revised NLM filtering to the initial depth map to ensure smoothed depth field for retexturing. 
Our approach using GPU-based fast NLM filtering is designed in parallel, and easy to develop on latest 
GPUs. Our testing results have shown the efficiency and satisfactory performance using our approach. 

1 INTRODUCTION 

Image retexturing is an image processing method 
which takes a single image as input and gives a 
totally different texture appearance to the objects of 
interest in the images. The essential process is to 
replace existing textures in region of interest by new 
textures, while preserving the original shading and 
similar texture distortion (Guo et al., 2005). 2D 
textures are usually applied to represent surface 
appearances without modelling geometric details. 
However, manual design of textures is still a tedious 
task. With the great demand from industry such as 
movie and game producing, image-based techniques 
in such application are becoming popular, thus 
important to retexture objects directly in image 
space. There are texture editing methods proposed 
(Fang and Hart, 2006; Tsin et al., 2001), however, 
few of them can replace the texture with just a single 
image, and most methods deal with LDR images. 
Khan et al. (2006) proposed a novel HDR image-
based material editing method for making objects’ 
textures transparent and translucent. One limitation 
of the approach is the slow processing time, due to 
time-consuming bilateral filtering. It is important to 
develop efficient approaches for retexturing both 
HDR and LDR images. 

In this paper, we propose the novel image 
retexturing approach by extracting a region of 
interest from a single image. Rather than relying on 
tedious user interactions, we utilize the spectral 
matting strategy (Levin et al., 2008). Alpha matte 
automatically identifies the object by minimizing a 
quadratic energy function, and retexturing results are 
achieved by transferring new textures to the target 
object (see Figure 1). In particular, we present 
revised fast NLM filtering, and develop the 
approach on GPU-CUDA platform. With simple 
user interaction, our GPU-accelerated retexturing 
approach achieved efficient processing, and high 
quality visual effects similar to the previous work 
(Fang and Hart, 2004; Khan et al., 2006). 

In the remainder of this paper, we first review the 
related work in Section 2. We present our image 
retexturing in gradient domain in Section 3, and 
describe the revised NLM filtering with GPU 
acceleration in Section 4. Our experimental results 
are shown in Section 5. Finally, the summary of our 
work goes to Section 6. 
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Figure 1: Our image retexturing: (a) the input image, (b-d) image retexturing results generated by us. 

2 RELATED WORK 

In this section, we mainly review mostly related 
techniques in image filters, image/video retexturing, 
and GPU-based processing. 

Over years, methods are proposed to remove 
noise from images. Even algorithms vary, they 
basically share the same idea making use of nearby 
information to do averaging. Some filters use spatial 
information for image blurring such as Gaussian 
filters (Lindenbaum et al., 1994), anisotropic filters 
(Perona and Malik, 1990) or the rank vale filters 
which sort the gray value of the neighbouring pixels 
(Jäjne, 2005); some carry out the filtering in frequent 
domain: the Wiener filters (Yaroslavsky, 1985) and 
Butterworth filters (Gonzalez and Woods, 2008); or 
by calculus of variations in spatial or frequent 
domain. 

Image retexturing has been fascinating lately. Oh 
et al. (2001) proposed techniques to change the 
shape, color and illumination of objects depicted in 
images. Liu et al. (2004) introduced a user-assisted 
adjustment on the regular grid of real texture and 
obtained a bijective mapping between the regular 
grid of texture and the deformed grid of the surface. 
However, these methods require elaborate user 
interactions and only suitable for regular textures. 
Fang and Hart (2004, 2006) proposed a retexturing 
technique based on the assumption that lighting 
satisfies the Lambertian surface, and object’s macro 
structure can be altered. Guo et al. (2008) proposed a 
novel image/video retexturing preserving the 
original shading effects. Khan et al. (2006) 
suggested an image based material editing focusing 
on changing objects' micro structure. Shen et al. 
(2007) presented an image-based processing for tone 
mapping and retexturing of HDR/LDR images. 
These schemes are usually slow due to time-
consuming bilateral filtering. Thus, it’s necessary to 
develop efficient retexturing approach applicable for 
HDR and LDR images. 

Driven by the insatiable market demand for real-
time, high-quality 3D graphics, GPU has evolved 
into a highly parallel, multi-threaded, and many-core 

processor with great computational horsepower in 
floating-point calculation. GPU works quite well on 
floating-point computation while CPU performance 
ordinarily. Kazhdan and Hoppe (2008) proposed a 
novel streaming multi-grid GPU solver to solve 
large linear systems arising from gradient domain 
image processing. McCann and Pollard (2008) 
proposed a GPU-based image editing that allows 
artists to paint in the gradient space with real-time 
feedback on megapixel images. The reason behind 
the discrepancy between CPU and GPU is that GPU 
is specialized for compute-intensive, highly parallel 
computation and more transistors are devoted to data 
processing. Here we use GPU-CUDA platform to 
accelerate our retexturing approach especially the 
time-consuming filtering process. 

3 IMAGE RETEXTURING 

Our image retexturing approach is proposed in 
gradient space using fast NLM filtering for both 
HDR and LDR images, which has the following 
main processing steps: 
 

 compute the luminance image in I  to get an initial 
depth map; 

 use the revised NLM filter to get smoothed depth 
map, ( )s

d dI FastNLM I ; 

 get the gradient depth map from s

dI : ( , )gI x y ; 

 compute the texture coordinate ( , )x yu u  according to 

the gradient depth map ( , )gI x y ; 

 derive the new color gradient ( , )new
gI x y  from   

( , )gI x y  and the input texture gradient 
gT ; 

 reconstruct the final image from ( , )new
gI x y  by solving 

Poisson equation. 

3.1 Gradient Depth Recovery  

Given the revised NLM filtering, the general 
retexturing method we adopt is to acquire an image 
of the object of interest as input, create an alpha 
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matte to separate the object from the background. By 
aligning our image manipulation with the object’s 
boundaries, the pixels forming the object are altered 
to fit the object with new textures. 

Computing a depth map from a single image is 
the classic shape from shading problem. Since it is a 
severely under-constrained problem (Horn and 
Brooks, 1989), good solution for arbitrary images do 
not exist and few general solutions can faithfully 
compute the depth information. Our method derives 
a locally consistent depth map from the luminance 
distribution of an object, where higher luminance 
values specify the parts of the object closer to the 
observer. Similar with khan et al. (2006), an initial 
depth map is computed as: 

 ( , ) ( , )d lumiI x y I x y   

We use our revised NLM filtering to get the 
smoothed depth map ( )s

d dI FastNLM I . Then, the 

filtered depth map s
dI  is used to estimate and find 

the local gradient depth map. The final recovered 
gradient depth map ( , )gI x y  is defined in terms of 

neighbouring depth values, as follows: 

 ( , ) ( ( , ), ( , ))
x yg g gI x y I x y I x y      

The final gradient information is directly used to 
warp the input textures with the image-based models 
to achieve image retexturing. Even the depth map 
we compute may not be precise in the reconstructed 
map, this don’t affect the high-quality retexturing 
visual effect in our experimental results. 

3.2 Retexturing in Gradient Space 

Generally, the gradient space ( , )gI x y  is sufficient 
for estimating the warping of an arbitrary texture, 
and can be used to retexture the object of interest. 
We use the lazy snapping (Li et al., 2004) to 
segment the object in the region of interest. We 
introduce two linear scale factors 

xv , 
yv , and use 

linear combination of gradient value and 2D spatial 
indices to calculate the texture coordinates ( , )x yu u : 

 x

x

x x g

y y g

u x v I

u y v I

  
   

  

Considering a pixel ( , )x y  belonging to the 

object with a RGB  color gradient ( , )gI x y , we 

derive the new color gradient ( , )new
gI x y  from its 

original color gradient ( , )gI x y  and the input 

texture gradient ( , )g x yT u u  using the matting equa- 

tion as: 

 ( , ) ( , ) (1 ) ( , )new
g g g x yI x y s I x y s T u u        

Where s  is a scalar parameter that linearly 
interpolates between the original object color 
gradient and the texture color gradient. With the new 
retextured gradient ( , )new

gI x y , we can get the 

retextured image by solving a Poisson equation 
(Perez et al., 2003). Our efficient retexturing 
approach produces high-quality visual results of 
image retexturing, also with much less time cost 
using GPU-CUDA acceleration compared with the 
previous work. 

4 FAST NLM FILTERING 

In our approach, we develop the real-time NLM 
filtering to manipulate gradient space, convert the 
gradient domain into approximate geometry details 
for retexturing in image space.  

4.1 Revisited Kernel Filter 

The weighting functions used in (Choudhury and 
Tumblin, 2003) are standard Gaussian kernel. Let 

/x t  , the original Gaussian kernel is: 

 
2

2( )
x

G x e


   

If we take 2x  as input, there are one division, one 
minus and one exponent operation in the original 
Gaussian kernel. Exponent operation is very 
computationally expensive. We need to develop 
approximation functions (Chatterjee & Milanfar, 
2008) that don’t involve exponent operation to 
reduce the cost of operations. 

Maclaurin series is a famous continuous function 
approximation rule, a Taylor expansion about zero. 
We use Maclaurin series to develop an exponent-
free fast Maclaurin kernel as: 

 2

2 2

2384
( ) ,

64 12
m a x

G x
b a b a

     

  

Taking 2x  as input, the evaluation of ( )mG x  in this 

form consists of three multiplication, one division 
and three addition operations. Computational power 
is saved since there are only simple floating-point 
operations. Maclaurin series is one of the best math-
proved approximation rules, thus the new kernel is 
very close to the original Gaussian kernel, we can 
surely use our  fast Maclaurin kernel  filter  to appro- 
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ximate the original Gaussian kernel. 

4.2 Simplified NLM Filter 

The non-local means filter recently proposed by 
Buades et al. (2006) is a tremendous improvement 
for the neighbourhood filters (Smith and Brady, 
1997). The NLM filter can be represented as: 

 ( ) ( , ) ( )fu x w x y f y dy    

with the weighting coefficient in the form: 

 

2

2

2

2

( , )

( , )
( , )

f

f

d x y

h

f d x y

h

e
w x y

e dy








  

Different from neighbourhood filters, the NLM 
filter quantifies the similarity of pixels x  and y  by 

taking the similarity of whole patches around. The 
similarity of pixels is evaluated by a distance metric 

2 ( , )fd x y , which contains size r  of the compared 

patches, and a weighting function ( , )fg x y  with a 

parameter h describes how fast the weight decays 
with increasing dissimilarity of respective patches. 
Since the similarity measure uses the information of 
the whole nearby patches instead of single pixel 
intensity, the NLM filtering is able to remove noise 
from textured images without destroying the fine 
structures of the texture itself (see Figure 2). 

Using the revisited Maclaurin kernel, we further 
perform algorithm simplification. Mainly we apply 
the NLM filter to smooth the gradient domain, the 
gradient NLM filter at pixel x  is defined as: 

 1
( )

( )
( ) ( ( , ) ) ( )m m

cr h
u x

c x
G y x G d x y f y dy  

      

 
2

( )

( )

1
( , ) ( ( )) ( )

( )

( ) ( ( , ) )
r h

c

b x

m m
cc x

d x y f y x f d
s b

G y x G d x y dy 

  



    

 







   

Where ( )f y  is the noisy gradient image, ( )u x  

is result produced by our NLM filter with the 
parameters 

h  and 
r , and ( )

r

mG   and ( )
h

mG  are 

the kernel filters in the form of eighth order 
Maclaurin function. ( )c x  is the normalizing 

coefficient, and ( )s b  is the area of b . Here, 2
cd  

represents  the  normalized  sum of absolute gradient  
differences between blocks around pixel x and y . 

 

4.3 GPU-accelerated Retexturing 

Recently the traditional neighbourhood filters can 
run in real time even without hardware acceleration. 
But, it is not the case with the NLM filter. We notice 
that the latest OpenGL or DirectX hardware allows 
high quality filters for even high resolution images. 
With the help of latest NVIDIA GPU, we can 
benefit from using a general purpose programming 
model CUDA. Features such as shared memory and 
sync points combined together with flexible thread 
control allow us to speed up algorithms in parallel. 

a

b dc  

Figure 2: Filtering quality: (a) the initial gradient depth, (b) 
enlarged detail, (c) KNN filtering result, (d) smoothed 
result using our revised NLM filtering. 

For GPU-CUDA coding, we define ( )b x  be the 

spatial neighbourhood of a certain size surrounding 
pixel x . We consider it as a block of pixels in the 
size l l , where 2 1l r  , thus x  is the center of  

( )b x , the block radius is r . For every pixel 2n  

number of weights need to be counted, where 

2 1n m  ; To calculate each weight 2k  number of 
weights need to be counted, where 2 1k i  , texture 
fetches are performed here to compute the 2 ( , )cd x y  

function. The total 2 2n k  number of texture fetches is 
needed, so reducing the number of texture fetches 
highly increase the performance.  

To achieve the reduction of texture fetches, we 
assume that within each block weights do not 
change. We compute weights for the pixels in center, 
and use these weights as the convolution coefficients 
for other pixels within the same block. In this way, 
we are able to reduce the number of texture fetches 
to 2k . For the most common value 5n   for the 
blocks, we can reduce 25 times less texture fetches. 
The assumption that weights are uniform within the 
block works well, and most of the revised NLM 
filter  smoothed  areas  have  little  visual  difference  
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Figure 3: Top line - LDR image retexturing of the decorated cup using our approach; lower line - HDR image retexturing of 
the artwork using our approach, in which the left-most is the original image. 

from the NLM filter. With the fast Maclaurin kernel 
filter we develop, the revised NLM filter works 
much faster than the traditional NLM processing. 

5 RETEXTURING RESULTS 

We used C with NVIDIA CUDA programming and 
MATLAB to implement our GPU-accelerated image 
retexturing. The samples shown in the paper have 
been tested on an Intel(R) Core(TM)2 Duo CPU 
2.3GHz PC with a NVIDIA GeForce 8800 GPU and 
2GB RAM. We have compared the revised NLM 
filtering with bilateral filtering, K-nearest neighbors 
filtering and the NLM filtering, in which the filters 
tested are implemented in parallel with GPU 
acceleration. The resolutions of sample images we 
tested are in the range from 50×50 to 1600×1600. 
From the tests, our approach using GPU acceleration 
can perform more than twice as fast as the NLM 
filtering. The computational performance statistics 
for GPU-based filtering is listed in Table 1. Even the 
GPU KNN filter is somehow faster than our revised 
NLM filter, it is shown in Figure 2 that the filtering 
quality of KNN is not satisfied as ours. 

Table 1: Timing performance (frame/second) for GPU 
filters of KNN, bilateral, NLM and our fast NLM filter in 
relation to image sizes.  

GPU Filters 50×50 200×200 800×800 1600×1600

KNN 1372.3 986.3 178.7 49.7 
Bilateral 783.6 108.5 32.6 12.6 

NLM 651.9 91.6 6.5 1.6 
Our fast NLM 1353.8 886.9 132.2 35.7 

Figure  4  shows  our  texture  distortion effect of  
sculpture retexturing in comparison with previous 
work, where the retextured distortion effect of our 
result comparable to the synthesis method of Fang 
and Hart (2004). Both generate good distortion 
effect conforming to the image underlying geometry. 

In Guo et al. (2008), user needs to perform 
considerable mesh stretches to deform new texture 
conforming to the image geometry. Since we 
perform image retexturing in gradient space, our 
approach is able to replace the existing textures in 
the region of interest, while preserving the original 
shading and similar texture distortion using the 
gradient difference info and simple user interaction 
(i.e. tuning one/two parameters).   

More retexturing results are shown in Figure 3 
and Figure 5, which showed the impressive visual 
effects with real-time performance and simple user 
interaction, including HDR image retexturing 
(artwork) and LDR image retexturing (decorated cup, 
fruits, cloth, sculpture) examples. Our approach can 
be applied to both HDR and LDR images, uniformly.  
When using HDR display (Hoefflinger, 2007), the 
visual effects look much better as the high dynamic 
range to manipulate for the light intensity.   

  a    b    c

 

Figure 4: Texture distortion effect: The input image is the 
inset in (c), (a) is our result, (b) is the result of Guo et al. 
(2008) and (c) is the result of Fang and Hart (2004).  

6 SUMMARY 

In this paper, we present the novel GPU-accelerated 
image retexturing using our revised NLM filtering 
for both HDR and LDR images. Integrating the fast 
Maclaurin kernel filter and parallel GPU-CUDA 
acceleration, our approach is able to produce real- 
time  realistic  results of image retexturing with 
simple user interactions (i.e. tuning one/two parame- 
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Figure 5: Top line - LDR fruits retexturing using our approach; lower line - LDR cloth retexturing (left) and LDR sculpture 
retexturing (right) using our approach. 

ters). Using the smoothed depth map in gradient 
space, the reconstructed map provides the 
retexturing visual qualities. Our experimental results 
have shown the feasibility and the efficiency of our 
approach. We will further work on utilizing 
geometrical properties for retexturing, and extending 
the image retexturing to video applications with 
better optimizations. 
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