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Abstract: An important task of geophysical research is in the answer to the question about the quality of signals, i.e., 
estimating the locus of the signal and the degree of their presence in noises. Such indications determine the 
degree of trust to consequent estimations (e.g., estimations of wave arrival times). As seismic data are 
periodic signals in their nature, conventional means for examining such signals are Fourier and spectral 
analyses. However, this method does not allow us to clear up questions about probability of signals presence 
and their locus in the recorded data. We consider another approach – the cluster analysis of periodic signals, 
propose the formal conditions which must be satisfied by a period of signal existence, and give some results 
of analysis of real data recorded in field conditions.  

1 INTRODUCTION 

The prompting motive of our research is the needs in 
noisy geophysical data analysis. The basis of such 
data is periodic (harmonic or frequency-modulated) 
signals recorded at discrete instants of time. 
However, the corresponding signals are widely used, 
and an appropriate research can be of interest in 
other fields of activity. 

In practice, geophysical data are recorded in field 
conditions. The point is that in the process of wave 
propagation and in recording data one or another 
type of errors takes place. Therefore, analysis of 
such data demands a special attention. Usually, in 
this case researchers attract a harmonic (I. I. 
Gurvich, and G. N. Boganic, 1980) or a spectral 
analysis (E. A. Davidova, and others, 2002). 
However, an appropriate approach cannot decide the 
dilemma “time-frequency” (the spectrum 
components are listed in a domain, where the time 
scale is absent). 

Currently, methods of wavelet analysis and 
transformation (A. A. Nikitin, 2006, E. Baziw, 1994) 
are of interest to researchers. Here, time localization 
of the signal frequency components can be found. 
Essentially, such an approach is an analog to 
convolution or linear concordant filtration, or, in 
other words, it is a development of the window 
Fourier analysis. 

We will treat periodic signals as time series and 
consider another approach, based on the cluster 
analysis. To the best of our knowledge, the notion of 
a cluster is used by few of authors to analyze 
periodic signals (Znak V. I. and Grachev O. V., 
2009). 

2 METHODOLOGY OF CLUSTER 
ANALYSIS OF PERIODIC 
SIGNALS 

We can treat the time evolvent of a periodic signal 
on a plane as a specific image, and set a problem of 
studying some or other its features. However, such 
an image becomes considerably complicated in the 
presence of noises. 

The problem can be simplified if an image of 
some integrated estimation of a signal is used as an 
object of analysis. Here, we offer to employ an 
estimation of a standard deviation (dispersion) on 
some running basis. The behaviour of such 
estimations as time function σ (t) will reflect the 
energy distribution of a signal in the region of their 
existence. Then, the evolvent of function σ (t) on a 
corresponding 2-D plane can be considered as an 
image of a cluster formation. Features of such an 
image are of interest for the purposes of analysis of 
periodic signals. 
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As the above estimation we use 
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where L is odd, x is signal values, j=(L-1)/2,…, N–
(L–1)/2 (N is a signal length). We will assume σ(t) is 
integers. 

Let σ̂  be the uppermost dispersion value: 0 ≤ σk 

≤ σ̂  and tk is an instant of time. Then, some integer 
h (0≤h≤σ̂ ) will be called a "threshold". Thus, we 
juxtaposed with our signal estimations a grid hl×σk 
on a 2-D plane, which will be denoted as Q: h=0,…, 
σ̂ ; k=(L-1)/2,…, N–(L–1)/2). Further, we will 
suppose that each point of the grid represents an 
event qk(h) ∈ Q, where q∈(0,1): 
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For any threshold h, the respective subset 
Qr(h)⊂Q for the adjacent instants will be called a 
cluster if for all the events qk of Qr(h) the 
corresponding σk is greater or equal to the h, i.e.: 
∀q∈Qr(h): q=1. The cardinal number of such cluster 
is  
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and locus in time is Δtr(h) = t1(r)(h) ÷ tn(r)(h). 
Naturally, both the quantity of such clusters and 

the cardinal number of each cluster depend on the 
threshold value. 

We can speak about two clusters of the two 
neighboring thresholds that a cluster Qs(r)(h+1) is a 
child of Qr(h) if they are intersecting in time: 
Δtr(h)&Δts(r)(h+1) ≠ 0. We will pool such clusters 
and call them a cluster family. The cardinal number 
of this cluster family is 
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etc. Let     
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be a common cardinal number of cluster families on 
the threshold h. Then the relation  
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will be called a representative probability of the 
family Qr(h). 

Let us consider a series of functions Pr(h), 
r=1,…, m(h), h=1,…, σ̂ . We expect that the 
behavior of such functions reflects the degree of the 
presence of a signal in noise. At the same time, they 
are tied to subjects, which have their own locus in 
time. 

The matter of the problem is to investigate the 
behaviour of these functions for answering the 
questions about the degree of the presence of a 
periodic signal in noise, and its locus in noisy data.  

3 ON STUDING THE SIGNAL 
EXISTENCE 

Let us consider some cluster formation σk(L) as an 
image ℵ under condition of any running basis L 
(Fig. 1). 

 
Figure 1: An example of the mapping of the dispersion 
estimations with a running basis. 

Now, turn to the question about picking out the 
most informative threshold with regard to a 
representative probabilities. For answer on the 
question, we will study situations beginning from 
threshold h=0. However, first of all, we will make 
some remarks based on the nature of a signal in 
question. We suppose: 

1) A process of signal recording in time (t=0) 
begins before a signal arrival, i.e., T0>0, where T0 
is an instant of a signal arrival time. 
2) A signal on the dispersion estimator input is 
y=s+ξ, where s is a source signal, and ξ is an 
additive white noise with zero mean Gaussian 
distribution. Let tN  be a signal recording period, 
and ΔT a signal existence period. Then, the 
following conclusion is a consequence of such 
supposition: the probability of localizing the 
uppermost dispersion value k(σ̂ ) on ΔT is 
proportional to the ratios tN /ΔT and to the signal-
to-noise ratio, i.e., P(σ̂ (k)∈ΔT) ∼ tN /ΔT & s/ξ = 
f(tN /ΔT, s/ξ). (a more exact dependence needs a 
separate attention). 
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Now, we will study a cluster families beginning 
with threshold h0= 0. We can say, that the threshold 
h0=0 is non-informative for us because we have 
t1(0)=0 for a single clusters family Q1(h0) 
(obviously, P1(h0)= 1.0). We can say the same with 
regard to the threshold h1=1 if the same conditions 
t1(h1)=0 for single Q1(h1) (P1(h1)=1) are fulfilled, 
and so on. 

Let, for the first time in threshold raising, hl be 
such a threshold, where t1(hl) > 0 for m(hl) ≥ 1. In 
this case, we will have the three sets: 1) a set of 
instants of time of the beginning of cluster families  
t1(r)(hl), 2) a set of periods of existence of the 
appropriate cluster families Δt(r)(hl), and, 3) 
representative probabilities of the appropriate 
families Pr(hl) (r=1,…, m(hl)). 

Here, the following conditions are fulfilled:  
i) one (or more) of such instant of time at which the 

condition t1(r)(hl)>0 is fulfilled; 
ii) a set of probabilities includes such Pr(hl), that the 

condition Pr(hl)=max is fulfilled; 
iii) a set of periods of existence of cluster families 

includes such Δtr(hl) that the condition 
t( σ̂ )∈Δtr(hl) is fulfilled (1≤ r ≤m(hl)). 
We will suppose that a locus of signal existence 

is reflected by such a period of existence of the 
cluster family Δtr(hl), which fulfils (obeys) the 
following conditions: 

 
(7)

 

where Δtr(hl) is t1(r)(hl) ÷ tn(r)(hl). 

4 AN EXAMPLE OF STUDING A 
SIGNAL 

The methodology in question was used for analysis 
of data recorded in the course of monitoring (in 
2007) of the Karabetov mud volcano on Mt. of 
Taman Province (data recorded by Z-component of 
receivers for profile line T1, results of field 
experiments are currently accessible on the web_site 
http://opg.sscc.ru). Seismic (or vibro-) records 
were recorded from 10 T vibratory source with a 
frequency band of 10–64 Hz, and with a sampling 
frequency = 0.004 sec. Appropriate data can be 
found at http://opg.sscc.ru/db. 

The results obtained are given in the Table 1. 
The columns of this Table include distances between 

a vibratory source and a receiver (S), hmin÷hmax= σ̂ , 
periods of existence of the appropriate cluster fami- 
lies t1÷t2, and appropriate estimations of 
representative  probabilities (P)  for  running  basis  

Table 1: Estimations of signal locus in time. 

S m. L hmin ÷hmax t1÷t2 P 

2363 25 6÷415 3933÷19988 0.94 
 75 14÷396 3689÷15669 0.89 
 125 16÷390 1520÷14247 0.91 

2415 25 9÷305 2041÷19502 0.95 
 75 16÷292 2284÷19672 0.96 
 125 28÷279 3901÷9316 0.81 

2461 25 13÷156 3173÷9917 0.45 
 75 24÷133 3190÷10305 0.50 
 125 27÷121 3210÷10471 0.52 

2557 25 3÷64 3315÷19988 0.90 
 75 6÷53 3481÷19963 0.92 
 125 6÷46 3455÷19938 0.92 

2601 25 5÷165 4045÷19988 0.88 
 75 11÷151 4060÷18122 0.85 
 125 15÷132 3741÷18114 0.88 

2647 25 8÷98 3493÷8855 0.42 
 75 12÷88 3593÷14414 0.73 
 125 14÷86 2213÷13365 0.77 

2698 25 2÷13 8642÷19988 0.73 
 75 3÷13 8832÷19963 0,77 
 125 3÷13 8807÷19938 0.77 

2749 25 6÷87 1410÷12065 0.59 
 75 8÷84 1150÷19963 0.98 
 125 9÷82 1170÷19938 0.99 

2796 25 6÷87 2637÷15919 0.89 
 75 10÷78 972÷15800 0.98 
 125 10÷71 360÷16047 0.99 

2845 25 15÷111 3508÷10413 0.58 
 75 21÷105 569÷11594 0.82 
 125 22÷100 898÷11615 0.83 

2894 25 6÷51 3897÷18815 0.89 
 75 9÷46 3889÷15243 0.88 
 125 10÷43 3863÷11205 0.59 

2999 25 5÷76 9532÷19988 0.51 
 75 8÷67 9573÷19963 0.5 
 125 8÷56 1824÷19938 0.96 

3046 25 6÷60 5646÷19988 0.80 
 75 8÷52 2209÷19963 0.97 
 125 8÷47 2185÷19938 0.97 

3095 25 5÷111 3987÷19988 0.93 
 75 7÷90 3988÷19963 0.95 
 125 7÷76 3963÷19938 0.95 

3141 25 12÷67 3665÷11019 0.65 
 75 17÷61 3838÷9707 0.71 
 125 18÷54 4054÷9388 0.74 

3198 25 12÷74 4945÷19988 0.81 
 75 `8÷66 6011÷9346 0.43 
 125 18÷64 4288÷19938 0.87 
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L∈{25, 75, 125}. 
Estimations of signal locus in time for S∼0 m are 
given in the Table 2 (all the representative 
probabilities are equal to 1). 

The processing and analysis data were obtained 
by means of interactive computer system of 
designing and support of one-dimensional weighed 
order statistics filters (V. I. Znak, 2009). 

Table 2: Estimations of signal locus in time for S∼0 m. 

L hmin ÷hmax t1÷t2

25 6÷415 3870÷18883 
75 14÷396 3846÷18908 

125 16÷390 3821÷18933 

By way of example, an image of investigated 
signal (for S=2647 m) and appropriate dispersions is 
shown in Fig. 2. 

 
Figure 2: An image of signal and appropriate dispersions 
for L=25, L=125 (S=2647 m). 

Estimations of the data from the Table 1 are 
given in Fig. 3. 

 
Figure 3: Estimations of the time locus of the signal for 
running basis L∈{25, 75, 125} and for different distances. 

5 CONCLUSIONS 

We have considered the approach of cluster analysis 
of periodic signals, proposed the formal conditions 

which must be satisfied by a period of signal 
existence, and given some results of analysis of real 
data recorded in field conditions. Analysis of the 
results obtained by studying real signals allows us to 
say that the approach in question can result in close 
estimations of a locus in time of a pure signal, and in 
less close estimations of a locus in time of noisy 
signals.  

Our main objective was restricted by 
development of the method of formalized analysis of 
periodic signals for estimation of their period of 
existence. We have not concerned methods of 
improving signals as it is a theme of separate 
investigation. We suppose that more exact decisions 
can be attained by attracting analysis of the left and 
the right uniformity of cluster families (Znak V. I., 
2009) and frequency processing (Znak V. I., 2005). 
Cluster families, which reflect a locus of a signal on 
its boundaries, must have a higher uniformity than 
for others. 

The work is supported by the grant 09-07-00100. 
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