
USING TASK AND DATA MODELS FOR USER INTERFACE 
DECLARATIVE GENERATION 

Vi Tran+, Manuel Kolp+, Jean Vanderdonckt+ and Yves Wautelet* 
+Louvain School of Management-PRISME, Université catholique de Louvain, Louvain-la-Neuve, Belgium 

*Faculteit Economie en Management, Hogeschool-Universiteit Brussel, Brussel, Belgium 

Keywords: Task Model, Domain Model, Automatic Generation, User Interface, Agent Software. 

Abstract: User interfaces for data systems has been a technical and human interaction research question since a long 
time and today these user interfaces require dynamic automation and run-time generation to properly deal 
with on a large-scale. This paper proposes a framework, i.e., a methodological process, a meta-model and a 
computer software to drive the automatic database user interface design and code behind generation from 
both the task model and data model combined together. This includes both the user interface and the sound 
and complete data update, definition and manipulation. 

1 INTRODUCTION 

Database systems have always been a major 
component in business-oriented software 
applications. To be productive on a day-to-day basis 
and used by the organization non-IT staff, these 
enterprise complex packages require all to support 
and provide for efficient human-computer 
interaction (HCI) with the database systems.  

From the point of view of final business actors, 
these HCI interactions are today managed through 
ergonomic database user interfaces (UI).  

UI researchers have richly discussed about the 
capability and importance of automatic user 
interface generation and propose them as the core of 
visual-based development environments (Olsen et 
al., 1993). There are currently numerous and various 
approaches using different input materials: designs, 
patterns, architectures, declarative models, … 

In this set of techniques, an emerging method is 
the automatic UI generation from declarative models 
(Puerta et al., 1994; Da Silva et al., 2000; 
Schlungbaum and Elwert, 1996; Janssen et al., 1993; 
Griths et al., 1999), inspired from Fourth Generation 
Languages code generation (Da Silva et al., 2000). 
In practice, these models are high-level abstraction 
such as goal or task (Paternò et al., 1997), 
presentation, dialogue (Janssen et al., 1993), 
interaction or domain (Puerta et al., 1994) models. As 
a matter of fact, the agent model, for instance, uses 

modeling constructs that are inspired from the 
organizational world (actors, goals, beliefs, plans, 
intentions, resources, …) and typically serve well as 
a human computer interaction medium in software 
development including database and UI applications 
design. The task model, declarative model typically 
used in UI design, records the tasks that potential 
end-users of the system may need to perform to do 
their jobs, independently of dealing with a particular 
computer (Paternò et al., 1997). Much of the design 
of an interactive system is generated based on 
supporting these tasks.  

Another technique, related to declarative models, 
is to use the data model of or engineered from the 
database itself. For instance, (object-)relational data 
models can be effectively used to generate the 
database application interfaces (Puerta et al., 1994; 
de Baar et al., 1992). Unfortunately this method only 
generates static UI layouts and fails to apprehend the 
dynamic features that operate on the database. 

Moreover, automatically generated database 
applications user interfaces poorly manipulate data 
as a combination of simple widgets such as lists and 
forms. Typical examples are forms for search 
criteria and data detail with buttons to validate or 
cancel operations and transactions, list for table 
results with display and manipulation buttons for 
adding/editing/deleting, data (Moroney and 
MacDonald, 2006).  

155
Tran V., Kolp M., Vanderdonckt J. and Wautelet Y. (2010).
USING TASK AND DATA MODELS FOR USER INTERFACE DECLARATIVE GENERATION.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Human-Computer Interaction, pages 155-160
DOI: 10.5220/0002901501550160
Copyright c© SciTePress



 

This research proposes a framework, i.e., a 
methodological process, a meta-model and a 
computer software to drive the automatic database 
user interface design and code behind generation 
from both the task model and data model combined 
together. This includes both the user interface and 
the sound and complete data update, definition and 
manipulation (inserting a record, updating a record, 
deleting a record ...)  

Our framework is based and supported by 
declarative technologies we have pointed out above. 
More specifically, we will adopt the agent paradigm 
(models, language, methods, …)  to analyze task and 
data models and generate the database UI 
specifications and application code.  

The rest of this paper is organized as follows: we 
present in Section 2 our automatic UI and code 
generation process taken together the task and data 
models. Section 3 explains the roles of the main 
concepts (agents and plans) that participate in this 
process such as the query analyzer, the UI designer, 
the code generator for both the data reviewing and 
editing. Finally, we propose some conclusions.  

2 ENGINEERING UI FROM DATA 
AND TASK MODELS 

According to the Unified Process adapted for UI 
design, the practical working process one can do 
from getting the requirement to implementing the UI 
application has to analyze the requirement specs, 
specify the (object or agent) structural and 
operational models at the conceptual and logical 
levels, select the layout platform, design the user 
interface … and finally perform the UI design. 

As depicted in Figure 1, in our framework, the 
Model analyst uses the task-, data- knowledge bases 
and the database to analyze the task and data models 
to derive sub-tasks, table objects and column 
objects. These sub-tasks have to be related to 
column objects manually by the developer. From 
these linked objects, the UI creator agent 
automatically creates user interface (UI) objects 
based on the mapping rules. Once the UI objects 
have been created, the code generator agent 
generates the code that will implement the UI. 
Specifically, our process does not only generate the 
user interface code, but also the application code 
behind to perform these pre-determined tasks. 

In the model analyst process, the sub-tasks are 
loaded from the task model which is stored in term 
of XML specifications; the data model is loaded 

from the database by executing pre-compiled SQL 
queries. Executed SQL queries differ if the 
databases are multiple since the data model 
information is stored specifically in each database. 

The sub-tasks having been linked to tables 
columns of the data model by the developer, the UI 
creator agent creates the Abstract Interaction Objects 
(AIOs) based on the column’s attributes and the 
relationships between the tables. AIOs are high-level 
interactive entities reflecting generic behavioural 
properties. Once the AIOs have been created, they 
are transformed from AIOs to Concrete Interaction 
Objects (CIOs). A CIO is described as a user 
interface control unit.  

Besides, in order to obtain the desired goal of a 
database application task, data queries are also 
automatically generated to get or change the 
information on the database; these queries are used 
by the code generator agent in the application code 
generation process. 

Once the CIOs have been specified, the code 
generator uses the Layout-knowledge base to 
generate the user interface code and the Function-
description base to generate the application code 
based on these CIOs.  

The application code is generated to perform 
generic functions of a database application such as 
data update, data review, data insertion, …  

 
Figure 1: Main components of our UI and Code 
Generation Architecture. 

In summary, the components of our UI and Code 
Generation Architecture are: 
• The Database used to get the information on 
and of the data model; 
• The Task-knowledge base that describes the 
rules of the task model; 
• The Mapping rules base that describes the rules 
for specifying control types from data types and the 
relationships between the tables; 
• The Database-knowledge base that describes 
generic aspects of the database tasks, the syntax and 
the structure of generic tasks and queries; 
• The  Layout-knowledge  base  that contains the  

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

156



 

 syntactic design guidelines for controls, 
windows and other widgets layouts. It also describes 
the semantic rules to define the control types; 
• The Messages base that contains the generic 
messages such as errors, warnings, information to 
users messages, …  
• The Function description base that describes the 
generic functions of a database application. 

Our process is divided two main parts. For the 
first part, the developer determines the tasks from 
which user interfaces can be generated based on the 
data model. Specifically these tasks are database 
manipulation tasks. The developer then makes the 
links between the specified tasks and tables columns 
of the data model. The second part analyzes these 
objects selected in the first part to specify the AIOs, 
CIOs and finally, the user interface code and 
application code are automatically generated. 

3 UI GENERATOR MODEL 

The process proposed in Section 2 is detailed below. 
The Model Analyst agent displays the task model 
from the XML file (e.g., exported from the CTTE - 
ConcurTaskTrees Environment tool (Paternò et al., 
2001) or Teresa (Paternò and Santoro, 2002) and the 
data model from the database to the developer. It 
determines the tasks from which the UI should be 
generated; the application tasks are then linked to 
columns in data model by the Developer. Based on 
these links, the UI Analyst agent automatically 
creates AIOs and that are transformed to CIOs. 
Other tasks may be also linked to database functions 
(such as insert/delete/update/search/review) by the 
Developer; the Method Analyst agent generates the 
SQL queries and specifies the methods which are 
performed to fulfil the goal of the linked functions. 
Finally, the Code Generator agent outputs the user 
interface code and application based on the analyzed 
results.  

The Model Analyzer agent depends on the 
Developer agent to analyze and display the task and 
data models. The UI Analyst agent also depends on 
the Developer agent to make the links between the 
application tasks and columns in data model in order 
to create the UI objects such as AIOs and CIOs. The 
Method Analyst agent depends on the Developer 
agent to make the links between the interaction, 
abstract tasks and database functions. The Code 
Generator agent depends on the UI analyst to create 
the UI entities and on the Method analyst to create 
the methods. Finally, the Developer agent depends 
on   Code   Generator   agent   to  generate  the  user  

interface code and the application code. 
The control flow from the Model Analyst agent 

receiving the models to the Code Generator agent 
creating the user interface can be supparized as 
follows: Once the LoadTaskModel plan reads the 
task model from a XML file, it posts a AnalyzeTask 
event to the AnalyzeTaskModel plan. The 
AnalyzeTaskModel plan detects the AnalyzeTask 
event to analyze and decompose the task model in 
sub-tasks. In addition, the LoadDataModel plan 
received a LoadDataModel event from the 
ConnectDatabase plan to load the data model. 

Based on the result analyzed above, the 
ChooseATask plan selects a task based on which the 
user interface will be generated. The 
MakeLinkForOperationTask plan makes links 
between the operation tasks and the columns in the 
data model when it received the LinkOTask event. 
The MakeLinkForActionTask plan makes links 
between the action tasks and the columns in the data 
model when it received the LinkATask event. 

Due to the lack of space we will only analyze in 
Section 3 the main components (agents and plans) of 
the process. 

3.1 Main Agents 

The Model Analyst agent (Figure 2) uses the 
LoadTaskModel plan to load the task model from the 
XML file, the LoadDataModel to load the data 
model from the database and the AnalyzeTaskModel 
to analyze the task model and decompose it in 
classified sub-tasks.  

 
Figure 2: Model Analyst Agent Structure. 

The Developer agent (Figure 3) uses the 
ChooseATaskandClassifyInteractionTasks plan to 
choose a database task, which can generate the user 
interface based on the data model and to classify the 
interaction tasks to operation and action tasks.  The 
MakeLinkForOperationTask plan is used to make 
links between operation tasks and columns in the 

USING TASK AND DATA MODELS FOR USER INTERFACE DECLARATIVE GENERATION

157



 

data model. Finally, MakeLinkForActionTask makes 
the links between the action tasks and the defined 
methods. 

The main goal of this agent is to make 
associations between existing components in both 
models. In our process the components are tasks, 
columns and methods defined by the system; the two 
models are, of course, task and data models. 

 
Figure 3: Developer Agent Structure. 

The UI Analyst agent (Figure 4) uses the 
CreateAIO plan to create Abstract Interaction 
Objects (AIOs) then these AIOs are transformed to 
Concrete Interaction Objects (CIOs) by the 
TransformAIOstoCIOs plan. 

 
Figure 4: UI Analyst Agent Structure. 

The Code Generator agent (Figure 5) uses the 
SpecifyLanguage plan to specify the language used 
to perform the user interface determined above, the 
GenerateUICode plan to generate the code based on 
the determined CIOs and the 
GenerateApplicationCode to perform the method 
determined in the Method Analyst Agent.  

An application program can be divided into two 
parts: the user interface and the code behind the 
interface that implements the internal logic of the 

program and interacts with external entities (e.g., 
database servers). The user interface is determined 
by the agents presented above; the Code Generator 
agent will generate the code to implement the UI. 

 
Figure 5: Code Generator Agent Structure. 

3.2 Main Agent Plans 

The LoadTaskModel plan (Figure 6) is used by the 
Model Analyst agent to display the task model from 
the XML file; this XML file can be built by tools 
like CTTE or Teresa. The task’s types are mapped to 
action task or operation task. 

 
Figure 6: LoadTaskModel plan structure. 

Note that, tasks that are accepted in our process 
are modelled up to the atomic level. An atomic task 
cannot be decomposed. 

An Action task is a task used to describe the 
end-user’s command to the system such as close a 
dialog, delete a data record, search information, 
open a dialog and so on. 

An Operation task is a task used to describe the 
displaying information to end-user or the receiving 
of the information from the end-user. 

The LoadDataModel plan (Figure 7) is used to 
load a data model from a database specified by the 
developer. Once the LoadDataModel plan receives a 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

158



 

LoadDataModel event, a database connection is 
opened based on the type of database (Oracle, SQL 
server, MySQL …) and connection parameters. The 
Data model is loaded by executing the SQL queries 
to get the table names, column names, column’s 
attributes, constraints and relationships between 
tables. Finally, the LoadDataModel plan sends the 
MakeLink event to the Developer agent.  

 
Figure 7: LoadTaskModel plan structure. 

The MakeLinkForOperationTask and 
MakeLinkForActionTask plans are used by the 
developer agent to make the links between the 
operation tasks and the columns in the data model 
and to make the links between the action tasks and 
the defined methods. 

To make our process more efficient, we define 
some generic methods handling performance of a 
database task: Display() to display data, New() to 
insert data, Delete() to delete data, Update() to 
update data, Review() to display data by going next, 
previous, last, first, Cancel() to cancel a work, Exit() 
to close a dialog or a form. 

The CreateAIO plan is used by the UI Analyst 
agent to create the AIOs based on the selected 
component; specifically, the column’s attributes play 
an important role.  An AIO is created with an AIO 
name, data type and length. For each leaf task in the 
tree (Figure 8), an AIO is created. The AIO 
attributes are determined based on the column 
attributes that this task links to. The attributes of a 
column in the data model are data type, length, is-
key, is-null … 

Figure 8 depicts the creating process of AIOs 
based on a task, the components of data model and 
the links between them. Each   represents an AIO; 

the attributes are represented in order: AIO’s name, 
data type and length. 

 
Figure 8: Creating AUIs process. 

The TransformAIOstoCIOs plan plays a major 
role. It detects the TransformAIOtoCIO event to 
transform the AIOs to CIOs. This plan also sends the 
GenCode event to the Code Generator agent to 
generate the code for performing the user interface 
of the task. 

AIOs are transformed to  CIOs based on the data 
type and the relationships between the tables. 
Whether the Automatic user interface generation is 
successful or not depends on the performance of this 
plan. The TransformAIOstoCIOs plan uses all the 
existing components of the data model such as 
attributes, columns, tables and relationships between 
tables. Plans described above use the components of 
the data model in the following order: columns, 
attributes columns. The tables and their relationships 
are also used by the TransformAIOstoCIOs plan. 
The Name of a CIO is transformed from the Name of 
the corresponding AIO.   

Each interface object defined at a higher design 
level is assigned to a dialog element (widget) by 
examining the facets of the corresponding slot in the 
domain model. For example, an AIO of type Text is 
assigned to a text field, an AIO of type Boolean is 
assigned to a check-box or radio control, and an AIO 
of type Date is assigned to a date picker. Besides, 
our process also uses the relationships between the 
tables in the data model to regroup the CIOs together 
if they describe the same object such as employee, 
job, department, … objects. For example: the CIOs 
Job title, Min Salary, and Max salary belong to the 
same CIO group. 

The notions of edited table and main column of a 
table depicted in Figure 9 are described as: 
• An Edited table is a table determined by the 
developer. One can add a new data into, get data 
from, search data on, … an Edited table if a task is 

USING TASK AND DATA MODELS FOR USER INTERFACE DECLARATIVE GENERATION

159



 

linked to generic methods New(), Delete(), 
Search() …  
• A Main column of a table which relates to 
an Edited table through a 1-1 or n-1 relationship is 
a column determined by the developer. A Main 
column is used to determine the control type in the 
next step.  

 
Figure 9: TransformAIOstoCIOs plan structure. 

4 CONCLUSIONS 

We have proposed here a framework whose purpose 
is to drive the automatic database user interface 
design and code behind generation from both the 
task model and data model combined together.  

Section 2 has presented our automatic UI and 
code generation process taken together the task and 
data models. Section 3 has explained the roles of the 
main agents and plans participating in this process. 

This framework has aimed at offering a low cost, 
short time-to-implementation and efficient 
development environment from the business user 
side. Indeed, the objective is not to provide a tool for 
professional database management development 
staff but to support non-IT end-user with the 
generation of database applications they do not need 
to program anymore. 

REFERENCES 

Puerta, A., Eriksson, H., Gennari, J., Musen, M., 1994.  
Beyond Data Models for Automated User Interface 
Generation. In Proc. of HCI'94: People and 
Computers. Glasgow, UK, pp. 353–366. 

Da Silva P., Griffiths T., Paton, N., 2000. Generating user 
interface code in a model based user interface 
development   environment.   In  Proc.  of  Advanced  

 Visual Interfaces (AVI'00), New York, pp. 155–160. 
Schlungbaum, E, Elwert T., 1996. Automatic user 

interface generation from declarative models. In: J. 
Vanderdonckt, Ed, Proceedings of Computer Aided 
Design of User Interfaces (CADUI'96), pp. 3–18. 

Janssen, C., Weisbecker, A., Ziegler, J., 1993. Generating 
User Interfaces from Data Models and Dialogue Net 
Specifications. In Ashlund S., Mullet K., Henderson 
A., Hollnagel E., White T. (eds.): Proc. of 
INTERCHI'93. New York, pp. 418-423. 

Moroney, L., MacDonald, M., 2006. ASP.NET 
Applications in Pro ASP.NET 1.1 in VB .NET From 
Professional to Expert, Apress, pp. 183- 230. 

Griths, T.,  Barclay, P., McKirdy, J., Paton, N., Gray, P., 
Kennedy, J., Cooper, R., Goble, C., West, A., Smyth, 
M., 1999. Teallach: A Model-Based User Interface 
Development Environment for Object Databases. In 
Proc. of UIDIS'99, pp. 86-96, Edinburgh, UK. 

Eisenstein, J., Puerta, A., 2000. Adaptation in automated 
user-interface design, Proceedings of the 5th 
international conference on Intelligent user interfaces, 
p.74-81, New Orleans, Louisiana. 

Olsen, D., Foley, J., Hudson, S., Miller, J., Myers, B., 
1993. Research di-rections for user interface software 
tools, Behaviour & Technology, Vol. 12, No. 2, pp. 
81-97. 

de Baar, D.,  Foley, J.D., Mullet E., 1992. Coupling 
Application Design and User Interface Design, CHI'92 
Conference Proc., Monterey, pp. 259-266. 

Wooldridge, M., Jennings, N., 1995. “Intelligent agents: 
Theory and practice”, The knowledge Engineering 
Review, Volume 10, Number 2, pp 115-152. 

Paternò, F., Mancini, C., Meniconi, S., 1997. 
Concurtasktrees: A diagrammatic notation for 
specifying task models. In S. Howard, J. Hammond, 
and G. Lindgaard, editors, Human-Computer 
Interaction INTERACT, pages 362–369. 

Paternò, F., Mori, G., Galiberti, R., 2001. CTTE: an 
environment for analysis and development of task 
models of cooperative applications. In CHI ’01 
Extended Abstracts on Human Factors in Computer 
Systems. Seattle, Mar., ACM Press, 21–22. 

Paternò, F., Santoro, C., 2002. One Model, Many 
Interfaces. Proc. of CADUI'2002, Kluwer. pp.143-
154. 

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

160


