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Abstract: Heterogeneous mobile robots are often required to cooperate in some optimal fashion following specific 
cost functions. A global cost function is the sum of all agents’ cost functions. Under some assumptions it is 
expected that a provable convergent computation process gives the optimal global cost for the system. For 
agents that can exchange ontological information via a network, different variables in the global vector are 
relevant when ontology instances have been recognized and communicated among agents. It means the 
optimization depends on what is known to each agent at the current time. There are two ways to solve an 
optimization of this kind: (a) to weight agents according to the ontology instances or (b) to add ontology-
defined optimization constraints. This paper illustrates the benefits of the weighted optimization method.  

1 INTRODUCTION 

Intended applications for the optimization method 
proposed in this paper are systems of cooperating 
robots, where each robot is designed using an agent 
architecture. Each robot has specific sensors and 
actuators, thus robots and agents are in general 
heterogeneous. 

In order to fulfil goals at an abstract level, agents 
can exchange ontological information (Văcariu, 
Chintoanu, Lazea and Creţ, 2007). As shown in 
Section 2, ontological concepts are mapping the 
sensed world with non-trivial modes of actuation 
and goal seeking. Using a symbolic layer with 
ontologies means that agents can undergo rather 
discontinuous changes when recognizing different 
types of environment that are associated to complex 
actions and goals. 

It is typical for applications with many sensors, 
actuators and high-level of intelligence that the same 
goal could be achieved in many ways and at 
different costs. Thus optimization of cost functions 
of agents is an important requirement for a practical 
solution. We consider a total number of M agents 

acting in all the robots; each agent has an index i 
(i=1,…,M) and a related convex cost function fi(x). 
The argument x is a vector in Rn of resources. 
Initially, agents know their own resources but they 
have a degree of uncertainty about the resources 
available to other agents. In time, each agent tries to 
compute the best estimate of the resource vector x 
that optimizes the agent’s own cost function. By 
exchanging resource vectors and ontologies among 
agents, the optimization can make a better resource 
allocation using common resources. Thus, the cost 
function for each agent converges to an (almost) 
optimal value and the overall cost function 

∑
=

=
M

i
i xfK

1
)(  will be also minimized. 

In our model, the non-smooth cost functions 
obtained by discrete changes in resource vectors by 
ontology update are not differentiable over the 
whole domain, thus these functions are optimized by 
a subgradient method (Shor, Kiwiel, and 
Ruszcaynski, 1985). 
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2 AGENT MODEL 

In   traditional  applications,  the  components  of  a  
resource vector used for optimization are physical 
measured values. In more advanced applications, 
resource vectors change, an interesting case being 
when agents exchange ontologies. 

Here we describe the relationship between the 
resource vector x and the symbolic part of the agents 
ontological representation. 

We consider that each robot is built on an agent 
architecture that can host a number of specialized 
agents. These can use local robot resources. We 
have a set of cooperating robots Ro, indexed from 1 
to M. The set of sensors of a system of robots is: 
 

Se: Ro x Ns (1)
 
where Ns = number of sensors. 

The decisions made by agents are not based 
directly on raw sensor data. Normally, a so called 
perception relation is the result of processing the 
data from several sensors. For a robot with Kr 
sensors, a perception relation is defined as a 
mapping of sensors to indices Np: 
 

Re: SeKr x Np (2)
 

Perception relations are associated symbolic 
names by a mapping from the set of perception 
relations Re to a vocabulary (set of words) Tv called 
symbolic perceptions: 
 

RelS: |Re| x N → Tv (3)
 
where |Re| is the index of a relation in (2) and N is 
the index of the robot. 

Ontology is a formal representation of a set of 
concepts within a domain and the relationship 
between these concepts (Noy and McGuinness, 
2001). These concepts being specific to a domain, it 
generally means that there is no obvious one-to-one 
mapping between ontological concepts and the 
perception relations. If the set of ontological 
concepts is Z, a robot-specific ontology is defined as 
the relation between the perception relations and a 
relationship between a set of L ontological concepts: 
 

Ont: Tv → ZL (4)
 

Depending on the inclusion relation between the 
specific ontology and the perception relations, there 
are three cases. A specific ontology is (1) 
fundamental when LKr ZSe ≡ ; (2) is minor relative 

to the perception relations if LKr ZSe ⊂ ; (3) is 
major relative to perception relations if LKr ZSe ⊃ . 

We consider here major specific ontologies. 
Agents are using the actuator gear of robots to 

achieve goals. Actuators are denoted: 
 

Ac: Ro x Na (5)
 
with Na being the actuator index and Ro the set of 
robots. A relation of actuation is a mapping from the 
symbolic perceptions Tv to actuators: 
 

RelA: Tv  → Ac (6)
 
which shows the intended action for each symbolic 
perception in Tv. Finally, it is assumed that since 
each action is executed under known conditions, the 
intended effect of the action is known as a specified 
next symbolic perception. This is called the 
actuation effect relation (or actuation relation) EfA: 
 

EfA: Ac x Tv → Tv (7)
 

The dynamics of the data evaluation is shown in 
the Figure 1 below: 

RelS Tv
Z L

EfA  
Figure 1: Data evaluation. 

3 MULTI-AGENT MODEL 

In the multi-agent system each robot has a number 
of agents, each agent having a specific set of 
relations of the type (1) – (5). All agents are 
assumed to use the same domain ontology since this 
ensures that common goals can be achieved and that 
communication is not robot manufacture-dependent. 
Each agent has only a subset of the common domain 
ontology, subset that was considered appropriate for 
its sensors, actuators and goals at the design time. 
During the cooperation phase, agents are exchanging 
information such as sensor data, ontology concepts 
or resource vectors. It is also assumed that all agents 
have a bounded communication time interval T. 
There are several mechanisms for ontological 
communication but we describe only the method 
called Simple Ontological Substitution (SOS). 

Let ta and tc be two symbolic perceptions in the  
Tv set of a local agent such that according to relation 
(7), we have tc = EfA(ac,ta) (Figure 2). 
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t aca tc

tb ab

Local agent executing SOS

Remote agent  
Figure 2: Simple Ontological Substitution. 

Formally, the intended sequence towards a goal 
is as follows: sensors of the local agent expect 
reading data which is used to interpret the symbolic 
perception ta as true. The associated actuation ac is 
expected to materialize the symbolic perception tc. 
However, the environment of the robot changes such 
that no symbolic perception among those of the Tν 
set of the local agent will become true. The agent 
cannot recognize the environment state in which it 
acts. The local agent has information according to its 
EfA relation about the wanted perception to realize 
tc. Another agent in some remote robot has a 
corresponding relation EfA of the type tc = EfA(_,_). 
The local agent is sending a request for all agents in 
the system, with the following content: (a) a remote 
agent should have the EfA resulting in tc and (b) the 
remote agent should send this EfA together with the 
corresponding ZL (see Figure 1) to the local agent. 

If such a remote agent exists, and answers with 
the tc = EfA(ab,tb), then the local agent will ask for 
the execution of ab

 that will result in tc. Next time, 
when a similar situation happens, the local agent has 
the ontology knowledge to cope with this situation. 

4 OPTIMIZATION 

4.1 Optimizing Individual Agents 

Each agent i, i = 1,…,n has an individual cost 
function fi: Rn → R expressing e.g. energy, material 
or wear and tear costs. A minimum value of the cost 
function means finding a so called optimal resource 
vector x* such that: 
 

fi(x*) ≤ fi(x) ∀x ∈ Rn (8)
 
All cost functions are assumed convex:  

 
f(ta + (1 – b)t) ≤ tf(a) – (1 – t)f(b) (9)

For each convex function a local optimum is also 
a global optimum. This makes the computation of an 
optimum easy when the function is smooth (it has 
derivatives of high order). For example, from the 
truncated Taylor expansion: 

2

2
)(")(')()( hxfhxfxfhxf ++≈+ , 

by differentiation on h we obtain 

0)('
2

)("2 =⋅+⋅⋅ dhxfxfdhh , and after reductions, 

)("
)('

xf
xfh −= . This gives the iteration which is 

Newton’s method for solving 0)(' =xf (k is the 
iteration index). 
 

xk+1 = xk + h (10)
 
The example above shows the two important 

parts of a program solving an optimization 
application (Bonnans, Gilbert, Lemaréchal, and 
Sagastizábal, 2002): 

(a) The Algorithm for Searching the x Space. This 
manages the update of the argument x to the fastest 
convergence rate of the sequence x1, x2,…, xk,…, x*.  

There are two types of search methods: one is a 
direct search, i.e. the traditional Nelder-Mead 
method (Fletcher, 2003); the other is to use 
information about the functions to be optimized, 
such as its higher derivatives. For example, the 
corresponding of the Newton method (relation (10)) 
for the multi-dimensional case is: 
 

)()(1
1 kkfkk xfsHxx ∇−= −
+  (11)

 
To determine the iteration step, must be solve the 

linear system: Hf(xk)sk = – ∇f(x) such that relation 
(11) becomes xk+1 = xk + sk. 

(b) The Simulator. For each new iteration 
determined by the search algorithm, a computation 
is done using the new x in the problem P to be 
optimized to find a gradient descent or an equivalent 
“good” direction. Often the initial problem P is 
replaced by a simpler problem Pk which computes a 
direction along a line of the solution.  

The method can be illustrated with subgradients 
on non-smooth functions. Let f(x) to be a non-
smooth, convex function, defined on R, with values 
in R (Figure 3). Let x0 be a point of discontinuity of 
the function. A subgradient is any line of direction c 
containing the point (x0, f(x0)), such that: f(x) – f(x0) 
≥ c(x – x0), a  line  “below”  a  convex function and  
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Figure 3: Subgradient in R1. 

which  intersects  the  function  in  only  one  point. 
For vectors in Rn a subgradient is a vector sf(x0) 

such that: 
 

f(x) – f(x0) ≥ sf(x)T(x – x0) (12)
 

The set of all subgradients of f at x0 is called the 
subdifferential of f at x0 and it is denoted as ∂f(x0). In 
Figure 3 the subdifferential is the set of lines through 
the point (x0, f(x0)) placed between the lines S1 and 
S2 defined by the directions of the non-smooth 
function. Using the results obtained until now, the 
iterative algorithm for an agent i at iteration k+1 is: 
 

xi(k+1) = xi(k) – αi(k)di(k) (13)
 
where αi(k) is the size of the step used by agent i and 
di(k) is a subgradient of agent’s i objective function 
at xi(k). 

4.2 Optimization of the Multi-agent 
System 

A global optimization means that a vector x* 
representing common resources to all agents, 
minimizes the sum of cost functions fi(x*) of each 
agent i. Initially, before a new optimization cycle 
begins, each agent may have different values for its 
vector x. However, the size of the vector and the 
resource or physical meaning of each element in the 
vector is common to all agents. 

An algorithm shown to converge for optimizing 
multi-agent systems (Nedic, Ozdaglar, 2009), uses 
the subgradient method shown in formula (13), but 
with the difference that at each step k, an agent 
combines its resource vector with a weighted value 
of the resource vectors of all other agents. For an 
agent i, its weight relative to an agent j at iteration k 
is Rkw j

i ∈)( . Weights are normalized 1)(
1

=∑
=

M

j

j
i kw  

for each agent i and each iteration k. With this 
change, formula (13) becomes: 

)()()()()1(
1

kdkkxkwkx i
ij

M

j

j
i

i ⋅−⋅=+ ∑
=

α  (14)

The index j ranges over all M agents. As in 
relation (13), αi(k) is a scalar being the step size 
used by agent i and di(k) is a vector in Rn, the 
subgradient of agent’s i objective function at xi(k).  

While the weights in the work of Nedic and 
Ozdaglar (2009, p. 49) uses a concept of agents 
close to each other, in this work we use information 
about shared ontologies and EfA relations described 
in (7) and Figure 1.  

4.3 Optimization in the Presence of 
Ontological Communication 

The relative weight of agent i to agent j, )(kw j
i , 

shows how “close” resources of the two agents are. 
Resources can be “close” even when their physical 
nature is very different.  

Using ontologies, as shown in relations (3)-(7) 
and Figure 1, an agent can determine which 
resources are used as these are mapped to 
ontologies. As agents act continuously, the weights 

)(kw j
i change to reflect that some other set of 

resources are currently used.  
The resource vector is a vector x ∈ RN, so it 

contains as components only numerical, real values. 
In the chain of relations RelS → Tν → ZL, 
information from sensors are interpreting perception 
relations RelS, which are determining which 
symbols in Tv have the value True, which are 
determining which ontological concepts are 
identified. When an ontological concept is 
identified, it means all its properties are considered 
to hold. 

It is important that at each new symbolic 
perception, the corresponding ontology is shared 
with other agents. Some of the previous resources 
will still be used while some new are going to be 
used. The choice of the weights )(kw j

i must reflect 
these transitions. 

Thus, to find the weight factor among agents 
means determining a concept of distance among 
ontologies. One definition for distance uses a tree-
ontology metrics: a distance using a formal 
representation of the ontology, by a measure of the 
path length between concepts. According to this 
measure, if c1 and c2 are two nodes in a formal 
representation of the ontology, l is the shortest path 
between the concepts and h is the depth of the 
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deepest concept subsuming both concepts, then the 
distance between c1 and c2 is 
 

hkhk

hkhk
lk

ee
eeeccsim

22

22
1)2,1( −

−
−

+
−

⋅=  (15) 

 
(k1 and k2 are scaling parameters for the shortest path 
vs. the depth) (Debenham, and Sierra, 2008). This 
type of measure can be done for asserted ontologies.  

Another style of metrics is based on set-theoretic 
principles, by counting intersections and unions of 
ontological concepts. Best known is Tversky’s 
similarity measure between two objects a and b and 
with properties (feature sets) A and B: 
 

||)),(1(||),(||
||),(

ABbaBAbaBA
BAbas

−−+−+∩
∩

=
αα

 
(16)

where |.| is the cardinality of the set, minus is the set 
difference and α(a,b) in the interval [0,..,1] is a 
tuning factor that weights the contribution of the 
first reference model (Tversky’s similarity measure 
is not symmetrical).  

Besides Tversky’s measure, similarity measure 
functions available in most scientific mathematical 
libraries are, for example Cosine, Dice, Euclidian, 
Manhattan or Tanimoto.    

The algorithm for using any of the similarity 
measures above to determine the weight between 
two agents is the following: 
1. Generate the set of all ontological properties (both 
numerical and non-numerical) of agent i as a union 
of all ontological properties valid at iteration k. Let 
this set be A and the cardinality of the set be |A|; 
2. Generate in the same manner the set of all 
ontological properties for agent j; let this set be B 
with cardinality |B|; 
3. Compute the cardinality of the intersection, union, 
differences, symmetric difference, as needed by the 
selected similarity formula; 
4. Compute the similarity index. The resulting value 
is the weight )(kw j

i . 

5 EXAMPLE 

To demonstrate the weighted method we present an 
example with a cooperation multi-robot system used 
in supermarket supervision. Two of the robots in the 
system have both common and distinct sensors. 
Robot 1, Ro1, has sensors (see relation (1)): 
Distance = Se(1,1); Shape (cube, cylinder, sphere) = 

Se(1,2); Dimensions (length, width, height, 
diameter) = Se(1,3); Temperature = Se(1,4); Colour 
= Se(1,5). 

The second robot, Ro2, has sensors to obtain 
information for: Distance = Se(2,1); Shape = 
Se(2,2); Dimensions  Se(2,3); Weight = Se(2,4). 

Combining Ro1 sensors information, we obtain 
possible perception relations (see relation (2)), e.g.: 
Re([Se(1,1), Se(1,2), Se(1,3)], 1) – for a 
combination of Distance, Shape and Dimension and  
Re([Se(1,1), Se(1,4), Se(1,5)], 5) – for a 
combination of Distance, Temperature and Colour. 

These perception relations have associated 
symbolic perceptions (see relation (3)), as shown in 
Table 1. 

Table 1: Symbolic perceptions Ro1. 

Index Re Perception Relation Re 
Tv 

(symbol) 
1 Distance < 10m AND Shape = 

Parallelepiped AND Dimension > 
10m x 2m x 2m 

shelf 

2 Distance < 5m AND Shape = 
Parallelepiped OR Cube AND 
Dimension < 1m x 1m x 0.5m 

box 

3 Distance < 5m AND Shape = 
Sphere AND Dimension < 1m 

ball 

4 Distance < 5 m AND Shape = 
Sphere AND Dimension < 0.5m 

balloon 

5 Distance < 50m AND 
Temperature > 2000C AND Colour = 
Red OR Orange 

fire 

6 Distance < 10m AND 
Temperature > 500C AND Colour = 
White OR Yellow 

lamp 

A similar computation for robot 2 gives the 
results in Table 2. 

Table 2: Symbolic perceptions Ro2. 

Index 
Re 

Perception Relation Re 
Tv 

(symbol)
1 Distance < 10m AND Shape = 

Parallelepiped AND Dimension > 10m x 2m 
x 2m 

shelf 

2 Distance < 5m AND Shape = 
Parallelepiped OR Cube AND Dimension < 

1m x 1m x 0.5m AND Weight > 3 kg 

box 

3 Distance < 5m AND Shape = 
Parallelepiped AND Dimension < 1.5m x 

0.5m x 1m AND Weight < 3 kg 

cart 

We have now two sets of symbols for the two 
robots (agents): P={shelf, box, ball, balloon, fire, 
lamp} and Q={shelf, box, cart}. We compute the set 
operations required e.g. using the “dice” similarity 
measure:  
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bothABonlyBonlyA
bothABBAsimdice ⋅++
⋅

=
2

2),(  

|P∪Q| = |{shelf, box, ball, balloon, fire, lamp, 
cart}| = 7; |P-Q| = |{ball, balloon, fire, lamp}| = 4 
and |Q-P| = |{cart}| = 1. So the weight 2

1w  between 

agent 1 and 2 is: 73,0
7214

722
1 =

⋅++
⋅

=w . 

The full matrix of weight is computed in this 
fashion for all agents. 

The example is using three agents with three 
different cost functions of type 2

2
2
1)( BxAxxf += , 

with parameters from Table 3. 

Table 3: Agents cost functions. 

Agent A B Init vector 
Agent 1 0.5 2.5 [1 3] 
Agent 2 1.0 4.0 [3 6] 
Agent 3 3.0 1.0 [4 5] 

Figure 4 shows that indeed vectors converge 
towards the intended minimum value [0 0]. 
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Figure 4: Convergence results. 

The relation between the convergence precision 
and step size is shown in Figure 5. 

 
Figure 5: Convergence precision vs. step size. 

An optimum step size is in the range 0.6 – 1; 
outside this range, the convergence precision 
decreases. 

6 CONCLUSIONS 

This paper capitalizes on recent results showing 
convergence of optimization in distributed agent 
applications. The optimization is based on 
establishing weights between agents, such that a 
weighted recursive computation shown in formula 
(14) gives a shared optimal resource allocation. This 
approach is appropriate for cooperative multi-robot 
system. 

The paper’s contribution is to demonstrate that a 
natural approach to compute a “distance” (the 
weight) among agents that exchange ontologies 
among them is the degree of shared ontologies the 
agents are using at the current computation step. 
This allows both numerical and symbolical 
ontological concepts to be used by set-theoretic 
similarity measures. 
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