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Abstract: This paper examines the use of data flow criteria in software testing and uses evolutionary algorithms to 
automate the generation of test data with respect to the required k-tuples criterion. The proposed approach is 
incorporated into an existing test data generation framework consisting of a program analyzer and a test data 
generator. The former analyses JAVA programs, creates control and data flow graphs, generates paths in 
relation to data flow dependencies, simulates test cases execution and determines code coverage on the 
control flow graphs. The test data generator takes advantage of the program analyzer capabilities and 
generates test cases by utilizing a series of genetic algorithms. The performance of the framework is 
compared to similar methods and evaluated using both standard and randomly generated JAVA programs. 
The preliminary results demonstrate the efficacy and efficiency of this approach. 

1 INTRODUCTION 

Software testing approaches that follow a structural 
(white-box) scheme, use the source code to reveal 
any errors, whereas in a functional (black box) 
scheme the testing process does not rely on the 
actual source code and the testing techniques use 
only the specifications of the program under testing; 
a combination of both schemes called gray-box has 
been also pursued (Nebut and Fleurey 2006). This 
work focuses on white-box testing using JAVA 
source code and automatically adapting the testing 
process based on the output of the test cases 
exercised on the code.  

This work presents the implementation of the  
required k-tuples criterion, a data flow criterion 
incorporated into the automatic test data generation 
framework presented in (Csallner and Smaragdakis 
2004). The framework utilizes a fusion of program 
analysis and test data generation techniques in order 
to parse the source code of the program under 
testing, create the control and data flow graphs, 
extract paths and determine a near to optimum set of 
test cases according to a coverage criterion (Korel 

1996).  This work extends the framework in order to 
support the required k-tuples criterion and uses a 
new path extraction algorithm, along with the 
dependencies defined on the data flow graphs, to 
generate the required k-tuples paths. A new 
approach to both the encoding of the chromosomes 
of the genetic algorithm and the way the fitness 
function is calculated allows the test data generator 
to achieve high coverage with respect to the required 
k-tuples criterion (Sofokleous and Andreou 2008b).   

 The rest of this paper is organized as follows: 
Section 2 presents related work on test data 
generation and briefly discusses similar approaches. 
Section 3 describes the proposed approach, while 
section 4 presents an assessment of its performance 
over a number of standard and sample programs and 
provides a short comparison with other approaches. 
Finally, the last section concludes the paper and 
outlines future research steps.  
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2 RELATED WORK  

Test cases generation systems aim to determine an 
optimum set of test cases with respect to a testing 
coverage criterion (Frankl and Weyuker 1988). 
While there is a variety of testing criteria, the most 
widely known and pursued are the ones which are 
defined with respect to control and data flow graphs 
(Clarke et al 1989). Related research focused more 
on control flow criteria, such as the statement and 
edge, as for example the work of (Sofokleous and 
Andreou 2008b), which pursues high testing 
adequacy based on the edge/condition control flow 
criterion  (Michael et al 2001, Pargas et al 1999, 
Harman 2007).. To achieve high coverage, this 
paper utilizes two algorithms, the first runs on the 
complete control flow graph to generate test data 
massively, whereas the second algorithm is executed 
on partial control flow graphs created dynamically 
according to uncovered paths. 

Recent challenges involve the definition and 
implementation of robust data flow coverage criteria 
that could be equal or better than the control flow 
criteria. This paper presents an attempt to produce 
automatically test data with the required k-tuples 
data flow criterion (see section 3) (Ntafos 1981, 
Ntafos 1984) by utilizing evolutionary algorithms. 
To the best of our knowledge, implementation work 
and empirical results on this particular criterion has 
not been reported elsewhere, despite the fact that this 
criterion can achieve better results compared to 
those reported thus far.  This work extends previous 
work that uses the ALL-DU Paths data flow 
criterion (Andreou et al 2007, Sofokleous and 
Andreou 2008a), where the execution of a test case 
is simulated with control flow graphs and the results 
of the execution are evaluated using data flow 
graphs. We should note here that the ALL-DU Paths 
criterion is a data flow criterion proposed by Rapps 
and Weyuker, 1982. While the ALL-DU Paths 
criterion has not been compared empirically with the 
criterion used in this work, many authors support 
that the two criteria are equal and can determine the 
same errors in a program under testing (Clarke et al 
1989, Ntafos 1988). In section 4, however, we show 
that in some cases the required k-tuples criterion 
generates more paths than the ALL-DU Paths 
criterion, which implies a higher level of testing 
capability.  Section 4 also compares the performance 
of our test data generator with a generator that uses 
the ALL-DU Paths criterion. Note that some of the 
original definitions of the data flow criteria are 
ambiguous and, in some cases, differ from the 
objective set by their authors (Clarke et al 1989).  

 Recent work on data flow-based testing can be 
found in (Ghiduk et al 2007), where the authors use 
genetic algorithms to generate test data according to 
data flow criteria. Their approach uses a multi-
objective fitness function to evaluate the produced 
data and experiments have showed that their 
approach is more efficient over a random test data 
generator. A similar approach has been used to 
generate test data for FORTRAN programs (Girgis 
2005). Data flow based test data generation has been 
also addressed in (Khamis et al 2000). This 
approach supports both arrays and loops, and the 
data generator domain uses partition and reduction 
methods on the input data in order to improve the 
performance of the generator.  

The objective of this work is to present an 
evaluation of the required k-tuples criterion and 
implement a test data generator that can work 
efficiently based on this criterion. The genetic 
algorithm implemented for this purpose is guided by 
the data flow dependencies given as input to the test 
data generator.   

The next section shows the implementation 
details of the framework supporting the criterion.  

3 FRAMEWORK LAYOUT 

This paper extends the Automatic Test Cases 
Generation System (ATCGS) presented in 
(Sofokleous and Andreou 2008b). ATCGS is a 
graphical user interactive system that analyses 
JAVA programs, creates control flow graphs, 
generates test cases and evaluates test data according 
to control flow criteria. An extended version of the 
framework was introduced in (Andreou et al 2007, 
Sofokleous and Andreou 2008a)  that generate test 
data for data flow paths produced according to the 
ALL-USE data flow criterion.  

The contributions of this work may be 
summarized as follows: 
(i) ATCGS is the first tool reported in literature that 
can generate test cases according to the required k-
tuples data flow criterion; to achieve the latter, the 
system has been enhanced with new modules and 
techniques. First, it creates data flow graphs and 
utilizes embedded data flow algorithms in order to 
generate the paths. Second, the system formulates 
test data generation as an optimization problem and 
utilizes specially designed genetic algorithms to 
solve it, the details of which are given in subsequent 
sections.  
(iI) This is the first study reporting empirical results 
with this particular data flow criterion. Experiments 
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thus far show the efficacy of our system and depict 
the applicability of this kind of testing. Both 
standard and sample JAVA programs used in this 
work are available for downloading from http:// 
www.cs.ucy.ac.cy/~asofok/testing/testdata.html.  

3.1 The Required k-tuples Criterion 
in the Basic Program Analyzer 
System (BPAS) 

In this work BPAS (Sofokleous and Andreou 2008b) 
is modified and extended so as to use the control 
flow graph and create its corresponding data flow 
graph, which is also presented graphically to the 
user. The data flow graph is used for generating the 
paths which will be executed through test cases 
provided by the test data generator. The total testing 
coverage is expressed in relation to the coverage 
percentage of these paths. 

Compared to previous work (Sofokleous and 
Andreou 2008b), the test data generator is now able 
to generate test cases in relation to the required k-
tuples criterion. According to this criterion the paths 
are propagated using the k-dr interactions method 
and the data flow graph of the program under testing 
(Ntafos 1981, Ntafos 1984). In such types of graphs, 
a variable can take any of the forms of a definition 
(def), or a computation (c-use) or a predicate (p-use) 
(Frankl and Weyuker 1988). Interactions between 
different variables are captured in terms of 
alternating definitions and uses, called k-dr 
interactions; an m-interaction is defined as 
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variable x1 is defined at node n1 and used at node n2, 
variable  x2 is defined at node n2 and used at node n3, 
etc. Based on number k, which is set by the user, 
BPAS generates all possible paths that satisfy the k-
dr interaction criterion.   

Figures 1a and 1b depict the nodes that satisfy 
the 1-dr and 2-dr interaction criteria, respectively. A 
def-clear path between two nodes, with respect to 
variable X, is a path on which none of its nodes is a 
definition (def) of X. Note that a k-interaction set of 
paths includes also all the j-interaction paths, where 
j=1,...,k.  

If a graph contains one or more loop blocks, e.g. 
a representation of a FOR or WHILE loop, then, one 
or more k-dr interaction paths may be formed using 
a sequence of nodes from any of its possible 
executions, i.e. the loop can be traversed n times, 
where n=0,1,...,∞ . For example, consider Figure 
1c, which shows the source code of a loop. The 
problem in this case is that the particular code can 
populate an undefined number of 2-dr interaction 

paths, the coverage of which cannot be guaranteed 
even by exhausting testing. For each loop, we only 
populate two groups of paths, if such paths exist; the 
first group describes k-dr interaction paths that can 
be populated while not entering the loop (i.e. 0-
iteration of the loop), whereas the second group 
describes the k-dr interaction paths that can be 
populated by traversing i=1,...,k times the loop. Note 
that for the latter if at least one path cannot be found 
in a maximum of k-iterations of the loop, then a k-dr 
interaction path cannot exist even for the case where 
the loop is iterated w-times, where w>k. 

3.2 Generating Test Data with ATCGS 
for the Required k-tuples Criterion 

ATCGS communicate with BPAS to utilise the 
analysis modules of the latter and then searches the 
input space in order to determine and select a near to 
optimum set of test cases in relation to the required 
k-tuples criterion. The modified ATCGS follows a 
focus-based approach as opposed to the batch 
optimistic generation described in previous work. 
Basically, ATCGS utilises sequentially a series of 
genetic algorithms, one GA for each path; if 

{ }1 2,  ,  ...,  kP p p p= is the set of paths generated 
by BPAS, the invocation of the ith GA focuses on 
path pi, initially i=1. The basic steps of a standard 
genetic algorithm are adapted accordingly to reflect 
the problem addressed in this work as follows:  
Initial Population Generation: First the GA 
generates the initial population. Each chromosome 
describes a test case, whereas each gene represents 
one of the input variables of the code under testing; 
some of the details encoded in a gene are the 
variable name, type and initial value. Suppose the 
testing code entails x, y and z input variables, then 
each chromosome will contain three genes to 
describe these three variables. Note that both the size 
of the chromosomes and the content of the genes 
depend on the program under testing and is 
automatically adapted. 
Evaluation: The GA uses a specially designed 
fitness function (see section 3.2.1) which helps 
adapting its behaviour based on the selected path; 
the objective of the fitness function is to guide the 
search process to determine the test case that can 
cover the selected path pi. The GA communicates 
with BPAS so as to execute the test case of each 
chromosome, identify the executed nodes and 
determine the coverage in relation to path pi. If a test 
case that covers path pi is found, then the GA 
terminates and the path is removed from the 
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uncovered set of paths, i.e. P’=P-{pi}; in this case, 
ATCGS proceeds to the next uncover path, if there 
is one, otherwise it presents the final results to the 
user. The GA may also terminate if it reaches a 
maximum number of generations defined by the 
user. Note that while the fitness value of each 
chromosome is calculated based on the selected path 
pi, the GA may discover that the test case of a 
chromosome accidentally covers a different path, 
say pj, where j≠i and Pp j ∈ ; in this case, the GA 
associates the test case to the path that it accidentally 
covers, removes the path from the set P, and 
continues the search for path pi.   
Selection: The roulette wheel selection operator 
selects the chromosomes to participate to the next 
generation. Selected chromosomes are entered to a 
pool that is used in the next phase (Mitchell 1999).  
Reproduction: Chromosomes are reproduced with 
crossover and mutation operations (Michalewicz 
1996). The algorithm, then, proceeds to the 
evaluation phase. 

 
Figure 1: (a) 1-dr interaction, (b) 2-dr interaction, (c) 
populating 2-dr interaction paths for the loop. 

3.3 The Fitness Function for the k-dr 
Interaction Paths 

The fitness function is dynamic as it depends on the 
selected path; thus, the same chromosome may have 
two different fitness values if it is evaluated in 
relation to two different paths. The fitness function 
is expressed as follows:  

    
 ( , )  

#    

p nodes covered using TCi jF p TCi j nodes in Pi
=  (1)

where ip is the selected path and jTC is the test 
case encoded in a chromosome of the population in 

the current generation. The maximum fitness value 
is 1, which denotes that test case TCj achieves full 
coverage on path ip . If the fitness function returns 1, 
then the current GA terminates and ATCGS selects 
the next path in the sequence. However, if the GA is 
unable to find a test case after the predefined 
maximum number of evolutions, then it assumes that 
this is a dead path and terminates the current process 
so as to allow ATCGS to continue with the rest of 
the uncovered paths.  

4 EXPERIMENTAL RESULTS  

This section describes several experiments carried 
out on both standard and sample JAVA programs. 
The experiments were executed on a computer with 
Intel Pentium 4 processor at 3.6GHz, 2GB memory 
Ram and JDK 1.6 running ON Windows XP 
Professional (SP2). The GA population size was set 
to 100 chromosomes, while the crossover and 
mutation rates were set to 0.5 and 0.2, respectively.  

Section 4.1 presents the empirical results of the 
system over a series of standard programs and 
compares the proposed approach against previous 
work. Section 4.2 presents the results on a set of 
experiments carried out using a pool of sample 
programs with varying lines of codes (LOC) and 
complexity. 

4.1 Experiments on Standard 
Programs 

A number of standard programs have been selected 
as benchmarks. These programs are: 
• Fibonacci.java: Returns the sum of n Fibonacci 

sequence of numbers.  
• FindMaximum.java: Returns the largest 

between two numbers. 
• FindMinimum.java: Returns the smallest 

between two numbers. 
• SumExample.java: Returns the sum of n 

numbers, where n is given as a parameter. 
Table 1 lists the results of the execution on the 
standard programs. The proposed system achieves 
100% coverage with respect to the 1-dr interaction 
criterion, whereas an algorithm that uses the All-DU 
Paths criterion achieves less coverage.  The details 
of the All-DU Paths algorithm including the design 
details of the fitness function, can be found in 
(Andreou et al 2007). It is worth noting that in this 
set of experiments both criteria generate the same 
paths. The better performance exhibited by the 
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proposed approach is due to the better design of the 
fitness function compared to (Andreou et al 2007): 
First it isolates each path, and therefore it does not 
bias the population with irrelevant information as it 
searches for a specific path; second, it guides the 
search process better as it provides an indication on 
how close the GA is to cover the selected path. Also, 
the good performance and efficiency of the proposed 
algorithm is obvious in the second series of 
experiments carried out using the 2-dr interaction 
criterion; note that this set of experiments is feasible 
only in the present work. 

Table 1: Comparative results using two different test data 
generation algorithms. 

Program 
Name  

Required k-tuples 
Criterion 

(% coverage) 

All-DU 
Paths (% 
coverage) 
(Andreou 
et al 2007) 

 1-dr 2-dr  
Fibonacci 100% 100% 83% 
FindMaximum 100% 100% 100%
FindMinimum 100% 100% 100%
SumExample 100% 92% 91% 

Table 2: Experiments: Complexity as (a) Low if the code 
does not contain nested IFs (b) Medium if it contains 1 
nested IF, (c) High if it contains 2 or more nested IFs. 

LOC 
# 

nested 
if 

# 
if Complexity #test 

cases Coverage Evolutions Time 
(sec) 

20 0 1 L 8 100 % 7 0 

20 1 2 M 8 100 % 16 0 

20 2 3 H 7 85 % 304 53 

50 0 1 L 10 100 % 69 0 

50 1 2 M 8 100 % 42 1 

50 2 3 H 8 85 % 304 60 

80 0 2 L 14 100 % 70 4 

80 1 2 M 8 100 % 58 2 

80 2 3 H 6 85% 303 60 

100 0 4 L 14 100 % 50 17 

100 1 3 M 13 100 % 58 5 

100 2 4 H 14 85% 314 62 

 

Both approaches of Table 1 extract paths 
according to their respective data criterion. If PALL-DU 
and Pk-tuples are the sets of paths extracted by the 
ALL-DU Paths and required k-tuples criteria, 
respectively, experiments show that 

k-tuplesP  PALL-DU = , if k=1, whereas 

- -1,   ALL DU k tuplesk P P∀ > ⊇ . The latter is supported 
by the fact that the paths are propagated according to 
k-dr interactions and involve the paths of all j-dr 
interactions, j=1,…,k-1; also, both of the criteria 
begin from a definition of a variable and then 
require the use of that variable (p-use or c-use),  
with the difference being, however, that in the k-dr 
interactions criterion, there are chains from 
definitions to uses.  

4.2 Experiments on Sample Programs 

Experiments reported in this section were carried out 
on a pool of programs varying on both their lines of 
codes (from 10 to 200 LOC) and their complexity 
(simple, medium, high). The programs were 
produced manually and do not serve any particular 
purpose. Note that testing is on a unit basis and LOC 
represent the size of a method; thus, testing larger 
programs is the same as aggregating the independent 
testing of many such methods. Furthermore, 
increasing the size (in terms of LOC) of a method 
does not affect complexity as the latter depends on 
the difficulty of covering a path, i.e. the condition 
that participates in a path. 

The experimental results listed in Table 2 reveal 
a number of important conclusions. The more IF 
statements a program has, the more paths it contains 
and hence the more test cases are required to cover 
its paths; additionally, more time is required to 
determine the appropriate test cases for covering all 
these paths. As shown in the results, complexity 
plays a significant role along with LOC in the time 
required for executing the algorithms. The findings 
of Table 2 show also that in most cases the test data 
generator achieves a 100% testing coverage, while 
for programs with high complexity it manages to 
reach up to 85% testing coverage with respect to the 
required k-tuples criterion. The latter may be the 
result of many factors, such as the existence of dead 
code and the high complexity of the IF statements. 
For small and simple programs the system 
terminates in negligible time, whereas there is a 
linear dependency between time and lines of code. 
As the test data generator of this system works with 
a heuristic algorithm, each experimental result 
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included in Table2 is the average value over 15 runs 
of the same experiment.  

5 CONCLUSIONS AND FUTURE 
WORK  

This paper presented the implementation of a testing 
approach based on the required k-tuples data flow 
criterion which depends on the paths propagated 
with k-interactions. The framework presented in this 
work uses a program analyser to generate the control 
and data flow graphs, builds dynamically the paths 
according to data flow criterion, and  searches and 
discovers test cases for each of the paths; the user 
can view the test cases and interact with the graphs 
to view graphically the coverage of each test case. 
Experimental results were presented on a number of 
standard and random generated JAVA programs. 
Future work will carry out additional experiments 
using alternative implementations of the fitness 
function in order to compare their performance and 
investigate whether further improvements may be 
achieved. Additionally we plan to implement a 
representation model that will combine control flow 
graphs with UML diagrammatical notations. This 
will allow us to extend the representation models 
depicting the execution flow so as to support various 
features of object oriented code, such as interfaces 
aspects, inheritance, polymorphism and dynamic 
binding. Future work will also consider 
implementing other data flow criteria (Rapps and 
Weyuker 1982, Laski and Korel 1983), and compare 
them with the current and previous work. Our 
objective is to embed different types of errors in the 
programs and compare the efficiency of the 
implemented criteria in revealing these errors.  
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