
AN EFFICIENT METHOD FOR GAME DEVELOPMENT
USING COMPILER

Jae Seong Jeong and Soon Ghon Kim
Dept. of Information Science, Joongbu University, 101 Daehakro, Chubu, Gumsan, Chungnam, South of Korea

Keywords: Index Function and Index Memory, Paser Table, Entire compiling processes, Compiler possible for Online
Update, Executing compiled files, Quest Event, Quest API.

Abstract: As the development of an online game is being more and more extensive, higher manpower become more
essential in the development for the game. Especially in programming, it happens that that original scheme
that came from the planning department could not be fully developed and expressed in the programmer,
depending on the ability of the programmer, coming out with a different result which is less enjoyable than
the programmer expected. It is essential to spend much time for checking the error came from planning or
programming. Due to solve these kinds of problems, we have developed the complier for only games which
uses API for game graphic and API for quest that have been used in development for game. The compiler
helps the game planner to find out logical problem directly and manually through manual source coding.
Also, through the special game compiler, it would help the game developer to come out with a various kinds
of efficient plans. It has the advantages of lowering dependency on the game programmer as well as to
lower the cost of production and labor resources.

1 INTRODUCTION

Recently as the scale of game development gets
large along with the performance improvements of
communication infrastructure and computer, a lot of
time and resource are committed in the development
of games. Also since a lot of human resources are
needed in the development process, a lot of time is
required in correcting development errors as well.

The development error can be largely divided
into planning errors and programming errors. In case
of programming error, programmers can correct
them easily; however in case of planning errors, it is
inevitable that the time taken in correcting them can
be further extended.

A number of methods have been introduced to
cut the time and development cost that are the key
points in game development. Of these, the most
frequently used method is to use a game
development tool. Solving various problems
occurred during the development process of games
or contents requires us not only to simplify various
overlapped processes but also to minimize error
occurrence in these processes.

However only by this method, it is not possible
to reduce the time, costs and human resources.

Especially in case of online games, relevant
technologies are needed since they have been
developed as to apply the complex parts of current
society to a game. Due to this reason, we would like
to suggest a special game compiler as an alternative

2 THEORETICAL
BACKGROUND

2.1 Development Background

While the events such as quest, event and siege
warfare are not bothered by the speed, these tasks
require much time since they are quite complex from
various kinds.

If the planner can test the plan in real-time in a
way desired so as to do the coding easily by adding a
module after indexing the compiler and API in
accordance with these parts, the planning errors can
be easily corrected.

Also if we could make a special game operator
(binary) code optimized through a compiler while
considering the speed, this may satisfy the speed,
planning and time requirements.

447Jeong J. and Kim S. (2010).
AN EFFICIENT METHOD FOR GAME DEVELOPMENT USING COMPILER.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
447-450
DOI: 10.5220/0002898804470450
Copyright c© SciTePress

2.2 Understanding the Special Game
Language

2.2.1 Game Language for Quest

As the program to run the quest according to the
plan, it is made in a form of text file. This includes
various local functions needed for the quest.

2.2.2 Basic Operating Conditions of Quest

When checking all the conditions in a script since
the speed of quest script is slow, it is possible to
cause a load on the program. Hence, this refers to
the basic conditions commonly used for all quests.
Basically, this checks the min level, max level and
NPC index.

2.2.3 C-language Local Function for Quest

When checking all the conditions in a script since
the speed of quest script is slow, it is possible to
cause a load on the program. Hence, this refers to
the basic conditions commonly used for all quests.
Basically, this checks the min level, max level and
NPC index.

3 STUDY METHOD

3.1 Applicable Method

The data processing and communication parts
needed when executing a quest on the network are
processed by the server. The client processes the
parts related to the speed of screen display and
communication of the data received from the server
or occurred by user behaviour.

The design is first prepared on the basis of single
user processing without communication and later, it
is divided into the server and client that have added
the communication part, dividing further into the
communication and DB processing parts. And then,
simply add to the design the part that can
accommodate a partial update desired by user.

When the programmer can set the memory
handling part and memory structure or internal
structure of compiler and APIs and this structure can
be handled automatically by one command, the
memory handling part that is the most difficult part
of programming can be processed.
The structuring part and engine part that require
speed can be developed directly by programmer in a
form of API. The planner makes the index functions
that can be called by the planner by gathering these

APIs without needing the planner to call these
commands. And, it can be processed in a way that
the memory needed in execution is allocated
automatically.

Figure 1: Relationship between Function and Index.

And by gathering the structures and API
modules developed by programmer, make the
functions used frequently by quests or events and
attach an index number to each function prepared in
this way. The function attached with index number
shall hold the start address that has defined the index
function at the foremost part of memory while
securing the information related to calling
parameters in the order of index.

Execution of the special game language can be
done by the memory if the structure is set and the
memory is allocated. However, it is not easy for the
planner to manage the memory. In order to solve
these problems, the index-type of function should be
automatically executed and the memory to save the
resulting value should be allocated.

Figure 2: Index Function and Index Memory.

Since the quest or event of generating many
processes is increased as much as the capacity of
database, the speed shall be considered.

 Limit the maximum memory to process the
quest and maximum amount of memory to
execute the quest at the same time.

 Save the parameter value to execute quest,
value corresponding to the index value given
by the quest, and resulting value of quest.

Function Address

:

:

Index 1 (4 bytes)

Index 2 (4 bytes)

Index 3 (4 bytes)

 :

 :

:

Index 65530 (4 bytes)

Function Address

Function …… Parameter n Parameter 1

API function 1

API function 2

API function 3

:

:

:

:

:

API function n

API function 1

:

API function n-7

API function 2

:

API function n-9

Function Address

:

:

Function Address

:

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

448

 The program shall be designed in a way that is
not impacted when a user connects to the
system again while using the parameter value
to be executed, index value given to the quest,
and result of the quest.

3.2 Quest and Event Handling Process
via the Special Game Language

Explaining briefly about the handling process of
compiler, this reads in the coded file appropriate for
the quest by using the C-language exclusively for
game use as shown on the Figure 3. Analyze the
read-in files through the scanner a preprocessor and
generate the intermediate language and assembly
code for game use while referring to the paser table
made through PGS by using the analysis result.
Then, make the operator (binary) executable file that
can execute the code made in this way.

Figure 3: Entire compiling processes.

Figure 3 is designed for use by a common role-
playing game and this can be processed in an online
game. Figure 4 is similar to Figure 3, enabling to
extend the language itself. However, its use is not
possible in the general game.

Figure 4: Compiler possible for on-line update.

The difference from Figure 3 is that the added
part can be executed simply by updating the context-
free grammar without updating the entire program
when the language was modified or extended since
the parse table generator is built into the client and
server. Hence when needing to add various indices
to the online game, this is made to cope with the
requirements of game user by enabling to add
necessary parts easily.

Figure 5: Executing compiled files.

Lastly, Figure 5 is the executable file of C-
language for game use, which was compiled on
Figure 3 and Figure 4. The code within this
executable file is constructed in a way that is divided
into two parts. In case of not processing the
executable file, simply add the code executing unit
that can handle the basic C language within the quest
execution module. Although there may be some loss
in the perspective of speed, the difference can be
ignored since the programmer has handled the API
or memory part that requires speed.

3.3 C-language for Quest Use (script)

While all the basic grammar structures follow those
of C-language, the memory part is based on the
BASIC language. The functions such as pointer,
structure, user-defined type and preprocessing are
not part of this language. The basic form Functions
is made to use it as an internal command rather than
one function by indexing the function. When adding
new script function, define the index number after
defining the function name and parameter. Then,
update the file after registering and compiling as an
index function.

3.3.1 Basic Structure

QUESTNR = 10; // Setting global variable
Quest_Start(){ .. } // Start condition of quest.
Quest_End(){…} //End and compensation of quest.

3.3.2 Example of Application

QUESTNR = 10;
Quest_Start() {

if(SeeNPC(17) == -1) { return SetFALSE(); }
if(MainQuestCreate(QUESTNR) != -1)
{ InsertVar(1, 1, 2); // Two mops in the zone 1

 SetEventProbability(100); // Item probability
return SetTRUE(); }

return SetFALSE(); }
Quest_End(){ //Including the compensation condition
 if(InsertItem(11,1)==0)

Executable
file

Prepare list of quest

executable module

Call the executable code
General game

Call the executable index module
(API) according to the code entry

Return the result by calling
index module.

Parse
Table

C (scriptor) Scr (scriptor)

Assembler

Context free grammar
for quest

PGS

Like.scr
C (scriptor) source for game

Link Executable file

Like.scr, C source

(Scriptor) for game

C (scriptor)

Preprocessor

Like.i

Preprocessing

Scr (scriptor)

Compiler (Refer to the Parse Table)

Assembler Like.o

Executable file

Link

Like.s for game

Assembly file

Load executable file
Separate quest and

language files

AN EFFICIENT METHOD FOR GAME DEVELOPMENT USING COMPILER

449

{ return SetNoInvenSpace(); }
if(InsertRandomItem(3, 1, 11, 21) == 0)
{ DeleteItem(11, 1); return SetNoInvenSpace(); }
QuestDestroy(QUESTNR);
return SetTRUE(); }

4 STUDY RESULT

When the compiler is used, we could see that the
costs, time and manpower could be saved more than
the existing development method. Although similar
result was obtained in case of quest or siege warfare
event, this has required twice as much manpower in
making compiler API functions as compared to
quest in case of siege warfare and event.

4.1 In Case of Developing Quest

Table 1: In Case of Developing Quest.

Item Previous
Development Compiler

Quest PG
Developer

Manpower 5 0
Period 12 0

Compiler
Quest API

Manpower 0 1
Period 0 3

Planner
Manpower 2 2

Period 12 8
Quest Server

Developer
Manpower 1 1
Period 12 3

Compiler
Developer

Manpower 0 2
Period 0 10

Comment

- In case of the compile, the period of server
developer compiler Quest API developer has
not increased signify-cantly from an
increase in the number of quests; however in
case of general development, the number of
manpow-er commitment has increaseed
com-paratively to the number of quests.
(Based on 500 quests)

4.2 Analysis Result

4.2.1 In the Perspective of Program

 Quite useful in the complex event handling of
game.

 Possible to find easily whether it is a program
error or planning error.

 Combining conveniently by indexing the API
modules.

4.2.2 In the Perspective of Planning

 The planner can code easily. (adjusting the

 degree of difficulty directly)
 Can discover planning error easily
 Possible to plan diversely according to the

intention of planner.

4.2.3 In the Economic Perspective

 Cutting the development costs and time.
(reducing 70%)

 Reducing the programming manpower
requirement.

5 CONCLUSIONS

In the existing game development method, it is
difficult to check whether the error came from
planning or programming. However by applying a
compiler to game development, the planning part
and programming part can be separated and hence,
the programming efficiency has increased greatly.
Additionally, this study has improved the quality of
game by enabling to express the intent of game
designer(planner) accurately.

Especially in the online game environment,
various changes occur in a short period time. Hence
by introducing the compiler engine to the game
development environment, the game development
company can secure competitiveness by building the
game development environment that can be applied
easily and quickly to various changes.

REFERENCES

Jae-Seong Jeong, Jae-Sun Mun, Tae-Jin Kim, 2003.
“Kahn Online Game Compiler” by Mirinae Ent.

Sang-Woo Noh, 2007. “Cross Platform” “LALR Paser” by
E3net.

Young-Sook Sung, 2005. E3net “Smart Phone Converter
Solution “ by E3net.

Se-Man Oh, 1998. Introduction to Compiler by Se-Man
Oh.

Chun-Hyun Jang, Se-Man Oh, Jae-Woo Woo, 1996. C++
Compiler, Program and Environment Develop-ment,
Final Research Report by the National Research
Foundation of Korea, KOSEF 93-0100-01-3.

Jin-Ki Park, Se-Man Oh, 1998. “Automatic Configuration
of AST,” Paper Collection at Dongguk University

R. J. Parikh, 1966. “Oh Context-Free Lanquages” JACM
Vol. 13, No.4
T. Anderson, J. Eve And J.J. Horing, “Efficient LR(1)

Parsers” Acta Informationca, Vol.2, No.1 1973.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

450

