
INTELLIGENT DECISION-MAKING TIER IN SOFTWARE
ARCHITECTURES

D. Ong and S. Khaddaj
Faculty of Computing, Information Systems and Mathematics, Kingston University London, Kingston upon Thames, U.K.

Keywords: Software Architectures, Intelligent Decision Making, N-tier Architectures, Control Systems.

Abstract: Despite recent developments there are still many challenges in the application of intelligent control systems,
as intelligent decision-making providers in constructing many software architectures which are required in
many applications particularly in service-oriented computing. In this work we are particularly interested
with the use of intelligent decision making mechanisms for the management of software architectures. Our
research aims at designing and developing an intelligent tier which allows dynamic system architecture
configuration and provisioning. The tier is based on a number of logical reasoning and learning processes
which use historical data and a set of rules for its analysis and diagnosis in its attempt to offer a solution to a
particular problem.

1 INTRODUCTION

The adoption of a service-oriented architecture
(SOA) approach in the software development
lifecycle has increased significantly over recent
years. The SOA approach is an extension of
distributed computing, modular programming and
object-oriented programming concepts, where each
software component in the architecture can be
considered as a service provider. Each service
provider is able to operate as an individual
independent unit, as well as collaborate with other
services to fulfil a particular application objective. A
software package which is based on business
requirements and processes can be assembled via the
manipulation of these services.

For many applications, especially those based on
services, it is very important to have a system that is
able to reconfigure itself dynamically based on its
operational situation. To achieve this dynamism, this
paper proposes an intelligent decision-making
mechanism which can be incorporated into existing
n-tier architecture as i-tier to form new n(i)-tier
architecture.

We start by discussing intelligent decision
making mechanisms and processes. Then, the
different layers in typical software architectures are
described and some problems and challenges are
identified. The intelligent decision making layer is
then presented which offers dynamic optimisation of

the way services (resources) in the n-tier architecture
are utilised. Then, the layer potential use as an
intelligent service provider is discussed. We
conclude with some suggestions for future work.

2 INTELLIGENT DECISION
MAKING MECHANISMS

Most intelligent control systems have some form of
decision making mechanisms build into their
systems, but many obstacles remain as they are
usually built for a specific purpose / scenario,
relying heavily on predetermined algorithms, and
autonomous behaviour that is based on
preconfigured / static configurations (Kramer,
1985), (Sun , 2000), (Satoh, 2002), (Beckert, 2006).
Historically, the control unit of many intelligent
systems is not easily adapted to other architectures /
systems because it is statically designed to solve a
particular problem.

To overcome the above challenges, this work
proposes an intelligent control unit that is capable to
deploy a generic decision-making mechanism across
various software architectures. The intelligent
decision-making unit provides decision-making
functionality for the software architecture in the
form of system configuration and provisioning.
Based on the decision-making scope, the decision-

355Ong D. and Khaddaj S. (2010).
INTELLIGENT DECISION-MAKING TIER IN SOFTWARE ARCHITECTURES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
355-358
DOI: 10.5220/0002868103550358
Copyright c© SciTePress

making unit is expected to make a sensible decision
upon every request, and to learn from its past
decisions via the received feedback.

The main obstacle in developing intelligent
decision-making mechanisms is to understand how
we perceive an “intelligent” entity (Ong and
Khaddaj, 2009). A general concept on how an
intelligent decision-making ability is achieved using
combined functionalities is shown in figure 1. This
is used as a general guideline in constructing the
proposed intelligent control unit where the learning
and logical reasoning processes use historical data
for its analysis and diagnosis as well as sets of rules,
both pre-defined and self-defined, to offer a solution
to a particular problem.

Figure 1: A decision-making ability.

3 SOFTWARE ARCHITETURES

The traditional software architectures have a
tendency toward developing computer applications
as standalone visible software (commodity), where it
can be sold as an off-the-shelf product. Typically, it
is designed for a specific business function (e.g. an
in-house payroll system) or a specialised general-
purpose application such as word processing,
desktop publishing, operating system, etc.

However, continuous growth in the integration
and globalisation of the current computer
infrastructures has offered a new opportunity for a
“next step” in software evolution. A service-oriented
architecture (SOA) has emerged as a popular
architectural platform, where it has moved
significantly from the traditional design (Choset,
2000). This has created a great opportunity for the
full integration of existing applications into one
universal service provider with each software
component capable of acting autonomously as a
service provider. This service provider can range
from a small task (e.g. statistical calculation, sorting
functions, etc.) to a larger enterprise solution, where
it can consist of an integration of various small tasks
to form a complex service such as online banking, e-
store, etc. Furthermore, any improvement or

deployment of this component to other solutions can
be accomplished without any noticeable effect to the
overall infrastructure (Pfister, 2002), (Gyurjyan,
2003), (Soundararajan, 2008), (Bar-Kana, 1989),
(Frankovic, 2009).

An n-tier concept is commonly used in designing
an SOA solution, where it is generally adopted and
implemented as a software development scheme
particularly for web services (e.g. the core design
concept of Microsoft .Net (Microsoft, 2007)).

3.1 N-tier Architecture

The n-tier architecture’s aim is to provide an
approach that unifies business, technical and data
access logics into one single flexible software
infrastructure. Business logic provides aims and
purposes of the software (e.g. content management
for different types of user, on-line payment and
billing solutions, etc.). Technical logic gives a
technical integration of the business logic into a
viable technical solution (e.g. interpretation and
transformation of screen display according to level
of information or privileges set by the business
logic). Lastly, data access logic provides a data
management solution for the software such as data
access solution, data storage solution, data
translation solution, etc.

The n-tier architecture utilises a component-
based approach in its design practices. This
approach permits the architecture to be more flexible
and acceptable to any changes with a minimal
impact to its structural integrity. The flexibility
offered by this approach enables the architecture to
reuse existing components, which has led to a large
reduction in the redundancy of functions (codes).

In general, n-tier architecture can be divided into
three main components – “User Interface”,
“Application Structure” and “Data Storage” (figure
2). The “user interface” component provides a
physical medium for a software solution to engage
with an end-user. The “application structure”
component incorporates business, technical and data
access logics into three integrated tiers to provide a
software solution. The “data storage” component
gives a data storage and management facility to an
“application structure” component.

Figure 2: General concept of n-tier architecture.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

356

4 AN INTELLIGENT DECISION-
MAKING LAYER

Earlier, it was indicated that there is a requirement to
design a system that can reconfigure itself
dynamically based on its operational situation. In
order to achieve this dynamism, a new n(i)-tier
architecture is proposed as an enhancement to the
current n-tier architecture, where a newly proposed
intelligent decision-making layer (i-tier) is
introduced. This i-tier is expected to take over the
responsibility of handling the architecture’s
communication medium (figure 3) by managing
every communication requirement autonomously
through an intelligent resources delivery and
management facility.

Figure 3: General concept of n(i)-tier architecture.

The fundamental characteristics of the i-tier in
n(i)-tier architecture could be described as follows: -

a) To be capable of detecting and adapting to
different communication protocols used by the
architecture’s tiers.

b) To be capable of adapting to any changes
occurring in the infrastructure.

c) To be capable of optimising and fixing any
faulty elements detected within its infrastructure.

d) To be capable of initiating its own
investigation when there is a problem discovered or
a new element introduced to the infrastructure.

e) To be capable of recovering from any failures.
The intelligent resources delivery and

management facility is based on a dynamic decision-
making mechanism. The role of intelligent tier
would be to make the best possible decision to
reflect the current situation of the whole
architecture. Integration of these decision-making
processes into one independent tier enables a wider
identification and evaluation of the architecture’s
overall operating status that inadvertently
contributes to the formation of a better final
outcome. This process is determined by pattern
identification methods and types of logical reasoning
in the tier’s decision-making mechanism (Ong and
Khaddaj, 2009).

Initially, the presentation tier sends an end user’s
requests to the data access tier. The data access tier
needs to access information provided by the business
tier, in order to evaluate which type of information is
required by the presentation tier. If the business tier
almost reaches the breaking point in its processing
capacity, a performance degradation of the overall
architecture will slowly emerge (i.e. a snowball
effect) because the presentation tier is still
continually sending requests to the data access level
and is not aware of any problems in the business tier.
The intelligent tier, which oversees the status of the
overall architecture, instructs (co-ordinates) the
presentation tier to reduce the frequency of requests
sent to the data access tier. It will therefore alleviate
the processing pressure from the business tier and
the overall architecture in general, thus facilitating
optimum processing of the data and an improvement
in the performance of the n(i)-tier as a whole.

4.1 Intelligent Service Provider

As mentioned earlier the current n-tier architecture
has three tiers, which are capable of interacting with
each other to achieve a software solution for the end
user. Moreover, it relies heavily on a static
configuration to achieve its functioning goals. This
configuration often requires manual modification to
reflect its current operational relevancy. However, a
dynamic decision-making process in n-tier
architecture is essential, as any software solutions
produced must reflect the current operating
environment.

In order to achieve this dynamic process, the
intelligent tier was proposed earlier to provide the
intelligent decision-making mechanism for the
architecture tiers. The i-tier layer can be deployed as
an n(i)-tier based solution for an intelligent service
provider where it is taking over the decision-making
responsibilities from other tiers (figure 4). The
intelligent service provider can be used in service-
oriented architectures where many services need to
interact to produce a workable application.

Figure 4: intelligent service provider.

INTELLIGENT DECISION-MAKING TIER IN SOFTWARE ARCHITECTURES

357

The dynamic decision-making process in each
tier is delegated to the intelligent tier, where the best
possible decision is made to reflect the current
situation in the whole architecture. Integration of
these decision-making processes into one
independent tier enables a wider identification and
evaluation of the architecture’s overall operating
status that inadvertently contributes to the formation
of a better final outcome. This process is determined
by pattern identification methods and types of
logical reasoning in the tier’s decision-making
mechanism.

5 CONCLUSIONS

In this paper an intelligent control system framework
for the dynamic configuration and operation of
software architectures has been presented. To
achieve a high flexibility and dynamism in the
framework design, the paper has looked into an
intelligent decision-making layer which can be
adopted as a control unit of the intelligent control
system. This was then applied into the current
development of n-tier software architecture. The
need of introducing an intelligent decision-making
layer that is capable of acting instantaneously in
response to any changes to its requirements and
environment was also discussed. The paper
attempted to offer a viable technical design and
solution to constructing an n(i)-tier infrastructure for
software development environments. It is suggested
that the introduction of an intelligent decision-
making layer in the n-tier design would enable
software architectures such as the service-oriented
architecture to be more flexible and adoptable.
However, the realisation of the proposed architecture
to its full potential would be considered in future
work.

REFERENCES

Kramer, J, 1985. Dynamic Configuration for Distributed
Systems. IEEE Transactions on Software Engineering,
11(4), 424-436.

Sun Microsystem, 2000. Dynamic Host Configuration
Protocol. Technical White Paper.
<http://www.sun.com/software/whitepapers/wp-
dhcp/dhcp-wp.pdf>.

Satoh, I, 2002. Dynamic Configuration of Agent
Migration Protocols for the Internet. In Proceedings
of International Symposium on Applications and the
Internet (SAINT 2002), IEEE Computer Society.

Beckert, B, 2006. Intelligent Systems and Formal Methods

in Software Engineering. IEEE Intelligent Systems,
72-78.

Ong, D., Khaddaj, S., 2009. The Potential of Imprecision
In Intelligent Decision Making. In International
Conference on Application of Digital Information and
Web Technologie, London, UK.

Choset, H, 2000. Sensor Based Exploration: Incremental
Construction of the Hierarchical Generalized Voronoi
Graph. International Journal of Robotics Research,
19(2), 126-148.

Pfister, S, 2002. Weighted Range Sensor Matching
Algorithms for Mobile Robot Displacement
Estimation. In IEEE International Conference on
Robotics and Automation 2002.

Gyurjyan, V, 2003. FIPA agent based network distributed
control system. Computing in High Energy and
Nuclear Physics, 24-28.

Soundararajan, K (2008). Design patterns for real-time
distributed control system benchmarking. Robotics
and Computer-Integrated Manufacturing, 24(5), 606-
615.

Bar-Kana, I, 1989. Unsupervised parallel distributed
computing architecture for adaptive control. In
Proceedings of IEEE International Symposium on
Intelligent Control, 174-178.

Frankovi¡c, B, 2009. Creation of Intelligent Distributed
Control System Based On Multi-Agent Technology.
Journal of Electrical Engineering, 60(1), 29-33.

Microsoft, 2007. MSDN Solution Architecture Center.
<http://msdn2.microsoft.com/en-
gb/architecture/default.aspx>.

Khaddaj, S., 2008. The Impact of Component and
Distributed Systems on Software Quality. In Semantic
Enterprise Computing, 30-38.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

358

