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Abstract: Substitution systems have proved an important potential in mobility assistance for visually disable persons.
Particularly, proficient users of auditory-vision substitution are able to identify and reconstruct visual targets.
The content of non-visual image is simplified with the purpose to minimize the cognitive process for recog-
nition and also to reduce the duration of the sound patterns. Motivated by these facts, many of the existing
substitution systems discard the color information by dealing with grayscale images. This paper presents a
robust and effective method of color-to-gray transformation, that preserves the original color contrast of the
initial images but also the original saliency. The study is focused taken into consideration the hypothesis that
visual salient areas are tightly connected with visual attention. We show that an appropriate translation allows
a more accurate rendering of the important image regions but that creates a better mental representation of the
environment.

1 INTRODUCTION

Humans orientation and mobility ability is highly
correlated with the capacity of mental mapping the
spaces and the possible navigation paths in the en-
vironment. Much of this information is gathered
through the visual channel. Visually disabled persons
lack this crucial information and as a consequence
face great difficulties to orient in novel environments
since they are not capable of creating mental maps
of spaces. Recent technological advances have im-
proved the development of portable non-invasive sub-
stitution systems (Meijer, 1992; Capelle C., 1998;
Pun et al., 2007) designed for visually disabled per-
sons. These systems aim to provide assistance at the
perceptual level, by compensating the deficiency in
visual sense. The main task of these systems is to
translate the acquired image and to made it avail-
able to other senses such as audio, haptic or smell.
For haptic systems thewhite canprovides the low-
resolution information about the nearby surroundings,
the feet estimate the characteristics of the navigation
surface while the palms and fingers provide the high-
resolution information allowing the fine recognition
of objects textures and forms (Pun et al., 2007). Com-
plementary, the auditory channel usually supplies in-

formation about events (e.g. person presence), scene
distances and rough interpretation over the environ-
ment (Hill, 1993).

The work presented in this paper is focused to
image-to-sound substitution systems in order to gen-
erate more appropriate map representation of the
scene. The aim of such systems is to induce rep-
resentations or mental images for visually disabled
users (in general proficient users) due to imaginary
process. Investigations in neural rehabilitation field
are explaining these phenomena through cross-modal
brain plasticity, where large areas in brain cortex (of
the visually disabled persons) are recruited to process
non-visual tasks (Auvray M., 2005; Capelle C., 1998;
Cronly-Dillon and Persaud, 1999). Most of the stan-
dard systems employ a faster scheme transformation
by only selecting the intensity channel information
and modulating the amplitude of signal proportional
with the pixel intensity value. However, this straight-
forward technique may fail to interpret perceptually
properly the scene appearance due to the fact that the
color information is not considered. Separately the
color does not provide enough information about ob-
jects forms or scene geometry. Nevertheless, by mod-
eling a gray translation with color information we can
implicitly identify color cues (mostly corresponding
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Figure 1: Salient regions detection.For the images from the left side part are displayed the salient regions detected by the
algorithm of Itti et al. (Itti and E., 1998) when both color and intensity are considered while for the images from the right side
part are shown the detected salient regions when only intensity is taken as a discrimination feature.

to texture or particular classes such as sky, grass or
flowers) beside those cues that are provided by inten-
sity variations. Additionally, a good interpretation of
the most salient regions overcomes deprived informa-
tion about the most attractive areas in the scene and
leads to focus the attention to the most interesting re-
gions. By this approach the chances of object and
persons identification into the scene are substantially
increased (see figure 1).

We propose an effective color-to-gray method that
is able to preserve the high contrast appearance of
salient regions. We aim to develop a suitable de-
colorization method that enhances the contrast of the
grayscale image to better visually reflect the chro-
matic contrast of the initial color image. Additionally,
we have been concerned to reduce the loss of visual
information from converted image. The utility of this
approach has been tested based on the well-known
sound substitution system vOICe (Meijer, 1992; Mei-
jer, 1998). The experiments prove that our decol-
orized images better preserve the saliency of the orig-
inal color scene compared with the standard grayscale
and other specialized techniques.

2 RELATED WORK

While the history of vision-substitution systems
stretches back to the 1970s (y Rita, 1967; Fish, 1976),
more recent approaches have been introduced. The
common stages that are performed by auditory-vision
substitution systems are: image acquiring, image pro-
cessing algorithms (e.g. grayscale conversion, de-
tails visibility enhancement, gamma correction, au-
tomatic labels/objects recognition, etc.) and finally
image translation into sound frequencies.

Several well known approaches including
vOICe (Meijer, 1992; Meijer, 1998) and PSVA
(Prosthesis for Substitution of Vision by Audi-
tion) (Capelle C., 1998) deal only with grayscale
images. The rendering operation implies scanning the
image from left to right, and computing per-pixel the
audio amplitudes/frequencies (by various schemes)
that are finally rendered to the user. In vOICe (Meijer,
1998) approach the pitch elevation is given by the
position in the visual pattern, and the loudness is
proportional with the luminance intensity, therefore
in this approach white is played loudly and black
silently. The PSVA (Capelle C., 1998) is based on
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a raw model of the primary visual system with two
resolution levels, one that corresponds to artificial
central retina and one that corresponds to simulated
peripheral retina. The Vibe approach (Auvray M.,
2005) splits the image into configurable distributed
receptive fieldsthat interprets the mean value of the
gray levels in their allocated areas. The basic compo-
nents of the sound are sinusoidal, being produced by
virtual placed sources.

Image simplification is employed in Cronly et
al. (Cronly-Dillon and Persaud, 1999) approach. This
system reduces the image information by selectively
permitting (of user choice) the separately extraction
of horizontal/oblique lines. The main idea is that fea-
ture extraction can segment the image before trans-
lation and contributes to recognize patterns (squares,
circles, polygons). After this step, image-to-sound
rendering follows the scheme where pixels in a col-
umn define a chord and the horizontal lines are played
sequentially as a melody.

Recently, several color-to-gray algorithms have
been introduced in literature in order to overcome the
problems of the standard graysacale conversion that
employs only the luminance channel. Although the
results are quite promising, the computational com-
plexity of the most proposed techniques is still an
important bottleneck. The general goal of the trans-
formation is to generate an image that preserve the
image appearance rather than simply record light in-
tensities (like in standard approach). Color plays a
significant role in the scene interpretation in terms of
visual perception. In general the distribution of the
color contrast is obtained by evaluating the color dif-
ferences of the image pixels. Gooch et al. (Gooch
et al., 2005) proposed a technique that attempts to pre-
serve the sensitivity of the human visual system by
comparing each color pixel value with the average of
its neighbor region. The algorithm is highly compu-
tational expensive and performs poorly for high res-
olution images. Rasche et al. (Rasche et al., 2005)
introduced a method that computes the distribution of
all the image colors previously quantized in a num-
ber of landmark points. Due to the color quantiza-
tion, some image details can be lost. Grundland and
Dodgson (Grundland and Dodgson, 2007) introduced
a faster technique, that as will presented in the follow-
ing inspired our approach, to decolorize images based
on the chrominance and luminance fusion. Neumann
et al. (Neumann et al., 2007) computes the gradient
field with two different formulas, one that takes ad-
vantage of the Coloroid (Nemcsis, 1987) color space
and the second that presents a generalized technique
based on CIELab.

3 SUBSTITUTION SYSTEMS
OVERVIEW

We have chosen to built our approach on the well-
known vOICe1 system (Meijer, 1998). Due to the
fact that pixels intensity values are reflected in the
amplitude of the frequency (perceived as sound loud-
ness), we have investigated modalities to exploit the
bandwidth to the optimal way in order to enhance im-
portant visual cues of the scene. The difficulties in
scene understanding appears when visual salient re-
gions are not accurately represented and this resumes
in misinterpretations of local and global content of the
scene. A general overview of the system is presented

Color-to-gray conversion Image scanning Audio translation Sound spectrum

Figure 2: Overview of thevOICeauditory-substitution sys-
tem.

in the following. The system translates the acquired
frontal images into a time-multiplexed auditory rep-
resentation. Each image is rendered with a resolution
of 64× 64 pixels in an approximate conversion time
of T = 1.05 seconds. The translation operation is a
per-pixel operation by encoding the vertical position
into frequency and the horizontal position into time.
The pixel intensity gives the oscillation amplitude,
therefore white is mapped intoloudnessand black is
mapped intosilenceof its associated oscillator.

Firstly the image matrix elements are associated
with one of theG gray tones:

P
k = (pk

i j ) , pk
i j ∈ {gi , ...,gG}

i, j = 1. . .N,N = 64
(1)

wherei and j represent the columns and lines indexes
that are limited to the maximum valuesN = 64 (the
input image has a resolution of 64×64 pixels).

Each of theN column that corresponds to the sig-
nal s(t) is played inT/N seconds. As already pre-
sented, the amplitudes of sinusoidal components of
thes(t) signal are proportional with the intensity lev-
els. Considering thatωi = 2π fi the sound pattern
transformation is mathematical expressed as follow-
ing:

1www.seeingwithsound.com
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s(t) = ∑N
i=1 pk

i j ·sin(ωit +θk
i )

t ∈
{

tk+( j −1) · T
N , tk+ j · T

N

}

j = 1. . .N,k= 1,2, . . .
(2)

The algorithm computes frequency distribution
equidistant as expressed in equation 3. In addition
to linear frequency distribution the approach allows
also exponential distribution of frequency to render
the patterns (see equation 4):

fi = fl +
i−1
N−1 · ( fh− fl ), i = 1. . .N (3)

fi =
(

fh
fl

) i−1
N−1

· fl , i = 1. . .N (4)

where fl (default fl = 500Hz) andfh (default fh =
5KHz) are the lowest and respectively the highest fre-
quency.

Finally, after each image, as a distinct end-of-
frame mark is inserted a synchronization click sound
that indicates the end of the played image, respec-
tively the beginning of a new input.

4 SALIENCY PRESERVING
DECOLORIZATION

Decolorization or color-to-gray can be seen as an in-
formation compression operation since it maps three
dimension information onto only one dimension.
Standard transformation that employs only the lumi-
nance channel neglects the color information and as
consequence in many cases visually important fea-
tures are lost. This is due to the fact that different
isoluminant colors are mapped on the same inten-
sity level. Recently introduced decolorization meth-
ods aim for a better conservation of the original scene
content after compression. Since the majority of
existing methods are computationally expensive, in
this work we have chosen to adapt Grundland’s ap-
proach (Grundland and Dodgson, 2007) mainly due to
the fact that this technique can preserve effectively the
original image chromatic contrast but with low com-
putational cost. However, our experiments disclosed
several important limitations of these technique. Be-
cause the technique considers only a single dominant
color axis it may fail to preserve a consistent appear-
ance of images that are characterized by uniform hue
distribution, since a single hue is highly advantaged
(see figure 3).

Taken into consideration these aspects we develop
a new technique addressing several issues: chromatic
contrast adaptation based on hue distribution identi-
fication, image intensity manipulation and final con-
strains that provide a consistent output even when the

Color image Grundland and Dogson Our result

Figure 3: Spectrum representation.As can be seen the De-
colorize (Grundland and Dodgson, 2007) approach fails to
preserve a consistent appearance since a single hue is highly
advantaged. Notice the appearance of the red flowers.

parameters (e.g. chromatic contrastλ) are stretched
on high values. We introduced several additional pa-
rameter constrains that generates more pleasant re-
sults but also a better control in comparison with the
original technique.

In the following are described the main steps of
the algorithm. The presentation is focused mainly
onto the modifications that have been added to fit
properly this strategy into our system.

The transformation of the color image is per-
formed inYPQ linear color space. The channelY ∈
[0,1] is the achromatic luminance channel and the
pair channelsP ∈ [−1,1] and Q ∈ [−1,1] represent
the opponent-colors channels: yellow-blue and red-
green.





Y
P
Q



=





0.2989 0.587 0.114
0.5 0.5 −1
1 −1 0









R
G
B



 (5)

Beside luminance channelY the computation of
the chromatic channels (Hue-H and Saturation-S) is
performed in a straightforward way as follows:

H =
1
Π

tan−1(
Q
P
) (6)

S=
√

Q2+P2 (7)

The first step after image is converted into YPQ
color space is to analyze the distribution of the im-
age feature chromatic contrast. This is performed
by computing the color difference between pairs ran-
domly chosen and sampled by Gaussian pairing. The
main idea of this approach is that nearby pixels may
represent similar color since they might be part of
the same feature, while more distant pixels have in-
creased chances of having different colors. To iden-
tify the main principal chromatic contrast axis the
method uses the predominant component analysis.
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This represents a derivation of the well-known dimen-
sionality reduction technique - principal component
analysis (PCA) (Dunteman, 1989). The method op-
timizes the differences between observations by pro-
jection onto the two principal chromatic contrast axes.
The purpose of these chromatic axes is to recover
within a single direction the color contrast magni-
tude that is not contained by the luminance chan-
nel. This search maximizes the covariance between
chromatic contrast and the weighted polarity of lu-
minance contrast. However, this approach has the
drawback that a single chromatic axis is not able to
depict differently color contrasts that are perpendic-
ular to it. Despite of this disadvantage, in general
the image contrast is relatively pleasantly enhanced.
The main advantage of this approach is the processing
time that is linear with the image resolution. Gaussian
pairing sampling technique reduces the time spent to
compute color differences in comparison with similar
techniques (Gooch et al., 2005; Rasche et al., 2005).
Following the predominant component analysis step
that decides the representative color contrast axis, the
next step is to fuse the chromatic information with the
luminance channel Y. Predominant chromatic chan-
nel contributes to the luminance with aλ degree of
contrast enhancement (default value is 0.5). Our ex-
tensive experiments of approximately +200 images
have shown that this parameter should be also cor-
related with the chromatic distribution (see figure 4).
Hue histogram analysis controls the parameterη. The
parameter is equal with 1 if the image hue distribu-
tion does not contain both red-green/yellow-blue op-
ponent pairs and is equal with 3 if the hue distribution
covers the entire range.

Ui = (ηYi +λCi)/η (8)

In order to maintain the luminance polarity the chro-
matic axis orientation needs to generate similar chro-
matic contrast with the luminance contrast.

An important desired feature in many cases is to
control the contrast effects. The goal of image decol-
orization is to obtain a perceptual preservation of the
original saliency (see figure 4). During our exten-
sive tests we have noticed that for higher values ofλ
(λ=1) the saliency regions are better preserved when
applying the well-known Itti algorithm (Itti and E.,
1998) that identifies the most salient regions. We as-
sume that the saliency is preserved only if the detected
salient regions in the color image are maintained al-
most in the same regions as in the decolorized image.

In addition, we observed that when increasing
chromatic contrast parameterλ, several undesired ar-
tifacts are introduced into the output image. Since
increasing the chromatic contrast has a similar impact
with changing the illumination color (blue areas be-

Color image Our result

CIE Y Grundland and Dogson

Figure 4: The Decolorize (Grundland and Dodgson, 2007)
conversion fails to maintain the color salient regions while
our result is capable to better preserve the original salient
regions.

comes darken when opponent yellow areas becomes
lighter), there is a requirement to limit the impact to a
certain boundaries that may assure a decent visibility
of details but also to maintain the original image ap-
pearance. In the biological system proposed in (Land,
1971) the signal of simulated neural path travels until
it finds an inhibitory signal that is larger or equal with
the sequential product. The principle is that the signal
is blocked rather than transformed into negative value.
Correlated to our approach this can be seen as an ef-
fective slicing technique of the intensity level. There-
fore, in order to reduce the level of undesired artifacts
we enforce the decolorization results to remain in the
range of[l ∗Min(R,G,B), l ∗Max(R,G,B)] ( l = 1 is
default value).

5 DISCUSSIONS AND
CONCLUSIONS

This paper introduces a novel decolorization method
in order to support auditory-vision substitution sys-
tems to translate efficiently grayscale images into
sound patterns. A challenging problem in image
grayscale conversion is how to interpret the scene
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Color image Our result

Standard grayscale Smith et al. 2008

Figure 5: The contrast enhancement approache of (Smith
et al., 2008) but also the standard grayscale risk to not pre-
serve the original color salient regions.

cues elements that permit to represent more ac-
curately the scene content. The selection of a
good information reduction method is fundamental
for the effectiveness of image understanding or at-
tention focus guidance. In comparison with other
approaches (Cronly-Dillon and Persaud, 1999) our
model takes advantage of the color contrast. Regard-
less of scene complexity if the target object is not
distinctively rendered the participants risk to inaccu-
rately locate it. Comparing with existing approaches,
our translation model is able to improve the user per-
ception over the chromatic contrast image content. In
low illuminated scenes many decolorization methods
fail to convert accurately images while increasing the
contrast. Our improved decolorization method has
shown promising results against standard and recent
algorithms. For images with isoluminant areas the
system is able to translate with a higher recognition
rate the visual cues. Even if for the moment the vi-
sual substitution systems are far from being compa-
rable with the visual feedback, due to the limitation
imposed by the input sensory, these systems can be
designed suitable for basic specific tasks. For the mo-
ment all the available systems require costly training
period in order to obtain reliable interpreted results.
For future work we aim to perform extensive tests for
more complex tasks such as object localization and
mobility assistance.
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