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Abstract: A number of process mining algorithms have already been proposed to extract knowledge from application 
execution logs. This knowledge includes the business process itself as well as business rules, and 
organizational structure aspects, such as actors and roles. However, existent algorithms for extracting 
business processes neither scale very well when using larger datasets, nor support incremental mining of 
logs. Process mining can benefit from an incremental mining strategy especially when the information 
system source code is logically complex, requiring a large dataset of logs in order for the mining algorithm 
to discover and present its complete business process behavior. Incremental process mining can also pay off 
when it is necessary to extract the complete business process model gradually by extracting partial models 
in a first step and integrating them into a complete model in a final step. This paper presents an incremental 
algorithm for mining business processes. The new algorithm enables the update as well as the enlargement, 
and improvement of a partial process model as new log records are added to the log file. In this way, 
processing time can be significantly reduced since only new event traces are processed rather than the 
complete log data. 

1 INTRODUCTION 

Process mining aims extracting information from 
system event logs to discovery a business process 
based on its execution. Some examples of systems 
include workflow management systems, enterprise 
resource planning systems, customer relationship 
management, B2B systems, legacy systems, etc. 
This approach can also be used to compare both the 
captured and the designed business process in order 
to identify discrepancies in the model (van der Aalst, 
2003).  

Additionaly to process mining algorithms, there 
are several other algorithms and methods for the 
extraction of business processes from information 
systems (e.g. Machine Learning, Source Code 
Analysis, etc). Techniques based on static source 
code analysis (Zou, 2006) (Zou, 2004), (Liu, 1999) 
usually extract the business process directly from the 
source code constructions (e.g. if and while 
statements, functions calls, etc). Thus, the final 
process model presents a similar structure as the 
source code. The problem here is that they seldom 
identify more complex constructions like parallelism 
and process participants. The main reason for this 
limitation is that this kind of information cannot be 

gathered from the static analysis of the source code 
alone, but needs a dynamic behavior analysis of the 
system additionally. Existing process mining 
algorithms (Ren, 2009), (Alves and Medeiros, 
2007), (Weijters, 2006) extract information about 
process behavior directly from system execution 
logs (i.e. see Fig. 1). They can identify simple as 
well complex control flow structures (e.g., 
XOR/AND-split/join, activitity participants) through 
the dynamic behavior analysis of the system. 

 

Figure 1: Overview of process mining. 

Although actual process mining algorithms are 
very effective for the extraction of business 
processes, they still present some limitations. The 
main limitations are (i) they do not scale very well 
during the mining of large execution logs and (ii) do 
not support the incremental mining of these logs. 
Large log files might be necessary when a 
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significant number of different as well as complex 
execution scenarios occur in the business process. In 
such cases, the complete behavior of the system can 
only be approximated by mining an ever growing 
dataset of executions. So, in these cases an 
incremental mining could extract partial results from 
the log and also execute the mining process in a 
more efficient way. 

In this paper, we propose an incremental process 
mining algorithm, the IncrementalMiner, as an 
extension of the HeuristiMiner (Weijters, 2006) with 
support to incremental mining of execution traces, as 
showed in Fig 2 The main reason of relying upon the 
HeuristicMiner in spite of other existing mining 
algorithms, e.g., alpha++ (Wen, 2006) and Genetic 
Miner (Alves de Medeiros, 2007), is basically its 
satisfactory accuracy as well as its support in 
extracting all business process constructions (e.g., 
XOR/AND-split/join, loops, activities participants, 
etc). 

 

Figure 2: Incremental Processs Mining from execution 
logs of information systems. 

The remainder of this paper is organized as 
follows. Section 2 introduces basics concepts related 
to process mining that are used throughout the paper. 
Section 3 provides a detailed discussion on the 
IncrementalMiner algorithm. In section 4, we 
evaluate the performance of the new algorithm and 
comment on the quality of the extracted models. 
Section 5 we introduce the works related to this 
research. Section 6 presents conclusions and 
outlook. 

2 BASIC CONCEPTS 

An event log can be defined as follows. Let T be a 
set of process activities.    T* is an event trace, 
i.e., an arbitrary sequence of activity identifiers. 
W T* is an event log, i.e., a multiset (bag) of event 
traces, where every event trace can appear many  
times in a log. 

To  find  a process model on the basis of an event 

log, the log must be analyzed for causal 
dependencies, e.g., if an activity is always followed 
by another activity, it is likely that there is a 
dependency relation between both activities. To 
analyze these relations, Weijters (Weijters, 2006) 
introduces the following notations. Let W be an 
event log over T, i.e., W  T*. Let a, b T: 

1) wba  iff there is a trace = t1t2t3…tn and i 
{1, …, n-1} such that  W and ti =a and ti+1= b. 
The relation w  in this notation describes which 
activities apeared in sequence. 

2) wba  iff wba   and bw a. The relation 

w represents the direct dependency relation 
derived from event log W. 

3) a║wb iff wba   and wab  . The relation ║w 
suggest potencial parallelism between a and b. 

4) a>>w b iff there is a trace  = t1t2t3…tn and i 
{1, …, n-2} such that  W and ti = a and ti+1 = 
b and ti+2 = a. This relation suggest a short loop 
between a and b. 

3 ON THE INCREMENTAL 
MINER ALGORITHM 

IncrementalMiner incrementaly mines the control 
flow perspective of a business process from 
execution log files of this process. Incremental 
mining happens when several partial event logs are 
processed one by one improving the completeness of 
model. Table 1 shows an example of two event logs. 
The first one (Table 1a) contains the initial events 
generated by the first execution of a system. Each 
row in the table represents the events generated by 
the execution of one process instance. The second 
event log (Table 1b) contains additional and 
complementary events generated by new executions 
(i.e. the last row on Table 1b). 

Table 1: Two complementary events log. * Interval of 
instance Ids. ** Represent several identical event traces. 

ID Trace 
1-9 * A–C–B–D 9 ** 
10-19 A–E–D 10 
20 A–B–C–E–D 1 
21 A–E–C–B–D 1 

 

ID Trace 
1-9 A–C–B–D 9 
10-19 A–E–D 10 
20 A–B–C–E–D 1 
21 A–E–C–B–D 1 
22-30 A–B–C–D 9 

 

(a) Partial log of event traces (b) Final log of event traces

3.1 Incremental Process Mining 
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starts with the definition of test case scenarios (i.e. 
Fig. 2a). These scenarios coordinate which 
funcionalities of the system are executed. As the 
application is executed (i.e. Fig. 2b), new entries are 
added to the log. The IncrementalMiner algorithm 
can be executed at any time to handle these new 
entries (i.e. Fig. 2c). As a result, it either creates a 
new model (from scratch) at the first time, or it 
updates already created process models at each time 
it is executed (i.e. Fig 2d).  

The incremental mining of logs allows more 
flexibility to extract business process since only 
specific processes could be selected, executed and 
mined from the events log. So, this fact reduces the 
total processing time of the mining since only new 
trace entries are processed rather than the complete 
log data when new processes must be considered. 

3.2 The Algorithm Definition 

This section gives an overview of the 
IncrementalMiner algorithm. We separated the 
algorithm in five distinct pseudo codes, as showed 
below. 
 

Algorithm 1: IncrementalMiner. 
1. for every new instance  L 

(a) for every event ei    
(i) e1= ei, e2 = ei+1 and e3 = ei+2 . 
(ii) Process Relation(e1, e2, e3). 

 

Algorithm 2: Process Relation (e1, e2, e3). 
1. Create dependency relation rel(e1, e2). 

2. Calculate confidence wba  of rel(e1, e2). 
3. If e1 equal e2 then 

(a) Calculate short loop size 1 Confidence 
waa  between e1 and e2. 

(b) If the Support of rel(e1, e2) is above Loop1 threshold 
then  

  (i) AddRelationToGraph(e1, e2). 
4. Else If e1 equal e3 then 

(a) Calculate short loop size 2 Confidence 

wba 2 .between e1 and e3. 
(b) If support of rel(e1, e3) is above Loop2 threshold 

then  
  (i) AddRelationToGraph(e3, e1). 

5. Update rel(e1, e2) in the dependency tree of e1 element . 

6. Update split/join relation Confidence cwba ^ for 
e1, e2 and e3. 
7.UpdateBestRelation(e1, e2, bestDependenciesTreeOf 
(e1)). 
8.UpdateBestRelation(e1, e2, bestCausesTreeOf (e2)). 
9. If rel(e1, e2) is the best dependency relation of e1 or 

rel(e1, e2) is the best cause relation of e2 or (Confidence 
of rel(e1, e2) is above Dependency threshold and the 
Support of  rel(e1, e2) is above Positive Observation 
threshold and confidence of rel(e1, e2) minus the 
Confidence of best dependency relation associate to e1  

is above Relative to best threshold ) then 
(a) AddRelationToGraph(e1, e2). 

Algorithm 3: UpdateBestRelation(e1, e2, relationTree). 
1. If Confidence of rel(e1, e2) is less than Confidence of 

relations in relationTree then 
(a) RemoveRelationFromGraph(e1, e2). 

2. Else 
(a) If Confidence of rel(e1, e2). is greater than relations 

Confidence in relationTree then 
(i) For each old best relation in relationTree: 

(x) Remove old best relation  from relationTree. 
(y) RemoveRelationFromGraph(firstElementOf( 
old best rel), secondElementOf(old best rel)). 

(b) Add r to the relationTree. 
 

Algorithm 4: AddRelationToGraph(e1, e2). 
1. Add vertex(e1) and vertex(e2) to the dependency graph. 
2. Add edge(e1, e2) to the dependency graph. 

 
Algorithm 5: RemoveRelationFromGraph(e1, e2). 
1. Remove edge(e1, e2) from dependency graph. 
2. If vertex(e1) does not contains incoming and outgoing 

edges then 
(a) Remove vertex(e1) from dependency graph. 

3. If vertex(e2) does not contains incoming and outgoing 
edges then 
(a) Remove vertex(e2) from dependency graph. 

To exemplify how IncrementalMiner works, 
consider the partial log W = {ACBD9, AED10, 
ABCED1, AECBD1} (i.e. the log presented in the 
Table 1a). For every three consecutive events in the 
trace (e.g., events A, C, B in the trace ACBD), the 
algorithm IncrementalMiner applies heuristics to 
them to extract valid relations. The first heuristic to 
be applied is the dependency relation (i.e. Algorithm 
2, item 2) between the first and second element of 
the triple (e.g. A and C). Let W  be an event log 

onT , and Tba , . Then || wba   is the number 

of times wba   occurs inW , and: 














1||||

||||

wabwba

wabwba
wba  (1)

This above heuristic calculate the Partial 
Confidence (i.e. the Confidence value until this 
iteration of algorithm) of this relation, using the 
support of wba   (e.g. number of times that A 
comes before C) and the support of wab  (e.g. 
number of times that C comes before A). In the 
example,  wba (1-0) / (1+0+1) = 0.5. After 
iterating all log traces in our example, the value of 

wba   is (9-0) / (9+0+1) = 0.900. The calculated 
values are inserted into the Dependency Tree of 
Figure 3 (i.e. see node C, in the dependency tree of 
A). This dependency tree is an AVL tree that keeps 
the actual candidate relations (i.e. relations that 
could be considered in the final graph of process) 
together with their Confidence and Support values, 
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respectively. The next two heuristics below verify 
the occurrence of short loops in the trace (item 3 of 
Algorithm 2). That is, it checks the existence of an 
iteration composed by either e1 or e1 and e2. (e.g. AA 
or ABA). Let W be an event log over T, and a, b   
T. Then |a >Wa| is the number of times a >wa 
occurs in W, and |a >>Wb| is the number of times a 
>>W b occurs in W: 

| |

| | 1

a wa
a wa

a wa


 

 

 
 
 

 (2)

| | | |
2

| | | | 1

a wb b wa
a wb

a wb b wa

  
 

   

 
 
 

 (3)

The next heuristic (i.e. heuristic 4) is used by 
algorithm 2 (i.e. item 6) to verify the occurrence of 
non-observable activities in the log (i.e. AND/XOR-
split/join elements). Let W be an event log over T, 
and a, b, c   T, and b and c are in depending 
relation with a. Then: 

| | | |
^

| | | | 1

b wc c wb
a wb c

a wb a wc

  
 

   

 
 
 

 (4) 

The |||| wcawba   represent the number 

of positive observations and |||| wbcwcb   

represent the number of times that b and c appear 
directly after each other. Considering the event log 
example, the value of cwba ^ = (1 + 0) / (11 + 9 
+ 1) = 0.05 indicates that E and C are in a XOR-
relation after activity A (i.e. high values to 

cwba ^ indicates a possible AND-relation and 
low values a XOR-relation). 

All heuristics defined above are used to calculate 
the candidate relations that can be added to the 
dependency graph of the business process (i.e., the 
best relations graph, represented in Fig. 5). To select 
the candidate relations that will compose the graph, 
we use the best relations trees (see Fig. 4). 

 

Figure 3: Dependencies trees. Keep the confidence and 
support updated for every dependency relation. 

The algorithm 3 is used to update these best 
relation trees. These trees keep the best dependency 
and causal relations of the dependency tree (i.e. the 

relations with highest Confidence value). A best 
relation tree can have several relations with high 
confidence value inside it, but all relations in it must 
have the same confidence value for that element. 
 

 
Figure 4: Best relations trees. Best relations from 
dependency tree of Fig. 3. 

The final dependency graph is similar to the one 
of Fig. 5a. We need yet to process the second log file 
in its last state (see Table 1b). From this log file we 
obtain the multiset W = {ACBD9, AED10, ABCED1, 
AECBD1, ABCD9}. After applying IncrementalMiner 
to this log, we obtain the final dependency graph of 
Fig. 5b. This graph shows additional structures 
which were extracted from the new trace ABCD (i.e. 
nine occurrences of it) available in the last events of 
the log. All the other traces available in the log (i.e. 
also available in the first log) are discarded by the 
algorithm. This happens since the IncrementalMiner 
maintains a list of already processed event traces 
(column ID in Table 1 can be used for this control). 

 

Figure 5: Dependency graph example resultant from the 
best relations of Fig 4. 

3.3 Using Threshold to Deal with Noise 

Additionaly to the best relations tree, 
IncrementalMiner uses all thresholds defined in 
HeuristicMiner algorithm to decide whether a 
relation will be considered in the final dependency 
graph (see items 3.(b), 4.(b) and 9 of Algorithm 2). 
These thresholds help preventing the generation of 
false relations caused by noise. Thus, we can also 
accept dependency relations between activities that 
have (i) a dependency measure above the value of 
the Dependency threshold, and (ii) have a frequency 
higher than the value of the Positive observations 
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threshold, and (iii) have a dependency measure for 
which the difference with the "best" dependency 
measure is lower than the value of Relative to best 
threshold (Weijters, 2006). 

4 PERFORMANCE 
EVALUATION THROUGH 
A CASE STUDY 

The experiments have been divided into two groups. 
The first group compared the performance results 
using the IncrementalMiner and other existent 
algorithms. The second group was used to compare 
the quality of models discovered by the process 
mining algorithms. 

4.1 Generating Event Log from Legacy 
System Execution 

For all experiments discussed here, we used datasets 
generated through successive executions of an 
information system, following the process defined in 
Fig. 2. In the end, a large dataset with approximately 
10,000 event trace instances were generated. In the 
experiments we used a PC with an Intel Core 2 Duo 
2GHz processor and 2GB RAM. The 
IncrementalMiner algorithm was implemented using 
Java language.  

4.2 Performance Analysis 

To test the performance of the incremental feature of 
the IncrementalMiner, we collected five event trace 
log files. The files were recorded with 
complementary contents and named respectively as 
A, B, C, D and E where ( .EDCBA  ).  

Table 2: IncrementalMiner time comparative (in seconds). 
Row A: mining of all log content. Row B: incremental 
mining of log content. * In thousands of instances. 

Instances* 2 4 6 8 10 Total 
A 1.4 2.7 4.0 5.4 6.7 20.2s 
B 1.4 1.5 1.4 1.5 1.5 7.2s 64%

 
The obtained results can be seen in Fig. 6 below. 

IncrementalMiner processed the complete dataset 
five times faster (500%) than Alpha++ and eighty 
times faster than HeuristicMiner (8000%). 
Furthermore, Table 2 shows the total processing 
time reduction with IncrementalMiner. Rows A and 
B sum the total processing time to process the log 
content without the incremental approach and with 
it, respectively. At the end we obtained a gain of 

64% on total processing time using incremental 
mining of datasets. 
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Figura 6: Total processing time during the mining of new 
transactions added to the log. 

In our experiments we also considered the 
execution time of the GeneticMiner algorithm 
(Alves de Medeiros, 2007). However, this algorithm 
has shown a total execution time even worse than 
that of others algorithms presented in Figure 6. 

4.3 Quality Analysis  

Table 3: Quality Metrics Comparative between 
IncrementalMiner (IM), HeuristicMiner (HM), Genetic 
Miner (GM) and Alpha++ miner. 

Metric IM/ 
HM 

GM A++

Fitness Parsing Measure PM 1 1 0.006
Token Based Fitness (f) 1 1 0.926

Fitness PFcomplete 1 1 0.728
Behavioral Appropriateness a’B 0.78 0.98 0.720
Behavioral Precision Bp 1 1 0.907
Behavioral Recall Br 1 1 0.907
Causal Footprint 0.99 1 0.96
Structural Appropriateness a’S 1 1 1 
Structural Precision SP 1 1 1 
Structural Recall SR 1 1 1 
Duplicates Precision DP 1 1 1 
Duplicates Recall DR 1 1 1 

This quality comparison followed the quality metrics 
defined in (Rozinat, 2007a). Such metrics describe 
several measurements to assess the quality of a 
model based on the behavior observed in the 
execution log. According to Rozinat (Rozinat, 
2007a), a value can be considered a “good metric” if 
it is near or equal to “1”. 

To execute these experiments, we have used the 
Control Flow Benchmark plug-in of the ProM tool 
(van Dongen, 2005b). Table 3 presents the result of 
this analysis. We observed that all discovered 
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models except the models returned by Alpha++ 
miner fit the log and have good precision. The 
details of each metric can be seen in the work of 
Rozinat. 

5 RELATED WORK 

The first group of related work includes process 
mining algorithms. They allow the mining of 
execution traces of a system to extract information, 
as business processes, aspects of organizational 
structures and types of business rules (van der Aalst, 
2003). Related to that, one of the main algorithms is 
the Genetic Miner. It uses adaptive search methods 
that simulate the evolution process. This algorithm 
presents better accuracy when compared with other 
existing ones (e.g., Petrify Miner, Alpha++, etc). 
However, existent algorithms do not consider the 
incremental mining of business process from the 
event log, using only historical data logs. 

The source code analysis approach proposed in 
(Zou, 2004) represents a model driven business 
process recovery framework that captures the 
essential functional features represented as a 
business process. In another work, Zou (Zou, 2006) 
compares the structural features of the designed 
workflow with the implemented workflow, using an 
intermediate behavioral model. Finally, Liu (Liu, 
1999) uses a requirements recovery approach which 
relies on three basic steps: 1) Behavior capturing; 2) 
Dynamic behavior modeling; and 3) Requirements 
derivation as formal documents. All these 
approaches use only static information to extract 
business process models from information systems.  

6 SUMMARY AND OUTLOOK 

This paper proposed the IncrementalMiner, an incre- 
mental process mining algorithm for the extraction 
of business processes models from information 
system event log. The algorithm is an extension of 
the HeuristicMiner where the data structure used 
was restructured in order to support the incremental 
update of the model. In its performance evaluation, 
the total processing time of logs was reduced in 64% 
during the incremental mining and was five times 
faster than Alpha++ and eighty times faster than 
HeuristicMiner. The extracted process models 
showed good accuracy when compared with results 
of other process mining algorithms.  

Altogether, the main contribution of this work is 
the incremental functionality of the algorithm to 

support incremental learning of business processes 
models by processing event trace logs that are 
recorded during successive system executions.  

In the near future, we intend to do additional 
performance and quality tests with 
IncrementalMiner to consider other types of 
processes and datasets.  
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