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Abstract: Visual pattern recognition is a complex problem, and it has proven difficult to achieve satisfactorily in 

standard three-layer feed-forward artificial neural networks. For this reason, an increasing number of 

researchers are using networks whose architecture resembles the human visual system. These biologically-

based networks are bidirectionally connected, use receptive fields, and have a hierarchical structure, with 

the input layer being the largest layer, and consecutive layers getting increasingly smaller. These networks 

are large and complex, and therefore run a risk of getting overfitted during learning, especially if small 

training sets are used, and if the input patterns are noisy. Many data sets, such as, for example, handwritten 

characters, are intrinsically noisy. The problem of overfitting is aggravated by the tendency of error-driven 

learning in large networks to treat all variations in the noisy input as significant. However, there is one way 

to balance off this tendency to overfit, and that is to use a mixture of learning algorithms. In this study, we 

ran systematic tests on handwritten character recognition, where we compared generalization performance 

using a mixture of Hebbian learning and error-driven learning with generalization performance using pure 

error-driven learning. Our results indicate that injecting even a small amount of Hebbian learning, 0.01 %, 

significantly improves the generalization performance of the network. 

1 INTRODUCTION 

Generalization is one of the most desired attributes 

of any object recognition system. It is unreasonable 

and impractical to present all existing instances of an 

object to a recognition system for learning. A well-

designed system must be robust enough to learn the 

appearance of an object from a few available 

instances and to generalize the learnt response to 

novel instances of the same object.  

Humans are generally flexible and quite good at 

generalization. For example, we can easily recognize 

any legible English letter, no matter who wrote it. In 

tasks such as this, we use our past knowledge of the 

shape of a letter for recognizing it. This capability of 

the human visual system attracts researchers to find 

out the underlying mechanism of the primate visual 

cortex and to emulate these mechanisms when 

developing artificial object recognition systems.  

The human visual system is hierarchically 

organized, and has many layers. Consecutive layers 

are connected in both feed forward and feedback 

directions (Callaway, 2004). The interactive 

property of these biological networks is nicely 

captured by bidirectional hierarchical artificial 

neural networks, which are considered to be 

biological plausible, and are often used for 

modelling human vision. 

Backpropagation of error is a powerful error-

driven learning algorithm. Biologically-based forms 

of backpropagation of error are therefore a good 

candidate for learning algorithm that can be used in 

human-like bidirectional hierarchical networks. 

Error-driven learning is widely used in artificial 

neural networks for image processing and object 

recognition tasks. However, error driven learning in 

these networks is often used to drive weight changes 

on the level of individual pixels in the input image. 

This technique, on the one hand helps to learn a task 

very well; on the other hand, it creates a risk for 

overfitting. This risk increases as the network size in 

terms of number hidden layers and number of units 

in each layer increases. 

There are different ways to overcome the risk of 

overfitting. One way is to increase the training input 

to the network. But this option is not always a 

feasible option due to obvious reason of limited
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Figure 1: The bidirectional hierarchical network used for testing various learning mixes. Highlighted lines show the 

connectivity pattern of a unit in layer V1. As can be seen, units in V1 received input from a limited patch of the image. 

resources and time for training.  

Second, one could keep down the degrees of 

freedom in the network, either through careful 

choice of hidden layer size and number of weights, 

or by introducing a bias on weight development 

during training for example, using weight decay to 

kill off weak weights that tend to encode noise in the 

input, or by actually pruning the network structure, 

cutting off small weights. 

Third, one can use a network structure that 

facilitates feature extraction that is, encoding of 

local features in the input (Fukushima, 1993). 

Encoding of local features is necessary if the 

network is to recognize novel input where individual 

features are combined in a new way. 

In this study we will mix amount of Hebbian 

learning with the error driven learning to see how it 

affect the generalization performance of the 

network.  

2 HIERARCHICAL NETWORKS 

Hierarchical networks for image processing are 

inspired by the human visual system and have been 

demonstrated to be especially well suited for 

extracting local features from an image (Fukushima, 

2008). In hierarchical networks, the hidden layers 

are selectively connected to the previous layer, so 

that groups of units in layer k send signals to a 

smaller number of groups in layer k+1. This 

connectivity pattern will yield a hierarchical 

communication structure, where contiguous patches 

of the input image are processed by an array of 

receiving groups in the first hidden layer. These 

groups in turn project to a smaller number of groups 

in the subsequent layer, and so on, until a single 

group of units covers the complete input (see figure 

1 for an illustration). The advantage of such a 

connectivity pattern is that it forces the network to 

look at local features in the input image.  

A bidirectional hierarchical network is a 

hierarchical network with bidirectional connection 

between adjacent layers. Bidirectional networks are 

quite powerful, but may also be difficult to 

understand due to the relatively complex attractor 

dynamics that can arise as a result of the 

bidirectional connectivity.  

2.1 Hebbian Learning 

In its original form, Hebbian learning rewards the 

co-activation of pairs of receiving and sending units, 

increasing the weights of co-activated units (Hebb, 

1949). In addition to this, modified Hebbian learning 

rules can also decrease the weights of nodes that are 

inconsistently activated, one node being activated 

and the other not (O'Reilly, 2000). These modified 

Hebbian learning rules turn out to capture the 

statistical regularities in the input space, and will 

develop a weight structure that promotes the 

detection of local features in the input (McClelland, 

2005). 

The question is: What role does Hebbian 

learning play for the generalization capability of 

these networks? 

Previous   research  suggests  that  Hebbian  lear- 

VISAPP 2010 - International Conference on Computer Vision Theory and Applications

106



 

ning is important for generalization in 

bidirectionally connected networks (O'Reilly, 2001). 

The role of Hebbian learning has, however, not been 

investigated in bidirectional hierarchical networks. 

Bidirectional hierarchical networks are used in 

human vision and account for many important 

biological vision phenomena like attention, pattern 

completion, and memory (Wallis, 1997). It is 

therefore motivated to investigate these networks’ 

learning and generalization performance. 

2.2 Our Network Architecture 

A bidirectional hierarchical network was developed 

in Emergent (Aisa, 2008). It consists of five layers, 

namely Input V1, V2, V4 and Dir (Figure 1). An 

additional layer correct_dir was introduced. This 

layer does not take part in actual processing of the 

data, but allow us to visually compare the network’s 

output with desired output. Input layer consists of 

66X66 units. This layer is divided into nine 

rectangular receptive fields each of size 26 X 26 

with an overlap of 6 units on each side. Second layer 

V1, containing 24 X 24 units, is divided into 9 equal 

rectangular parts. Where as each part consists of 8 X 

8 units. Each part receives input from a 

corresponding receptive field from input layer. Third 

layer V2 is of size 16 X 16. This layer is divided into 

4 equal parts. Each part receives input from a group 

of 16 X 16 units from the previous layers. Fourth 

layer V3 is of size 12 X 12. It is fully connected with 

the previous V2 layer. The last layer, Output layer, 

contains eight units. Each represents one of the eight 

English alphabets for recognition. 
 

 

 

 

 

 

Figure 2: Data sets used for testing and training. 

3 TESTING PROCEDURE 

The network’s task was to recognize eight different 

categories of handwritten English capital letters. The 

choice of the letters was made on the basis of their 

structure. We wanted to use letters that shared some 

features, in order to make the categorization task 

more difficult. The problem that could arise in a 

badly trained network is that the constituent features 

or one letter were recombined and gave rise to false 

recognition of another letter. For example, letters ‘E’ 

and ‘H’ share the vertical line ‘I’ and horizontal 

line’-’as feature. We got five different hand written 

letter sets from five different persons, where as each 

set consist of eight letters. The original images were 

resized and shifted in four steps in eight directions, 

producing about 3600 images. Out of the six set of 

images, we kept aside one set of images (600 

images) for testing with trained network as novel 

images. From the remaining five sets, we used 75 % 

of images as training the network and 25 % for 

testing the trained network. In this way we wanted to 

evaluate the performance of the network on trained 

as well as entirely novel set of images. 

We ran systematic tests of pairs of identical 

networks, the only difference being the amount of 

Hebbian learning in the learning mix for various 

connections. For some network pairs, we used the 

same learning mix for all connections. In the 

particular test described here, we let the first level of 

connections, going from the input layer to the first 

hidden layer, V1, use 1% Hebbian learning, and let 

subsequent connections use 0.1% Hebbian learning. 

In contrast, for the no_Hebb version of the network, 

we removed Hebbian learning from the learning mix 

for all connections.  

Table 1: Results from the generalization tests using both a 

5% testing set reserved, i.e., excluded from the training set 

(same handwriting), and a novel set of handwritten letters. 

 With 5% testing set 

 

(Count error in %) 

New set of 600 

letters 

(Count error in %) 

Batch 

No 

No 

Hebbian 

Hebbian No 

Hebbian 

Hebbian 

1 3.16 1.33  18.5 3.9 

2 1 0.66  14.16 4.1 

3 1.66 0.66  20.33 11.98 

4 1.66 0.66  15.33 2.03 

5 1 0.76  16.16 7.04 

 

Emergent offers a sigmoid-like activation 

function, and saturating weights limited to the 

interval [0, 1]. Learning in the network was based on 

combination of Conditional Principal Component 

Analysis, which is a Hebbian learning algorithm and 

Contrastive Hebbian learning (CHL), which is a 

biologically-based error-driven algorithm, an 

alternative to backpropagation of error 

(O'Reilly,2000): 
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CPCA:  

hebb = yj(xi − wij) (1) 

xi = activation of sending unit i 

yj = activation of receiving unit j    

wij = weight from unit i to unit j 

CHL:  

wij = (xi
+ yj

+ − xi
− yj

−) = err. (2) 

xi = activation of sending unit i 

yj = activation of receiving unit j 

x+, y+ = act when also output clamped 

x−, y− = act when only input is clamped 

Learning mix: 

wij = chebb hebb + (1 − chebb) err] (3) 

 = learning rate 

chebb = proportion of Hebbian learning 

 

For the Hebb case we used chebb = 0.01 for 

connections from Input to V1 and chebb = 0.001 for 

all subsequent connections. For the No-Hebb case 

we used chebb = 0 for all connections. The low 

amount of Hebbian learning is motivated by 

previous experience and the fact that Hebbian 

learning exerts a powerful influence on learning 

(O'Reilly, 2000). 

4 TEST RESULTS 

We tested the network’s generalization capability in 

two ways: First, by using the 5% testing set and 

second by using translations (size, orientation, and 

position variations) of one remaining set of alphabet 

set. We recorded the number of errors and calculated 

the percent errors that were made (table 1). It is clear 

from the table 1 that Generalization performance of 

the network improved for both 5% testing set as well 

as novel set of images when we used both error 

driven and Hebbian learning.  

In addition to the above tests we analyzed the 

weight structure developed during training using an 

indirect method called activation-based receptive 

field analysis. This analysis is based on the co-

activation of input-units and a particular receiving 

unit. The average co-activation taken over all input 

images reflects a tendency of this particular 

receiving unit to react to particular forms of input. 

The plots in figure 3 represent the sixty-four 

units of the lower left group in V1 organized in the 

same order as they appear within the layer. The plot 

on the top of figure 3 shows receptive fields from 

the input layer into the sixty-four units in V1. Note 

that all these sixty-four units have the same 

receptive field that is, they take input from the same 

image-patch (marked with white squares). The 

patterns in the large boxes are the weighted averages 

of input patterns over the activation of respective V1 

unit. Thus, input patterns that the receiving unit 

became strongly activated for are represented with a 

larger weight in the weighted average. The part of 

the pattern in the big box which is delineated with 

the small white box is the actual pattern which 

appears in the receptive field of the given unit.  The 

plot on the bottom of figure 3 shows the projection 

fields from the same units in V1 into the output 

layer. Each unit-size rectangle in the projective 

fields represents the average co-activation of a given 

V1unit and the corresponding output unit, calculated 

for the full set of input patterns. Thus, the projective 

field show how strongly a given V1 unit signals 

indirectly to each output category. As can be seen, 

most units have developed useful feature 

representations, and project to a small number of 

directional units in the output layer.  

4.1 Hebbian Learning Mix 

Looking at the receptive field analysis for these 

networks (figure 3) it can be seen that most of the 

averaged patterns in the large boxes originate from a 

specific character, or a few similar characters. This 

indicates that the detector units are sensitive to 

useful features that are part of similarly shaped 

letters. This conclusion can be further verified by 

looking at the projective field of the same units. For 

example, the unit in the second row from the bottom 

and fourth column from has learnt to specialize for 

feature that is part of the letter ‘Q’. If we look at the 

corresponding projective field pattern in the second 

row and fourth column, the rectangle shows only a 

single active unit (marked with intensive yellow). 

This means that this particular unit in V1 is 

indirectly) contributing to the recognition of only 

one category of letters, namely the letter ‘Q’. There 

are some units which are sensitive to a feature which 

is part of more than one class of letters, but in a 

graded fashion. For example the weighted average 

pattern at the eighth row and first column is a mix of 

‘Q’ and ‘O’. If we look at the corresponding 

projection field, there are two output units that 

receive activation from this unit, but in a graded 

way.  Hence, the feature that is extracted by this unit 

is available in both letters. The final decision about 

which output category should be activated is made  
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Figure 3: Activation-based receptive field and projective field analysis for layer V1, when Hebbian learning was included in 

the learning mix. (top) Each big box in the plot represents the input layer and the small white box within each big box 

signifies the actual receptive field for the units of a given V1 group. (bottom) Each rectangle in the plot represents the 

output layer with eight units. Gray color is default background color. Pattern colors from red to yellow (dark to light) 

signify the increasing activation/intensity value. Light (yellow) color represents high pixel and dark (red color) low pixel 

values.  
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Figure 4: Activation-based receptive field and projective field analysis for layer V1, when Hebbian learning was not used 

for training. The figure is organized in the same way as figure 1 and same unit group of V1 layer is used for analysis.

in later layers by combining the processing of all 

other units.  

Finally, we note that there are some units which 

have not developed any useful features. For example 

the unit in the second row and first column is not 

selective for any particular class of letters. The 

corresponding projective field of the unit shows that 

the V1 unit in question projects to several output 
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units, and thus is likely not to play a useful role in 

the task. 

4.2 Pure Error-driven Learning 

Figure 4 presents the activation-based receptive field 

and projective field analysis for the lower left unit 

group in layer V1 when pure error-driven learning 

was used for training (no Hebbian injected). 

Compared to the previous figure, there are many 

units here that have not developed any useful feature 

representation, and project equally strongly to a 

large number of output units. In addition, quite a few 

units are never activated during processing. This is 

probably why generalization performance suffered 

when Hebbian learning was excluded from the 

learning mix (Equation 3; Figures 4).  

5 CONCLUSIONS 

In this article, we have studied the effect of mixing 

error driven and Hebbian learning in bidirectional 

hierarchical networks for object recognition. Error 

driven learning alone is a powerful learning 

mechanism which could solve the task at hand by 

learning to relate individual pixels in the input 

patterns to desired perceptual categories. However, 

handwritten letters are intrinsically noisy as they 

contain small variations due to different 

handwritings, and this increases the risk for 

overfitting—especially so in large networks. Hence, 

there is a risk that error-driven learning might not 

give optimal generalization performance for these 

networks.  

We run systematic training and generalization 

tests on a handwritten letter recognition task using 

pure error-driven learning as compared to using a 

mixture of error-driven and Hebbian learning. The 

simulations indicate that mixing Hebbian and error-

driven learning can be quite successful in terms of 

improving the generalization performance of 

bidirectional hierarchical networks in cases when 

there is much noise in the input, and an increased 

risk for overfitting. 

Additionally, we also believe that Hebbian 

learning can be a good candidate for generic, local 

feature extraction for image processing and pattern 

recognition tasks. In contrast to pre-wired feature 

detectors, for example, Gabor-filters, Hebbian 

leaning provides a more flexible means for detecting 

the underlying statistical structure of the input 

patterns as it has no a priori constraints on the size or 

shape of these local features. 
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