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Abstract: Multi-body kinematics and object rendering often involve minimum distance calculations. Explicit solutions 

exist for the distance between spheres, cylinders and other simple objects. Deriving the minimum distance 

between cones requires numerical minimization or geometrical approximations combined with analytical 

solutions for the simpler objects. This paper describes an explicit solution for the minimum distance 

between two solid semi-infinite circular cones. The method combines geometrical reasoning with analytical 

derivation. The solution also includes the location of the intersection points. Solution regions are identified 

and discussed. A numerical method based on minimizing the distance between two cone generators was 

used as part of the verification process. The exact solution was compared to results of approximation by 

regular polytopes. The explicit solution is robust, independent of coordinate system and invariant under 

rigid translation and rotation of the setup. 

1 INTRODUCTION 

Multi-body kinematics and object rendering often 

involve minimum distance calculations. Explicit 

solutions exist for simple objects, including points, 

lines, flat patches, spheres and cylinders. The 

minimum distance between two circular cones can 

be derived by numerical minimization or by 

polyhedral approximation, combined with explicit 

solutions for the simpler objects (The GJK 

Algorithm: Gilbert 1988, Jovanoski 2008, Manchem 

2009. Polytopes: Chung 1996). 

The geometrical approximations have inherent 

geometric inaccuracies and require iterative 

refinements. Numerical procedures based on exact 

parametric modeling require a good initial guess and 

some number crunching. Nearly tangent cones 

generators, steep slopes and discontinuities may 

cause convergence difficulties. The computational 

time of an iterative procedure may vary significantly 

depending on the parameters of the problem. 

This paper describes an explicit solution for the 

minimum distance between two solid semi-infinite 

circular cones. The method is based on geometrical 

reasoning and vector algebra derivation. The 

solution also includes the location of the intersection 

points. Rendering and examples were implemented 

with Matlab®. 

2 METHOD 

2.1 Scope 

The cones dealt with in this paper are solid, circular, 

semi-infinite, with positive generator angles smaller 

than π/2. Axes referred to in this paper are the axes 

of the cones. Each cone extends from apex to 

infinity in the positive direction of its axis.  

2.2 Nomenclature 

a,b - cones’ axes 
a,b - distances to intersection points on a and b 
d - minimum distance vector between the cones 
d - minimum distance between the cones 
f,g - apex shift along a and b 
p - minimum distance vector between axes 
p - distance between cones' axes 
r - extended minimum distance vector 
r - length of extended minimum distance vector 
α,β -  generator angles of the cones  
γ - positioning angle (between cones' axes) 
γcrit - critical positioning angle 
ω - rotational positioning angle of polytope 

2.3 Statement of the Problem 

Given the positioning of two known cones, the pro- 
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blem is to find the minimum distance between their 

surfaces (see Figure 1). The parameters of the 

problem are the generator angles, the directions of 

the axes, the distance between the axes, location of 

the apexes, and the positioning angle (i.e., the angle 

between the axes). 

 

Figure 1: General view of two cones. 

2.4 Geometric Setup 

2.4.1 Non-Intersecting Axes 

A-cone with axis a and generator angle α, and B-

cone with axis b and generator angle β are 

positioned with angle γ and vector p between their 

axes (see Figure 2). For symmetry reasons, the angle 

between the axes is limited to [0, π]. 

 

Figure 2: Geometric setup – non-intersecting axes. 

2.4.2 Intersecting Axes 

For intersecting axes, the problem is planar. The 

plane of reference contains the two axes. For each 

cone, the geometric components of interest are the 

axis, the apex, and the generator that lies in the 

reference plane and is nearest to the other cone. 

 

2.5 Geometric Reasoning 

Geometric reasoning includes identifying the 

different types of relative positioning, the geometric 

characteristics of each type, and defining the 

solution regions. 

2.5.1 Geometric Types 

There are three types of solutions: Surface-to-

Surface, Apex-to-Surface, and Apex-to-Apex. The 

first two types have three regions: separation, 

tangency and intersection. By definition, the third 

type only has a separation region. 

2.5.2 Surface to Surface 

The minimum distance vector between the cones is 

external and normal to both surfaces. The extended 

vector intersects the A-axis at distance a from the 

A-apex and the B-axis at distance b from the B-apex. 

The normal to the cone is perpendicular to a specific 

generator in the plane defined by the generator and 

the axis (see Figure 2). The intersection point of the 

extended vector with the axis is invariant in space 

under translation of the cone along its axis.  

2.5.3 Apex to Apex and Apex to Surface 

For Apex-to-Surface, the minimum distance vector 

between the cones originates at the apex of one cone 

and is external and normal to the surface of the other 

cone.  

In the case of Apex-to-Apex, the minimum 

distance vector between the cones is the vector 

between the apexes. 

2.5.4 Intersecting Axes 

For a setup with intersecting axes, there are three 

types of solutions: Apex-to-Generator, Apex-to-

Apex, and Parallel-Generators. There are also three 

regions: separation, tangency and intersection. 

Tangency includes coincident apexes, apex on 

generator, and collinear generators. 

2.6 Mathematical Formulation  

2.6.1 Surface to Surface 

The four vectors a, b, p, and r represented by their 

unit counterparts satisfy the following relationship, 
 

bpar ˆˆˆˆ bpar   (1) 

The dot product of the equation with each of the  
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unit vectors gives a set of four equations, 
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The distance vector r forms an angle of α-π/2 

with the A-axis and of π/2-β with the B-axis. Vector 

p is, by definition, perpendicular to the axes. So the 

dot products of p, r, a and b are, 
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By substituting these values into Equation 2 and 

rearranging the terms, the intersection distances 

satisfy the following set of linear equations, 
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Solving the two equations gives the positions of 

the intersection points on the axes as a function of 

the angles and the distance between them, 
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The distance between the intersection points 

satisfies the quadratic equation, 
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The intersection points on the axes are invariant 
under apex shifts. Substituting a and b into the 
equation gives the distance between the intersection 
points, 
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For zero apex shifts, the minimum distance d0 is 

(see Figure 2), 
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For negative values of the discriminant in 

Equation 8 the cones intersect (this is unconditional 

intersection). The discriminant is zero for α+β=γ, 

indicating tangency at infinity. For apex shifts of f 

and g (see Figure 2), the minimum distance is, 
 

 sinsin0 gfdd   (9) 

Substituting r from Equation 7 into Equation 5 

gives the positioning of the extended minimum 

distance vector.  

2.6.2 Critical Positioning Angle 

For semi-infinite cones, a and b are non-negative. 

Then from Equation 5, since sin2γ and r are positive, 

for zero apex shifts, 
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By geometric reasoning, for α<β the minimum 

distance vector starts at the A-apex with a=0, and for 

α>β the minimum distance vector ends at the B-apex 

with b=0. By setting the two cases of Equation 10 to 

zero, the critical value of the positioning angle for 

either of the two cases is, 
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Figure 3: Minimum for α>β and γ=π. 

For values of the positioning angle between 

critical value γcrit and π, the problem reduces to apex-

to-surface, and the minimum distance is constant 

(see Figure 3), 
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For = (identical cones) and γcrit=π, the two 

generators associated with the minima are parallel. 

Any vector that is parallel to the minimum distance 

vector between the two apexes (region marked in 

yellow in Figure 4) is also a solution, 
 

 tan,cos pbapd   (13) 
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Figure 4: Minimum for α=β and γ=π. 

2.6.3 Apex Positioning  

From Equation 9, any combination of shifts of the 

cones along their axes that satisfies the equation 

0sinsin dgf    brings the cones into 

tangency. In particular, it happens with translation of 

the A-cone by sin0d  or translation of the 

B-cone by sin0d  along the appropriate axis. 

Shifts beyond the point of tangency give a negative 

minimum distance and cause intersection of the 

cones. These are conditional tangency and 

intersection (they depend on shift values). 

For the special case α=β and γ=π (Equation 13), 

the minimum reduces to a single line for a relative 

apexes shift that is equal to p·tanα. For a larger shift, 

the minimum distance is the distance between the 

apexes. A relative shift of –p·cotα brings the cones 

into tangency along segments of the two generators. 

A larger shift in that direction causes intersection of 

the cones. 

2.6.4 Apex-to-Apex 

In the Apex-to-Apex case, for each of the two cones, 

define a cone with coinciding apex, axis in the 

opposite direction, and generator angle of π/2-α or 

π/2-β. These are the complementary cones. When 

any of the cones is included entirely in the other 

complementary cone, the minimum distance is the 

distance between the apexes. 

2.6.5 Identical Cones 

When the two generator angles are equal, =, the 

cones are identical. From Equation 8, the minimum 

distance between the surfaces is then, 
 

 2sinsin1 22
0 d  (14) 

 

This solution has three regions: (i) separation for 

γ>2α; (ii) tangency of the surfaces at infinity for 

γ=2α; (iii) intersection for γ<2α. Hence, regular 

identical cones intersect when half the angle 

between their axes is smaller than the generator 

angle. Otherwise, there is a regular minimum 

distance solution for cones with un-shifted apexes. 

2.7 Intersecting Axes 

2.7.1 Coincident Apexes 

Coincident apexes are situated at the intersecting 

point of the axes. In this case the distance between 

the cones is zero. 

2.7.2 Parallel Generators 

Parallel generators occur when the angles satisfy 

α+β=γ. The minimum distance is then the distance 

between the two generators. Tangency occurs when 

the distance is zero, and intersection occurs when it 

is negative. 

2.7.3 Apex-to-Generator 

For the case of Apex-to-Generator, the minimum 

distance is from the apex to the nearest point on the 

inner generator of the other cone. The appropriate 

combination (A-apex to B-cone or B-apex to A-cone) 

is determined by the specific geometry.  

Tangency occurs when an apex is situated on the 

inner generator of the other cone. Intersection occurs 

when an apex is situated between the two generators 

of the other cone. 

3 ANALYSIS AND EXAMPLES 

3.1 Verification 

Verification of solution and implementation  was 

carried out in part by comparing the explicit solution 

with the results of numerical minimization based on 

the distance between two cone generators: (a) Initial 

guess: the generator nearest to the other cone in the 

plane defined by the axis and the vector between the 

axes; (b) Variables of the problem: the rotation angle 

of the generator around the axis for each of the 

cones; (c). The three types of regions have known 

explicit solutions for the distance between two given 

generators. They are are Ray-to-Ray, Point-to-Ray, 

and Point-to-Point; (d). The cost function for the 

minimization is the distance between the two 

generators. 

The algorithm was implemented in Matlab® 

using a general minimization function without 
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gradient. The process converged to the value of the 

explicit solution within the required error bound (in 

most of the region). It did, however, take longer by 

four orders of magnitudes.  

3.2 Comparison to Polytopes 

Cones can be approximated by circumscribed 

regular polytopes (see Figure 5). For each polytope, 

additional parameters of the problem are the number 

of facets and the rotational positioning angle ω.  

 

Figure 5: General view of two regular polytopes. 

For non-intersecting axes, in the surface-to-

surface region the problem reduces to finding the 

nearest pair of edges (one from each polytope). The 

result is then compared to the explicit solution for 

the cones. For simplification, the space metric was 

scaled by the distance between the axes and the 

apexes were set on the minimum vector between the 

axes. The maximum possible distance for surface-to-

surface is then unity.  

Figure 6 shows the approximation error versus 

the axes positioning angle for various values of facet 

numbers (color coded). 

 

Figure 6: Approximation error vs axes angle. 

Figure 7 shows the approximation error versus 

the rotational positioning angle of the first polytope 

for various values of facet numbers (color coded). In 

both Figures 6 and 7, the rotation the second 

polytope is ⅓ step where the step is 360° divided by 

the number of facets. 

 

Figure 7: Approximation error vs rotation angle. 

3.3 Examples 

The explicit expressions were used for several cases. 

In all cases β was set to 30º. For simplification, the 

space metric was scaled by the distance between the 

axes and the apexes were set on the minimum vector 

between the axes. The maximum possible distance 

for surface-to-surface is then unity.  

Figure 8 shows the minimum distance versus 

positioning angle for various values of α (color-

coded).  

 

Figure 8: Scaled minimum distance vs axes angle. 

Figure 9 shows the distance along the A-axis 

versus positioning angle for various values of α 

(color-coded). In both Figures 8 and 9, the transition 

to a constant value at the critical positioning angle 

γcrit is marked with vertical lines with matching 

colors. For α=0, A-cone is a straight line. 
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Figure 9: Intersection A-distance vs axes angle. 

Figure 10 shows the minimum distance error due 

to a parametric error of 10 in α. From observing the 

shape and starting point of the minimum distance 

(see Figure 8), it is obvious there is a region with an 

indefinite error in the minimum distance (the cones 

intersect in this region). It should be noted that the 

solution itself is exact, and it is the parametric error 

that is propagated into the minimum distance. 

 

Figure 10: Scaled minimum distance error vs axes angle. 

4 CONCLUSIONS 

Explicit expressions were derived for the minimum 

distance between two solid semi-infinite circular 

cones. The derivation is based on geometric 

reasoning and vector algebra. Special regions and 

cases were identified and discussed. A numerical 

method based on minimizing the distance between 

two generators was used as part of the verification 

process. The exact solution was compared to results 

of approximation by regular polytopes. The explicit 

solution is robust, independent of coordinate system 

and invariant under rigid translation and rotation of 

the setup. 

Future work will extend the scope of the problem 

to include shells of finite cones. Shells require a 

solution for a cone with generator angle larger than 

π/2. Finite cones enlarge the set of solution types to 

include the bases of the cones (contours and 

surfaces). 
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