
SOFTWARE QUALITY MANAGEMENT FLOSS TOOLS
EVALUATION

María Pérez, Edumilis Méndez, Kenyer Domínguez, Luis E. Mendoza and Cynthia De Oliveira
Processes and Systems Department, LISI, Simón Bolívar University, PO Box 89000, Caracas 1080-A, Venezuela

Keywords: FLOSS Tools, Software Quality Management, Evaluation, Quality Model.

Abstract: Software Quality Management Tool (SQM) selection can be a quite challenge, as well as the precise
definition of the functionalities that every tool of this kind should offer. On the other hand, establishing
standards adequate to the FLOSS context, involves analyzing both commercial and proprietary software
development paradigms in contrast to the FLOSS philosophy. This article presents the evaluation of 6
different tools (four proprietary and two FLOSS tools) through the application a Systemic Software Quality
Model (MOSCA) instantiation according to the SQM tools context, aiming to illustrate an accurate method
for selecting tools of this nature and identifying areas for improvement for each one of the evaluated tools.

1 INTRODUCTION

Software Quality Management Systems (SQM) were
created to ensure that the software products and
services of an organization satisfy client
specifications. The processes underlying SQM are a)
Quality Planning; b) Quality Assurance; and c)
Quality Control (Pressman, 2007; Sommerville,
2007 and SWEBOK, 2004). A SQM tool should
support the three processes in functional terms and
meet other non-functional requirements, such as
Efficiency, Usability and Reliability, among others.
The research’s specific objectives are as follows:

1) Generate an instantiation of the Systemic Quality
Model (MOSCA) proposed by Mendoza et al (2005)
that allows assessing the quality of FLOSS tools
supporting SQM. 2) Evaluate a group of software
tools supporting SQM of systems and select those
with the highest quality level. For the preparation of
our work, we followed a Software Quality Generic
Model Adaptation Guide (Rincón et. al, 2004). For
metric generation purposes, the Goal-Question-
Metrics (GQM) paradigm was used, where
according to (Basili et. al, 1994), the object is
refined into several queries, and each query is
subsequently refined into several metrics.

This article consists of six sections. Besides the
introduction, conclusions and recommendations, the
second section describes the quality model used as a
basis for our proposal; the third section introduces

the quality model proposal; the fourth section
introduces the proposal application and, lastly, the
fifth section analyzes the results obtained.

2 SYSTEMIC SOFTWARE
QUALITY MODEL (MOSCA)

MOSCA was proposed by (Mendoza et al, 2005) to
intendspecify software system quality.MOSCA
integrates three quality models: product (Ortega et.
al, 2003) and development process (Pérez et. al,
2001) while considering the human perspective
(Pérez et. al, 2006). This model relies on total
systemic quality concepts (Callaos and Callaos,
1996). MOSCA consists of four levels, as follows:

Level 0. Dimensions. Dimensions include the
internal and contextual aspects of process, product
and human perspective.

Level 1. Categories. 14 categories have been
included herein, as follows: 6 relating to product,
5relating to the development process, and 3 to
human perspective.

Level 2. Features. This in-depth level correspond to
a group of features defining the key areas to be
satisfied to achieve secure and control quality, both
for product and process.

Level 3. Metrics. For each feature, a series of
metrics to measure systemic quality was proposed.

387Pérez M., Méndez E., Domínguez K., Mendoza L. and De Oliveira C. (2010).
SOFTWARE QUALITY MANAGEMENT FLOSS TOOLS EVALUATION.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
387-390
DOI: 10.5220/0002905303870390
Copyright c© SciTePress

Mendoza et al. (2005) introduced an algorithm to
evaluate software quality using MOSCA, which will
be instantiated on the context of SQM for the
purpose of this research.

3 QUALITY MODEL PROPOSAL

The formulation of this model required the definition
of functionality features of QSM tools, in
accordance with the guide’s second step (Rincón et.
al, 2004). DESMET Feature Analysis method
(Kitchenham, 1996) and the support of previous
researches and experts in this area. If we follow the
MOSCA algorithm (Mendoza et. al, 2005) we must
evaluate the product Functionality in the first place.
The other categories selected were Usability and
Reliability. Selection of these categories and features
described below was based on how a SQM tool
provides a set of adequate functions in accordance
with user specific objectives.

Once the categories and respective features are
selected, the metrics for measuring their level of
software presence are formulated, thus achieving
MOSCA adaptation for SQM tools. The most
relevant features were selected for each category and
subsequently the metrics that best apply to this
product evaluation process. In certain cases, new
sub-features and metrics were created. Due to space
limitations, we cannot detail all categories and
subcategories of the original model (Ortega et. al,
2000).

The model proposed to evaluate FLOSS-based
SQM tools contains 43 metric, of which 17 are new
and distributed as follows: 21 correspond to
Functionality, 16 correspond to Usability and 6
correspond to Reliability. Table 1 shows an example
of new metrics included in the model, which related
to Functionality. The next section describes the
application of the model proposed.

Table 1: Example of new metric.

Features Sub-
feature

Metric´s
Description

Metric´s
Formulation

Suitability Software
Quality
Planning

Is there any
tool-related
functionality
that allows
identifying
quality
objectives?

5= Absolutely.
4= Mostly.
3= Moderately.
2= Scarcely.
1= No.

3.1 Functionality

According to (ISO/IEC 9126, 2001), Functionality is

the capability of the software product to provide
functions which meet stated and implied needs when
the software is used under specified conditions.
Essentially, an SQM tool must fulfill all functional
requirements expected from a software product of
this nature. The characteristics of Functionality are
suitability, accuracy, interoperability, software
product security, correctness, structured,
encapsulated and specified. Within this category, the
following features were considered: Suitability,
Accuracy and Interoperability.

3.2 Usability

According to (ISO/IEC 9126, 2001), Usability is the
capability of the software product to be understood,
learned, used and attractive to the user, when used
under specified conditions. The characteristics of
Usability are understandability, learnability, graphic
interface, operability, compliance, completeness,
consistent, effective, specified, documented and self-
descriptive. However, only three characteristics
were selected, namely Understandability,
Learnability and Graphic Interface. Selection of
these characteristics is based on the relevance for
quality management, for user understandability,
usability and their ability to provide guidance on
learning and the attributes that make it more
appealing to users.

3.3 Reliability

Selection of Reliability was mainly due to the
importance of maintaining a level of performance,
with the accuracy required, when the software is
used under specified conditions (ISO/IEC 9126,
2001).The characteristics of Reliability are maturity,
fault tolerance, recoverability, correctness,
structured and encapsulated. However, only two
characteristics were selected, namely Fault
Tolerance and Recoverability.

4 MODEL APPLICATION

The proposed model was applied to 6 tools
following MOSCA algorithm (Mendoza et. al,
2005), as explained in the section 3. There is also a
web tool that supports the algorithm
(http://www.lisi.usb.ve). The tools selected for our
study were Rational Quality Manager, Rational
AppScan, Rational ClearQuest Test Management,
Rational Performance Tester, Sonar and Valgrind, a
free alternative to Rational Purify Plus.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

388

Table 2: Model Application Data Summary.

Category Feature Sub-Feature RQM RAppS RPT RCQTM Sonar Valgrind Median

Functionality

Suitability
Quality Planning 85,45% 14,55% 29,63% 41,82% 27,27% 7,27% 28,45%
Quality
Assurance 83,95% 33,33% 28,05% 43,21% 22,22% 9,26% 30,69%

Accuracy 100,00% 100,00% 100,00% 100,00% 66,67% 33,33% 100,00%

Interoperability 100,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%

Functionality Porcentage 100,00% 25,00% 25,00% 50,00% 0,00% 0,00% 25,00%

Usabilility

Understandability
Quality
Assurance 100,00% 0,00% 0,00% 33,33% 100,00% 0,00% 16,67%

Learnability
Quality
Assurance 100,00% 100,00% 100,00% 100,00% 100,00% 0,00% 100,00%

Graphic Interface
Quality
Assurance 100,00% 85,71% 71,43% 100,00% 85,71% 57,14% 85,71%

Usabilility Porcentage 100,00% 66,66% 33,33% 66,66% 100,00% 0,00% 66,66%

Reliability
Fault Tolerance

Quality
Assurance 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

Recoverability
Quality
Assurance 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

Reliability Porcentage 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

5 RESULT ANALYSIS

Given the breadth of the SQM concept, it is hard to
find a group of tools that meet the quality metrics of
the proposed model, as they must deal, within the
Functionality category and specifically in the
Suitability feature, with the three main aspects of
SQM: Planning, Assurance and Control. The results
of the evaluation are presented in Table 2. Rational
Quality Manager is the tool that fully meets SQM
requirements and shows a leading-edge quality by
reaching 100% in the three categories evaluated.

Considering software quality management is a
far-reaching discipline, these tools would not cover
all sub-disciplines, but may engage in specifically
managing some of them. Many of these tools do not
widely meet SQM requirements, but give support to
some specific SQM areas or processes.

A case in point is Rational ClearQuest Test
Management, a tool centered on managing the
software application test process, a sub-discipline
included in Quality Management Techniques,
applicable to other sub-areas of Quality Assurance,
Verification and Validation (SWEBOK, 2004). In
addition, it manages information provided by quality
metrics to obtain an overview of the project in terms
of the results achieved from the execution of test
plans prepared and managed through its support.
These strengths help to positioning Rational
ClearQuest Test Management above other tools,
such as Rational Performance Tester, mainly
oriented towards planning and execution of

performance tests, including load and stress tests;
and Sonar, a tool solely oriented towards
management of software quality metrics, a medullar
activity for SQM per se.

Rational AppScan and Valgrind deal with the
specific areas of safety tests and memory
performance checks for software application
purposes, inserting SQM activities in the group of
support tools, but encompassing a more reduced
spectrum within the Quality Assurance, Verification
and Validation sub-areas. One of the most appealing
features of Rational AppScan is its ability to adapt to
internationally certified standards and generate
reports that meet such requirements.

Sonar, which is also a FLOSS tool, is particularly
interesting in terms of its evaluation results: the only
characteristic where Sonar is outperformed by the
Rational tools group is Functionality, although its
results should be closely analyzed for the Quality
Planning sub-feature, where it approaches Rational
Performance Tester, and far exceeds Rational
AppScan’s performance, due to specific
management of quality metrics and indicators,
statistics, and its ability to track the evolution of
such metrics and handle a project portfolio. The
metrics management feature is vital for SQM quality
and process planning, even though tests, in their
wide variety, are very important for this process too.
Unsurprisingly, in the evaluation of the Quality
Assurance sub-feature, Sonar is outperformed by
proprietary tools, as the latter provides process
management mechanisms of at least one software
test type. Interpreting the medians for each feature

SOFTWARE QUALITY MANAGEMENT FLOSS TOOLS EVALUATION

389

measurement may give us an idea of which metrics
would not be applicable within the context of this
sample. In the case of Interoperability,
measurements, the median is 0.00, which is
somewhat of an overall notation given the nature of
free-software developed applications.
Interoperability usually poses challenges although it
should be noted that strengthening of this requisite
compliance features may be key for competing in
the proprietary software field.

The free software community should bet on the
development of highly-interoperable small
applications or tool suites, instead of trying to
develop increasingly large and complex tool
structures in terms of performance that need less
interoperability features, such as privative tools
where interoperability metrics are rarely applicable.

Metrics of the Understandability feature within
the Usability category are also one of the least
applicable; for privative tools specifically (except
for Rational Quality Manager, which shows
outstanding results due to its highly intuitive
design), this is mainly due to the fact that the tools
extensions make them much more complex and
understandability thereof may require training and
several months of application to achieve full
command. In the case of free tools (except for Sonar
with excellent results), insufficient documentation
and less usable designs are the main reasons
affecting their understandability.

From the medians of the metrics applicable to the
Quality Planning and Quality Assurance sub-
features, within the Functionality category, and for
Suitability - which is an essential feature for
evaluation purposes - it might be inferred that most
tools belonging to this sample do not meet the
quality standards established by the evaluation
instruments used for SQM tools.

6 CONCLUSIONS

The model proposed herein provides for appropriate
evaluation as it specifies the quality of SQM tools
while considering the processes embedded at
functional level, such as quality planning, quality
assurance and quality control. This contributes to
effective software project management taking into
consideration the three main processes of SQM.

For future research projects, we recommend
defining a process that support organizations in the
application of the proposed model, fulfill their
requirements and contributes to tool identification,
classification, and sourcing.

ACKNOWLEDGEMENTS

This research has been financed by FONACIT
Venezuela, Project G-2005000165. Special thanks to
Eng. A. Castillo.

REFERENCES

Basili, V. R., Caldiera, G., Rombach, H. D. 1994. Goal
Question Metric Paradigm. In J. J. Marciniak (ed.),
Encyclopedia of Software Engineering, John Wiley &
Sons.

Callaos, N. and Callaos, B. 1996. Designing with
Systemic Total Quality, International Conference on
Information Systems, Orlando, Florida, July, 548-560.

ISO/IEC 9126-1. 2001. Software engineering - Product
quality - Part 1: Quality model. First edition,

Kitchenham, B. 1996. Evaluating Software Engineering
Methods and Tools. Part 1: The Evaluation Context
and Evaluation Methods. ACM SIGSOFT - Software
Engineering Notes, 21, 1, 11- 14.

Mendoza, L; Pérez, M. and Grimán, A. 2005. Prototipo de
Modelo Sistémico de Calidad (MOSCA) del Software:
Computación y Sistemas, 8, 3, 196-217.

Ortega, M., Pérez, M. and Rojas, T. 2000. A Model for
Software Product Quality with a Systemic Focus, 4th
World Multiconference on Systemics, Cybernetics and
Informatics SCI 2000 and The 6th International
Conference on Information Systems, Analysis and
Synthesis ISAS 2000, Orlando, Florida, July, 395-401.

Ortega, M., Pérez, M. and Rojas, T. 2003. Construction of
a Systemic Quality Model for evaluating a Software
Product, Software Quality Journal, Kluwer Academic
Publishers, Julio, 11:3, 219-242.

Pérez, M., Rojas T., Mendoza, L. and Grimán, A. 2001.
Systemic Quality Model for System Development
Process: Case Study, Seventh Americas Conference on
Information Systems - AMCIS, Boston,
Massachusetts, August, 1297-1304.

Pérez, M., Domínguez, K., Mendoza, L. and Grimán, A.
2006. Human Perspective in System Development
Quality. 12th Americas Conference on Information
Systems (AMCIS). Acapulco, México. Agosto.

Pressman, R. 2007. Software Engineering: A
Practitioner's Approach. 7th Edition. Mc Graw Hill.

Rincón, G., Mendoza, L. & Pérez, M. 2004. Guía para la
Adaptación de un Modelo Genérico de Calidad de
Software. IV Jornadas Iberoamericanas en Ingeniería
de Software e Ingeniería del Conocimiento - JIISIC,
Madrid, España.

Sommerville I. 2006. Software Engineering. Addison
Wesley; 8th edition.

SWEBOK. 2004. SWEBOK: Guide to the Software
Engineering Body of Knowledge - 2004 Version. IEEE
Computer Society.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

390

