
ACCESS RIGHTS IN ENTERPRISE FULL-TEXT SEARCH
Searching Large Intranets Effectively using Virtual Terms

Jan Kasprzak, Michal Brandejs, Matěj Čuhel and Tomaš Obšivač
Faculty of Informatics, Masaryk University, Brno, Czech Republic

Keywords: Full-text search, Intranet, Security, Access rights, Document permissions, Document-level security.

Abstract: One of the toughest problems to solve when deploying an enterprise-wide full-text search system is to handle
the access rights of the documents and intranet web pages correctly and effectively. Post-processing the
results of general-purpose full-text search engine (filtering out the documents inaccessible to the user who sent
the query) can be an expensive operation, especially in large collections of documents. We discuss various
approaches to this problem and propose a novel method which employs virtual tokens for encoding the access
rights directly into the search index. We then evaluate this approach in an intranet system with several millions
of documents and a complex set of access rights and access rules.

1 INTRODUCTION

Many enterprises have put effort in developing web-
based authenticated systems, covering many aspects
of internal processes, called intranet systems. Some
intranets provide not only access to various struc-
tured pieces of information (such as list of members
of some work group, or a list of occupied time slots of
a meeting room), but also unstructured text documents
(such as study materials for the university courses,
whitepapers, internal product documentation, etc.).

It is often difficult for users to navigate inside
a large web-based intranet system. Full-text search
can provide an alternative (or even primary) means
of navigation (Zhu et al., 2007). The task of search-
ing the intranet system effectively has many prob-
lems which are completely different to the problems
of searching the publicly-available world-wide-web
(Hawking, 2004).

An important problem is to be able to follow the
access rights of the web pages and documents effec-
tively: the intranet systems often contain documents
and pages, which are not permitted to be read by ev-
ery authenticated user, so it is not possible to allow
them to be discovered using a full-text search sys-
tem. In this paper we propose a solution to the ac-
cess rights problem in the enterprise full-text search,
and we evaluate this approach on Masaryk University
Information System (IS MU, 2010), a large intranet
system for study administration.

The rest of this paper is organized as follows:

in Section 2 we discuss related work, in Section 3
we present an overview of general-purpose full-text
search engines, especially with respect to our pro-
posed method. In Section 4 we discuss access rights
management. The main contribution of this paper is
in Section 5, where we propose a novel method of
incorporating security features to the full-text search
system. We further evaluate this method on a real
world intranet system with tens of thousands users
and several milion documents and pages in Section
6. Finally, the Section 7 contains conclusions.

2 RELATED WORK

Several authors have attempted to deal with issues
concerning full-text search in intranet systems, where
the access rights to documents have to be taken into
account.

In (Bailey et al., 2006), the two architectures of
enterprise systems are presented. In the first one the
search engine is not involved in security policies or
access rights: users communicate with a repository,
which forwards the query to the search engine, and
then filters out the documents inaccessible to the user.
In the second approach the search engine handles the
access control by querying an external service such
as LDAP. The cost of security checks in the second
approach grows linearly with the number of results
to check, leading to query times of 100 seconds when

32
Kasprzak J., Brandejs M., Čuhel M. and Obšivač T. (2010).
ACCESS RIGHTS IN ENTERPRISE FULL-TEXT SEARCH - Searching Large Intranets Effectively using Virtual Terms.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages 32-39
DOI: 10.5220/0002896900320039
Copyright c© SciTePress



the number of candidate results reaches 1 million doc-
uments, even when caching the access control data.

In (Hurley, 2009), the author realizes that filtering
out the results in the post-processing phase may have
negative impact on the search performance. A differ-
ent approach is presented, where the users’ creden-
tials are calculated for every user when the document
is being indexed. A per-user view of the index is cre-
ated, and subsequently used for evaluation of user’s
queries. To be able to maintain consistent copy of
access control lists, quick check to the directory ser-
vice is performed before each query. Two implemen-
tations are presented: PrivaSearch1, where each user
has specific view of the corpus, and PrivaSearch2,
where the membership in groups is also reflected. As
a result of this method each user is provided with a
separate index. Three types of document distributions
are discussed: disjoint, overlapping, and hierarchical.
The implementation is tested on data sets of 2,000 to
20,000 documents. For larger data sets, the author
suggests to distribute the index. We consider this ap-
proach (per-user indexes) completely feasible only for
a limited range of systems where users have access to
disjoint sets of documents (e.g. e-mail messages).

Google Search Appliance (GSA, 2009) is as a
widely known commercial black box solution for in-
tranet or website full-text search. It performs on-line
access control checks for each document from the re-
sult set. Standardized SAML (SAML, 2005) identity
provider (or specialized one for batch processing) has
to be present or implemented on the customer side.

The post-processing approaches have limitations
on large scale systems. For example, when there is
a thousand of higher-ranked documents matching the
query, but inaccessible to a given user, the system will
need to check the access rights to all of those docu-
ments before finally discovering a lower-ranked doc-
ument accessible to that user.

3 FULL TEXT SEARCH ENGINES

The full-text search systems are often constructed as a
software, which maintains the index of the documents
to be searched, and executes queries against this in-
dex. We refer to (Zobel and Moffat, 2006) for possi-
ble approaches for creating and using the index.

3.1 Index

For the method we propose, it is sufficient to view
the full-text search engine as a maintainer and user of
an inverted index, consisting of lexicon of all words
from the set of documents, and mapping of each of

those words to the list of document IDs, listing the
documents which contain that word.

These lists are often sorted by the document ID,
allowing to store them differentially, and compressed
using e.g. Elias delta encoding (Elias, 1975). They
also might be accompanied by weights of the given
word in a particular document.

For evaluating multi-word proximity and phrase
queries, it may be useful to allow fast forward search-
ing of these lists, which can be done e.g. by accom-
panying larger lists with skip-lists for semi-direct ac-
cess.

The index also contains other data structures,
which are not relevant to this paper (forward index,
lists of word positions, etc.).

3.2 Query Format

The query itself is usually entered by user as a se-
quence of words, meaning “find the documents which
contain all of those words, preferably near to each
other” (i.e. the implicit AND/NEAR operator). Many
search engines allow also the NOT operator, and some
of them support also the OR operator. The support for
exact phrase searches is common as well.

The OR operator—even when not available di-
rectly to the end user—is often used internally
for handling lemmatization, inflections, diacritics,
acronyms, and so on. For example, the query “Citroën
cars” can be internally transformed as follows:

(citroën OR citroen) AND (cars OR car)

For our purposes, it will be sufficient when the
search engine can efficiently handle the queries in the
above format—i.e. the logical conjunction (AND) of
the logical disjunctions (OR). More precisely formu-
lated, the expected query format is the following:

(token1,1 OR token1,2 OR token1,3 OR · · ·)
AND (token2,1 OR token2,2 OR token2,3 OR · · ·)
AND (token3,1 OR token3,2 OR token3,3 OR · · ·)

... (1)

4 ACCESS RIGHTS

The availability of a document (or, more generally,
object) to some user (i.e. subject) is often described by
a matrix with per-subject rows, per-object columns,
and cells containing the actual permissions settings
(a subset of “can read”, “can write”, “can delete”,
etc.). For the full-text search, only the read permis-
sion is significant. Note, however, that some systems

ACCESS RIGHTS IN ENTERPRISE FULL-TEXT SEARCH - Searching Large Intranets Effectively using Virtual Terms

33



(e.g. LDAP) can have a separate “can read” and “can
search” levels of access.

Storing the matrix as a whole is often impractical,
so the systems (be it web-based intranets or operating
systems) often store the parts of the matrix either as
rows, often called capabilities (e.g.: “user root can
read every file”, or “the teacher can read all of the
study materials of his own courses”), or as columns,
called access control lists (ACLs) in the Chapter 5 of
(Anderson, 2008)—e.g. “this document can be read
by members of group staff”, or “this document can
be read by all present and past students of the course
‘UNIX’”.

Some systems store the access rights information
explicitly (e.g. filesystems), while other systems have
some of the implicit rules hardcoded inside the system
(this is the case of many enterprise systems).

To reduce the size of the access rights matrix
(stored either as capabilities or ACLs), subjects are
often organized into groups (e.g. group staff, or “stu-
dents of the course ‘UNIX’” from the above exam-
ples).

For the approach we propose in Section 5 it is suf-
ficient to be able to evaluate the following two lists:

• the list of groups a given user belongs to,

• and the list of groups which can read a given doc-
ument.

As a last resort, if no smarter method of grouping
is available, it is possible to put every user in his own
separate group.

5 PROPOSED METHOD

The high-level view of the proposed system architec-
ture can be seen in Figure 1. Some components are
present in general intranet systems as well:

SQL database stores structured data of the intranet
system. It is often encapsulated by a middleware
layer.

Document Storage. Large static text and multimedia
files are usually stored outside the database.

HTTP Front End. This is the system which the
user’s browser communicates with. It handles au-
thentication, parsing the HTTP requests, and com-
puting the resulting pages.

The following components are added for the pur-
pose of full-text search:

Crawler/indexer downloads the static documents
from the document storage, and either down-
loads the dynamically generated pages from the

HTTP server, or constructs them from data in the
database the same way as the HTTP server does.
The documents are then parsed and added to the
index.

Search Index. Contains the data structures described
in Section 3.1.

Search Server. Receives the pre-parsed queries from
the HTTP server, executes them using the pre-
computed index, and sends the results back to the
HTTP server, which then formats them to the user.

Note that the search server does not communicate
with the SQL database, so the pre-parsed query can
be executed using the search index as the only source
of information.

SQL database

Search indexSearch server

User HTTP front end
Document storage

Crawler/indexer

Figure 1: Architecture of an intranet search system.

5.1 Virtual Tokens

We propose to enhance the search engine with sup-
port for what we call virtual tokens: virtual token is a
special word, added to the inverted index, as if it was
a part of the indexed document itself. The difference
between words an virtual tokens is the following:

• The virtual token has no position within the docu-
ment. It is thus excluded from either the proximity
or exact phrase searches.

• It has no weight, so the search results cannot be
sorted using the weight of a virtual token. Another
(non-virtual) token has to be present in a query.

• The virtual token in one document cannot be an
ordinary word in another document. This is easily
satisfied by adding a character which can never be
a part of a word. We use the colon (:) for this
purpose.

The above requirements allow us to handle the
virtual tokens inside the inverted index differently:
the list of document IDs for a virtual token does not

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

34



need to include anything beyond the (differentially-
encoded and delta-compressed) document IDs them-
selves. No pointer to the list of positions and no
weight of a word in a given document is needed.

5.2 Access Rights Encoding

The access rights (be it ACLs or capabilities) are then
named and encoded as groups of users (e.g. “teachers
of the ‘UNIX’ course” or “students of the ‘Informat-
ics’ study programme”).

The permissions of a given document are repre-
sented as a set of groups which have the read ac-
cess to the given document. This set can be then
encoded into the inverted index as virtual tokens—
derived for example from the name or the num-
ber of a given group (e.g. “p:teachers UNIX”, or
“p:programme Informatics”; the “p:” prefix we re-
serve for virtual tokens describing the access rights).
For each group, members of which can read a given
document, we add a virtual token with the group iden-
tification for this document to the inverted index.

When the document should be accessible with-
out authentication (i.e. when it is world-readable), we
add a reserved virtual token “p:noauth” to it. When
the document should be available to any authenticated
user, we add another virtual token “p:auth” to it.

5.3 Query Execution

The user’s query is parsed by the HTTP server to the
format (1). To limit the search results to the doc-
uments which the user has permission to read, the
HTTP server computes the list of all groups the user
belongs to (for non-authenticated user, the list con-
sists of the single group “noauth”). It then modi-
fies the query by adding another OR-list the following
way:

The preparsed query
AND (p:group1 OR p:group2 OR · · ·) (2)

With this part added, the search server returns only
those documents matching the user’s query, which are
also readable by this user.

5.4 Expected Performance

The proposed system has three places, in which the
overall performance is affected by adding the access
rights:

Indexing the Document. This part of the system
runs in a batch mode, so the interactive latency

of the system is not affected. As for overall per-
formance, we expect the evaluation of the docu-
ment’s access rights to have negligible cost rela-
tive to e.g. tokenizing the text or converting the
document from formats like PDF or DOC.

Evaluating the Per-user Group List. This can be
either very fast or relatively expensive operation,
depending on the format of the source data. For
example, fetching the list of groups from the
UNIX /etc/group table or from LDAP can be
fast, while computing the list from the implicit
intranet data can be expensive (for example, for
study materials, a separate group for each course
and possibly semester has to be created, and the
list of courses the user has ever enrolled in should
be evaluated). Should this operation be expen-
sive, we can cache the resulting list of groups for
a given user for some time (a day, or possibly an
hour). We can even precompute the list on back-
ground after displaying the full-text search form
in order to improve the latency.

Executing the Qquery. The impact in this part can
potentially be very high: the search server needs
to process many and/or long additional lists of
document IDs for many virtual tokens. However,
with some optimizations, the search can theoreti-
cally be even faster than without the access rights.
For example, when the search server processes the
OR-list with the lowest number of matching doc-
uments first, executing the query for a very fre-
quent word can be faster for users which can read
only a small number of documents. On the other
hand, when the query is executed on behalf of user
who can access large portion of the available doc-
ument base, we can optimize the query execution
by adding skip-lists to the large lists of document
IDs. The impact is further lowered by simplified
lists for virtual tokens, as described in Section 5.1.

The main advantage of this system is that it does
not require the access rights of the individual doc-
uments to be evaluated in the query results post-
processing. This helps especially when the search re-
sults contain lots of documents which are highly rel-
evant, but inaccessible to a given user. With our ap-
proach, we are able to filter out the inaccessible docu-
ments during the query execution phase the same way
multi-word queries work.

5.5 Drawbacks and Limitations

The system we have just described—like many other
computing systems—contains a tradeoff between the
efficiency and accuracy. We will try to identify and

ACCESS RIGHTS IN ENTERPRISE FULL-TEXT SEARCH - Searching Large Intranets Effectively using Virtual Terms

35



describe the possible drawbacks of using such a sys-
tem:

The Permissions are “Cached” in the Index. This
means that the system can sometimes allow the
document to be found even after the access for
a given user has been revoked. From our point
of view the problem is not so critical: for urgent
cases (such as when the user can no longer
be trusted) the common approach is to revoke
the access to the intranet system as a whole,
so the full-text search system is also no longer
accessible.
For revoking the permissions for a given group,
the situation is the same as when removing a part
of the document in a new version of the docu-
ment: we do not expect the immediate reindex-
ing the document when modifying its contents, so
we should not expect the immediate revoking of
the rights as well. In our experience, it is feasi-
ble to invoke the reindexing of the modified doc-
uments frequently (e.g. every minute), so the de-
lay of propagation of modified access rights can
be kept relatively low. Also note that in this case
we are trying to deny a read access to something
which could have been readable for a long time
now.

Negative Access Rights. Some systems of access
rights can use the group membership also to lower
the permissions for a given user. For example, the
classical UNIX access rights allow the file to have
permissions set to rw----r--, which means that
the file is readable and writable by its owner, and
readable by everybody except the members of the
group the file belongs to. This can be mapped to
our approach only by a new virtual token/group
“all users except members of the group XY”.

Tree-like Rights are not Straightforward. It is also
possible for documents to be organized in a direc-
tory tree, in which not only the permissions of the
document itself are evaluated, but also the permis-
sions of the directories in the path from the doc-
ument to the root of the tree. The problem arises
when the subdirectory or a file has permissions,
which are not a subset of the permissions of the
upper directory. For example, the directory can be
readable by a group “students of the programme
‘Informatics’”, and the document in it can be read-
able by a group “students who have enrolled in the
course ‘UNIX’”. Since the first group is not nec-
essarily a superset of the second one, we should
effectively provide the access only to the users
which are members of both of the above groups.
This also can be solved by creating another vir-

tual token/group “students of the programme ‘In-
formatics’, who also have enrolled in the course
‘UNIX’”. This approach requires additional work
when evaluating the list of groups for a given user,
but it can be implemented.

Despite the above drawbacks, we believe that our
approach is usable for many intranet systems, as it can
be faster than on-line verification of the access rights.

5.6 Other Uses of Virtual Tokens

Virtual tokens as described in Section 5.1 can be used
for other purposes beyond access rights: the docu-
ment date can be encoded into virtual tokens, and then
user can specify the time range. For example, the fol-
lowing query can select the time span of 13 months
starting with January 2009:

The preparsed query AND (d:2009 OR d:201001)

It can also be used for improving the search engine
relevance: we can add weight to the documents con-
taining a given virtual token instead of filtering them
out when the required virtual token is not present. It
is then possible to give preference to the study mate-
rials of courses attended by student, even when other
courses may have their study materials publicly ac-
cessible.

Advanced search forms can specify additional
search criteria like increased weights for documents
in a given subtree. Another possible use of virtual
tokens is in search log evaluation (e.g. finding terms
most searched by students of the ‘UNIX’ course).

6 CASE STUDY

We have tested our approach on a real-world intranet
system with relatively complicated system of access
rights.

6.1 About IS MU

The Masaryk University Information System (IS MU,
2010) is a study administration and e-learning system.
It has been developed since 1999. More than 130,000
users—present and past students and employees of
the university—can access the system. As of January
2010, the system is accessed by more than 30,000
unique users daily, and handles more than 2,000,000
authenticated HTTPS requests per day. The document
storage contains over 20,000,000 objects (documents
in various formats, images, multimedia data, theses,
e-mails, etc.).

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

36



6.2 Access Rights System

The system of access rights in IS MU consists of the
explicit access rights, which can be set by the owner
of the document (e.g. “this document can be read by
the students of the course “UNIX’”), and implicit ac-
cess rights, which are mostly hardcoded in the appli-
cations or PL/SQL procedures. This includes things
like “the study materials of a given course are irrevo-
cably readable by all teachers of that course”, or “the
permissions of the discussion forum posts cannot be
set at all, the permissions are derived from the top-
level node (representing the forum itself)”, etc. There
are several types of explicit rules (based on the course,
study programme, workgroup membership of an em-
ployee, faculty, alumni status, type of study, etc.).

6.3 Testing Platform

We have implemented the access rights handling
method as described in Section 5 into the IS MU full-
text search system. The searcher and indexer run on a
single server SGI Altix XE (a rebranded SuperMicro)
with dual Xeon E5472 CPUs at 3.0 GHz (8 cores to-
tal), 64 GB RAM. The system runs 64-bit version of
Fedora Linux.

The tokenization of documents (including evalu-
ating the access rights) has been implemented in Perl,
creating the partial inverted index, merging indexes,
and searching were implemented in plain C with Judy
arrays (Judy, 2010) for storing associative data such
as lexicon. The HTTP front-end applications are writ-
ten in Perl: pre-parsing the queries including evalua-
tion and caching the per-user list of groups runs there.

The index is segmented into 8 parts of similar size
(per-document split), and during the query execution
each CPU core works on top of its own part of index.
The partial results are then merged together.

6.4 Users

We have decided to test the system on a subset of
users, who have used the system during October 2009
(October is one of the busiest months of a year for
the system, because of the start of semester). There
are 51,022 such users, which form 768,442 different
groups. Each user is in at least two groups (“all au-
thenticated users”, and a per-user group). The median
is 178 groups per user, mean is 210, and the maxi-
mum is 9,942 groups per user. The histogram of the
number of users with a particular number of groups
(without the long tail of users which are members of
more than 800 groups) is in Figure 2.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0  100  200  300  400  500  600  700  800

N
um

be
r 

of
 u

se
rs

Number of groups

Users and Groups

Figure 2: Number of users with a given number of groups.

The median of the time for evaluating the per-
user list of groups was 0.028 s, mean 0.048 s, and
maximum was 1.415 s (we have took the minimum
from five runs). The tests were run on a production
database without exclusive access to the computing
resources.

6.5 Documents

As a testing set we have used 1,370,200 documents
from various agendas, both static (e.g. theses and
study materials), and dynamically generated (e.g. per-
sonal home pages). The documents are accessible by
60,493 different groups (this number is much smaller
than the total number of groups for all users, be-
cause e.g. some courses contain no study materials
at all). The largest number of documents a single
group can access is 1,129,995. Another important
groups are “non-authenticated users” which is the
third with 398,391 documents, and “all authenticated
users” pseudo-group (14th, 107,520 documents).

Further optimizations of the group memberships
in IS MU are possible, but are outside of the scope of
this article.

The performance of the indexer depends highly on
the document size. For example, for theses, the sys-
tem can tokenize 9 documents per second on average,
while for the rest of the testing set (including the study
materials) the speed is around 80 documents per sec-
ond. The tokenizing and generating the inverted index
of the whole document set takes slightly more than 6
hours. This time does not include converting various
foreign formats (DOC, PDF) to plain text.

The resulting index occupies about 18.3 GB. The
data relevant for our test (lexicons and document lists
for all words) occupy 2.7 GB. The biggest part of
the index is forward index for generating document
snippets (7.8 GB) and word position lists for phrase
searches (7.7 GB).

The overhead of adding the virtual tokens is in
the lexicon, where it adds 60,493 more words to the
16,868,473 words which were already present, and in
the lists of document IDs for those words, where it
costs additional 8,449,607 list entries to the already

ACCESS RIGHTS IN ENTERPRISE FULL-TEXT SEARCH - Searching Large Intranets Effectively using Virtual Terms

37



existing 932,424,699 entries. We can say the index
size overhead is less than 1 %.

6.6 Search Performance

In this section we evaluate the performance of the
search server as described in Figure 1. One of the
most computing-intensive parts of the query execu-
tion is decoding the lists of document IDs. We have
measured that with our implementation, a single core
of the search server can decode about 55 millions
of differentially-encoded delta-compressed numbers
(with up to 64-bit size) per second.

We have tried to measure the pre-parsed query
execution times for various single-word queries with
and without applying the access rights. We do not in-
clude multi-word and phrase queries here for brevity.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 100  1000  10000  100000  1e+06  1e+07

T
im

e 
[s

ec
on

ds
]

Word frequency [docs]

Query Execution Time

root
noauth (1)

1st quartile (93)
median (178)

3rd quartile (295)
last percentile (1811)

maximum (9942)

Figure 3: Query execution times for various users and terms
of a given frequency.

Another difference from the production use is that
the search server did not generate the text snippets of
the resulting documents, as this part is not relevant to
the measurement of the access rights overhead.

We have chosen a set of words such that the words
are present in approximately power-of-two number of
documents, and are English words, because of the lan-
guage of this paper. The most frequent word is ‘a’,
which is present in 1,221,642 documents. The other
words in descending frequency are 7, on, role, both,
party, speech, warning, movies, broadest, peptides,
initiators, prefect, realigning, prescript, and finally
noncyclic, which is present in 32 documents.

We have measured the query execution time for
the above words for a sample set of users. Firstly—
as a baseline—we have the search without applying
the access rights at all (superuser access), then a non-
authenticated search (i.e. limited to the group “non-
authenticated requests”), and then as users with 93,
178, 295, 1811, and 9942 groups (first quartile, me-
dian, third quartile, last percentile, and maximum;
from the users with similar number of groups the ones

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 100  1000  10000  100000  1e+06

T
im

e 
[s

ec
on

ds
]

Word frequency [docs]

Query Execution Time

root
noauth (1)

1st quartile (93)
median (178)

3rd quartile (295)
last percentile (1811)

Figure 4: Detailed view on the query execution times.

with maximum number of accesses during October
2009 have been chosen, in order to simulate the real-
world performance for more active users). We took
the lowest time from 10 runs for each query. Note
that generating the per-user group lists, as described
and measured in Section 6.4, is not included in these
times.

The Figure 3 shows the execution times of queries.
Figure 4 shows the same graph with limited range of
the vertical axis to highlight the details. Finally the
Figure 5 shows the overhead relative to the search
without applying the access rights.

-100
-50

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 100  1000  10000  100000  1e+06  1e+07

O
ve

rh
ea

d 
[%

]

Word frequency [docs]

Access Rights Overhead

root (0)
noauth (1)

1st quartile (93)
median (178)

3rd quartile (295)
last percentile (1811)

maximum (9942)

Figure 5: The overhead of following the access rights.

6.7 Discussion of the Results

The cost of generating per-user group lists in IS MU
is non-trivial and introduces a significant latency. We
have therefore added caching of the lists for a day to
the production system. However, the system is not
typical because of large number of groups and com-
plicated evaluation of group membership.

The measurements of pre-parsed query execution
times show visible overhead of evaluating the access
rights. We can see that the overhead stays within
200 % over the baseline for every user except the last
percentile. And even then, the maximum measured
overhead is 400 % more than the baseline of searching

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

38



without the access rights. For frequent words, how-
ever, there is a negative overhead of the access rights
evaluation, because of restricting the documents to
evaluate to those accessible by the user. The reason
of such behaviour is that decoding of long list of doc-
ument IDs is fast enough (and it can be made even
faster using skip-lists), and what does matter is how
many times the decoding has to be interrupted in or-
der to look at another list (for another word/virtual
token).

We expect the overhead will be even lower for
phrase and multi-word queries, which are prevalent:
their cost is already much higher because of evaluat-
ing the positions of words, and the access rights eval-
uation time would remain about the same.

7 CONCLUSIONS

We have proposed a novel method for handling the ac-
cess rights within an intranet full-text search engine
by extending a general-purpose search engine with
additional support for virtual tokens, which can be
processed more efficiently than ordinary words during
the query execution. This extension can be used for
many other purposes apart from access rights encod-
ing (such as social search, date/time limiting, subtree
limiting, per-agenda search, etc.).

Many systems of the access rights can be trans-
lated to the search engine data as virtual tokens repre-
senting groups of users or individual users. There are
some cases where this representation is not straight-
forward, such as a set complement of the group, or
intersection of two arbitrary groups.

We have implemented the proposed system, in-
dexing static documents and dynamically-generated
content of a large intranet system with a complex sys-
tem of access rights and rules. The measurements
proved that the overhead of evaluating the access
rights for a given data set is under 200 % for 99 %
of users, and at most 400 % for the worst case.

The main drawback of the proposed method is that
caching of the access rights of the documents is an in-
tegral part of the system, so the permissions cannot be
revoked except by reindexing the document again or
marking it as deleted. The caching of per-user access
rights is, on the other hand, purely optional.

Further improvements are possible: the most
promising one is to use skip-lists for large lists of doc-
ument IDs.

ACKNOWLEDGEMENTS

The authors would like to thank Pavel Šmerk and
Mirka Kramáreková for careful proofreading of this
paper.

REFERENCES

Anderson, R. J. (2008). Security Engineering: A Guide
to Building Dependable Distributed Systems. Wiley
Publishing.

Bailey, P., Hawking, D., and Matson, B. (2006). Secure
search in enterprise webs: tradeoffs in efficient im-
plementation for document level security. In CIKM
’06: Proceedings of the 15th ACM international con-
ference on Information and knowledge management,
pages 493–502, New York, NY, USA. ACM.

Elias, P. (1975). Universal codeword sets and representa-
tions of the integers. IEEE Trans. Inform. Theory,
pages 194–203.

GSA (2009). Google Search Appliance.
http://code.google.com/ intl/en/apis/searchappliance/
documentation/.

Hawking, D. (2004). Challenges in enterprise search.
In ADC ’04: Proceedings of the 15th Australasian
database conference, pages 15–24, Darlinghurst, Aus-
tralia, Australia. Australian Computer Society, Inc.

Hurley, J. (2009). Preventing information leakage in the
search engine. Master’s thesis, University of Tromsø.

IS MU (1999–2010). Masaryk University Information Sys-
tem. http://is.muni.cz/.

Judy (2002–2010). Judy Arrays Web Page.
http://judy.sourceforge.net/.

SAML (2005). Security Assertion Markup Language.
http://docs.oasis-open.org/security/saml/ /v2.0/saml-
core-2.0-os.pdf.

Zhu, H., Raghavan, S., Vaithyanathan, S., and Löser, A.
(2007). Navigating the intranet with high precision.
In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 491–500, New
York, NY, USA. ACM.

Zobel, J. and Moffat, A. (2006). Inverted files for text search
engines. ACM Comput. Surv., 38(2):6.

ACCESS RIGHTS IN ENTERPRISE FULL-TEXT SEARCH - Searching Large Intranets Effectively using Virtual Terms

39


