
ADAPTIVE TUTORS FOR DEVELOPING VISUAL REASONING
SKILLS IN PROGRAMMING COURSES

Rika Yoshii
Computer Science and Information Systems Department, California State University San Marcos, California, U.S.A.

Keywords: Visual reasoning, Programming, Adaptive, Mastery.

Abstract: This position paper argues that students who have difficulty programming often exhibit difficulty in
building correct semantic representation of program statement effects. We argue for the need to develop
and use tutoring software to help students develop visual reasoning skills in programming. Adaptive
tutoring systems will allow students to work privately at their own pace. Example tutoring system designs
incorporating visualization, adaptive learning, conversational tutoring and mastery learning are presented.

1 INTRODUCTION

As early as the late 80’s, difficulties students face in
solving algebra word problems have been discussed
widely. Studies have been published in cognitive
science journals indicating students’ problems in
building correct semantic representation of the
situations depicted in word problems (Hall,
1989a)(Hall, 1989b). The same type of difficulty
has been discussed in the area of programming
(Buchananand, 1995). Many students cannot
envision correct semantic representation of

 the problem statements, and/or
 programming constructs,

and they fail to pass beginning programming classes.
But what are we doing to help students develop
visual reasoning skills?

One possibility is to use example diagrams in
lectures and force students to use those diagrams to
explain their program parts. This approach works
well with students who have little or no ability to
form their own diagrams, but it will inhibit creativity
in other types of students. To help only those who
are having trouble forming semantic representation,
tutoring software to help students in this area will be
valuable, allowing those students to practice
privately at their own pace. Adaptive tutoring
software availability is especially important in
beginning programming classes with a large number
of students, making individualized instruction
difficult.

We have developed two tutoring systems in
second language learning, incorporating the
visualization approach. DaRT helps students
develop visual understanding of English articles
such as “a” versus “the” (Yoshii, 1998). DeCEN
helps students develop visual understanding of
countable versus non-countable nouns (Slott, 2005),
(Yoshii, 2010). Both systems have been used with
actual students and produced good results. We
believe that the same can and should be done for
programming classes.

In this paper, we will describe a sequence of
findings and projects at California State University,
San Marcos (CSUSM) leading to our current project
for creating a highly interactive adaptive tutor to
help students visualize effects of C++ statements.

2 VISUAL REASONING FOR
ENTRY LEVEL
MATHEMATICS

Entry Level Mathematics was the first area in which
we assessed the student difficulty in forming
semantic representation of situations. In our first
programming course for computer science majors,
students often expressed difficulty writing a small
program for solving simple mathematical problems.
After giving a quiz each semester to students
entering the first programming class, we realized
that all students who missed the following problem
drew incorrect diagrams to depict the described

364
Yoshii R. (2010).
ADAPTIVE TUTORS FOR DEVELOPING VISUAL REASONING SKILLS IN PROGRAMMING COURSES.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 364-367
DOI: 10.5220/0002860703640367
Copyright c© SciTePress

situation:
 “Trains A and B are at the same
station. Train A goes to the east at
X miles per hour. Train B goes to
the west at Y miles per hour. The
trains left the station at the same
time and travelled for Z hours.
What is the distance between
Train A and Train B?”

Students with incorrect answers drew diagrams

showing the trains moving in the same direction or
towards each other.

This experiment was repeated again this year in
both the first and second programming classes. In
both classes, 35% of students had incorrect diagrams
and thus equations. These students were not having
problems with the programming task but were
having problems coming up with the correct
equations because they could not visualize the
situation correctly. This result echoes what was
discussed in the papers (Hall, 1989a) and (Hall,
1989b). Unfortunately, appropriate remedial
instruction for the 35% of the students cannot be
provided within the context of the programming
classes.

3 VISUAL REPRESENTATION OF
LINKED LISTS

The second area in which we discovered the same
difficulty was with linked lists in the second
programming course. After two lectures showing
diagrams for adding and deleting nodes from linked
lists, the students were given an assignment to draw
the effects of C++ statements for manipulating
linked lists before they were allowed to write a
linked list class. An example problem is:

 “Why can't we do the following to
add a node to the rear? Draw the
effect. Rear =
new Node;
Rear->Next = Rear;”

Every semester, more than 50% of the class had

great difficulty drawing correct pictures, and the
same group of students had difficulty coding the
linked list class. With a large number of students, it
was not possible to sit with each student to
individually analyze their diagrams.

4 CPP TRACER TUTOR

The students in the first programming course who
had problems with Entry level Mathematics
problems were also resistant to the explanations and
exercises that were typically successful in leading
others to an visual understanding of machine
operation, and the ability to understand their own
programs. Instead of relating their programs to the
sequences of machine actions they cause, the
students seemed to memorize a few stock
“boilerplate” program fragments for the problems
they had seen. They were unable to analyze why a
program works or does not, seeing no connection to
the resulting actions by the machine.

With these students, simply using a debugger did
not help since they needed repeated explanations
with examples. But they were reluctant to ask for
help and preferred to practice without being noticed
by other students. Therefore, we developed a
tutoring system, Cpp Tracer Tutor (Yoshii, 2003).
The goal of the Tutor is to help students develop and
practice their reasoning skills using visual
representations of executing programs. The
following are its main features. The latter three of
these features were adopted from the Irvine-Geneva
strategy (Bork, 1992)(Bork 2001):

 Visual representations of programs: the Tutor
provides a live media visualization of the
actions taken by the machine in executing a
running program.

 Conversational tutoring: the Tutor provides
frequent interactions with free-form student
answers.

 Adaptive learning: the Tutor uses student
answers to provide appropriate hints and to
select the next exercise.

 Mastery learning: the Tutor does not let the
student move onto a different program
example until the student shows no difficulty
understanding the current one.

The Tutor, written as a Java applet is available

via the Internet, allowing students to use it privately
at their own pace. Currently, the Tutor supports five
different types of example C++ programs that are
often seen in the first programming course: 1) a for-
loop with a constant as its upper limit, 2) a for-loop
with the upper limit pre-supplied by the user, 3) a
while-loop that continuously take the user’s input
until a sentinel value is reached, 4) a while-loop that
terminates when a sentinel value is read or a certain
number of iterations has been done, and 5) a while-
loop that terminates when a sentinel value is read or

ADAPTIVE TUTORS FOR DEVELOPING VISUAL REASONING SKILLS IN PROGRAMMING COURSES

365

the sum of input values reaches a certain number.
The Tutor’s design permits addition of more
example programs without making major changes to
the system.

Assessment in five different laboratory sections
of the first programming course indicate that the
students had an average improvement of 15% in
points between the pre and post-tests on reading and
writing C++ loops after using the system for only
two hours.

5 THE NEXT STEP : VISUAL
TUTOR FOR C++
STATEMENTS

A problem with Cpp Tracer Tutor is that it assumes
the students already understand the effects of
individual statements found in loops. With students
who have problems with algebra word problems,
training in visual reasoning must start earlier.
Another problem is that the students are simply
observing the visualization of actions. The students
need to be trained to visualize the actions.

Therefore, we are currently designing a system
for helping students visualize the effects of
individual C++ statements. As with the Cpp Tracer
Tutor, the tutorial style will be based on the Irvine-
Geneva theory emphasizing:

 Conversational tutoring
 Adaptive learning
 Mastery learning

The system will start off by showing correct

visual representation of C++ statements using many
examples. In the tutorial section, the student will be
given a C++ statement. By clicking and dragging
icons the student must create the visual
understanding of that statement. The system will
categorize wrong answers and record them so that
the student can be given an appropriate sequence of
exercises. The system will give appropriate
conversational hints and take the student back to the
same question. When the answer is finally correct,
the system will give the same type of question again
to verify student understanding. For example:

Declaration int A;
 The student has to select a memory
 box and add labels for the type and
 name.
Input cin >> A;

 The student has to select the correct
 box and drag the user input into the
 box.
Output cout << A;
 The student has to select the correct
 box and copy the value to the output
 stream.
Assignment A = A + 1;
 The student has to select the correct
 box and change the value.
Loops Each part of a loop will be
 highlighted in turn in the execution
 order, and the student is asked to show its
effect.

In advanced tracks, arrays, stacks, queues and

linked lists will be included.
One of the goals of the project is to create it

based on a language-independent framework so that
the tutor can be used for learning any programming
language. Once the system is complete, we plan to
1) assess its usability with actual students and
teachers, and 2) assess its effectiveness with our
students and students at local community colleges.

6 SUMMARY

We have presented an acute need for developing
tutoring systems to help students develop visual
reasoning skills in order to succeed in programming
classes. Out findings in beginning programming
classes at CSUSM show that many students cannot
envision correct semantic representation of the word
problem statements, and/or programming constructs.

 We have shown two example tutor designs
incorporating visual reasoning, adaptive learning,
conversational tutoring and mastery learning. With
these types of tutoring systems, students in large
classes can work at their own pace at home to
develop their visual reasoning skills.

We also believe that such systems should be
developed for Entry Level Mathematics classes to
train students to visualize problem situations before
they come to programming classes.

REFERENCES

Bork, A. et al., 1992. The Irvine-Geneva Development
System. In R. Aiken (Ed.), Education and Society
Vol. II, North Holland: Elsevier Science Publisher.

Bork, A, Gunnarsdottir, S., 2001. Tutorial Distance

CSEDU 2010 - 2nd International Conference on Computer Supported Education

366

Learning: Rebuilding our Educational System, Kluwer
Academic Publishers.

Buchanan, R., Farrand, P., 1995. Can simulations help
students understand programming concepts: a case
study.http://www.ascilite.org.au/conferences/melbourn
e95/smtu/papers/buchanan.pdf.

Hall, R., Kibler, D., Wenger, E., & Truxaw, C., 1989a.
Exploring the episodic structure of algebra story
problem solving. Cognition and Instruction, 6(3), 223-
283.

Hall R., 1989b. Qualitative diagrams: supporting the
construction of algebraic representations in applied
problem solving. In D. Bierman, J. Breuker & J.
Sandburg (Eds.), Artificial intelligence and education,
Proceedings of the 4th International Conference on AI
and Education (116–122). Amsterdam, Netherlands:
IOS.

Slott, K., Yoshii, R., 2005. “DeCEN and Tutor Writer:
Making an Interactive CALL Tutor Available as a
Java Applet”, Proceedings of the ED-MEDIA 2005
Conference, June 2005.

Yoshii, R., 1998. "DaRT: A CALL System to Help
Students Practice and Develop Reasoning in Choosing
English Articles." CALICO Journal, vol. 16, no 2., pp.
121-155, Fall 1998.

Yoshii, R., Milne, A., 2003. “The C++ Tracing Tutor:
Visualizing Computer Program Behavior for
Beginning Programming Courses”, Proceedings of the
ED-MEDIA 2003 Conference, June 2003.

Yoshii, R., Pasrija, N., 2010. “TWIGy: The Tutor Writer
Input file Generator to Help Create an Interactive
Individualized Tutor that Runs Over the Internet”,
Proceedings of the SITE 2010 Conference., March
2010.

ADAPTIVE TUTORS FOR DEVELOPING VISUAL REASONING SKILLS IN PROGRAMMING COURSES

367

