
FROGLINGO 
A Monolithic Alternative to DBMS, Programming Language, Web Server 

and File System 

Kevin H. Xu, Jingsong Zhang and Shelby Gao 
Bigravity Business Software LLC, U.S.A. 

Keywords: Total recursive functions, Computability, Productivity, Data model, Programming language, DBMS, Data 
exchange, Access control, Web server, File system.  

Abstract: Application software started with a monolithic architecture in the 1960s, i.e., a single executable file for the 
entire application. For better productivity in software development, software application in a typical 
corporate environment today consists of multiple components including off-the-shelf products. Froglingo is 
a unified solution for database management and programming language. It is an alternative to the 
combination of software technologies including DBMS, programming language, web server, and file 
system. The Enterprise-Participant (EP) data model, Froglingo without variables, is a computer language 
equivalent to a class of total recursive functions. It brings the monolith back to application software. In this 
paper, we show that Froglingo is a monolith and demonstrate that this monolith with the EP data model 
improves the productivity in both software development and software maintenance. 

1 INTRODUCTION 

A typical database application system in a corporate 
environment today needs DBMS (such as Oracle and 
MySQL), programming language (such as Java and 
C#), and middleware components including web 
servers (such as Websphere and WebLogic), data 
exchange tools (such as Hibernate and LINQ), and 
centralized authentication tools for multiple web 
applications (such as IBM TAM and RSA 
ClearTrust). With the combination of the current 
technologies, we have made limited progress in 
effectively and efficiently developing and 
maintaining software applications (Loucopoulos et 
al., 2006). 

Froglingo (Xu and Zhang, 2010) is a unified 
solution for software development and maintenance, 
and an alternative to DBMS, programming 
language, file system, and web server. It is a 
“database management system (DBMS)” to store 
and to query business data; a "programming 
language" to support business logic; a "file system" 
to store and to share files; and a "web server" to host 
multiple applications and to interact with users 
across network. It does more than combine existing 
technologies. It is a single language that uniformly 

expresses both data and application logic, and it is a 
system supporting integrated applications without 
using application-based data exchange component 
and data access control mechanism. 

The EP (Enterprise-Participant) data model is at 
the centre of Froglingo. It is semantically equivalent 
to a class of total recursive functions (Xu et al., 
2010). The equivalence for a data model dictates that 
the EP data model is nothing but high-order 
functions and the ordering relations among the 
functions (Xu et al., 2010). 

Representing software applications in high-order 
functions and their ordering relations is not only 
applied to business data, i.e., finite data, by using the 
EP data model, but also applied to business logic, 
i.e., infinite data, by using Froglingo, the extended 
system having variables beyond the EP data model 
(Xu, 1999).  

It is not surprising that Froglingo is a 
programming language, i.e., a Turing-machine 
equivalent system reaching the full capacity of what 
a computer can do (Xu, 1999). What makes 
Froglingo unique is the high-order functions as the 
sole objects in representing software applications. 
The uniformness of the managed objects leads to 
Froglingo’s opportunity of being a monolith in 
software architecture. Being claimed as a monolith, 

247
H. Xu K., Zhang J. and Gao S. (2010).
FROGLINGO - A Monolithic Alternative to DBMS, Programming Language, Web Server and File System.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 247-252
DOI: 10.5220/0002923202470252
Copyright c© SciTePress



 

Froglingo is an off-the-shelf product, i.e., a single 
executable file, and is self-sufficient in software 
development and maintenance. Being worth as an 
alternative, Froglingo is expected to be more 
productive than the traditional technologies. 

In this paper, we analyze the individual 
components of the traditional technologies, identify 
how the equivalent functions of the components are 
supported in Frolingo, and conclude with the 
feasibility of the monolithic architecture of 
Froglingo.  

To facilitate the discussion in this paper, we 
briefly introduce Froglingo in Section 2. From 
Section 3 to Section 7, we discuss the components of 
the traditional technologies and identify where the 
equivalent functions of the components go in 
Froglingo. Through the discussion, we demonstrate 
that Froglingo is monolithic in system architecture 
and suggest that it is more productive in software 
development and maintenance. In the conclusion, we 
reiterate an objective view on the easiness of 
computer language to strengthen the suggestion that 
the monolith Froglingo is more productive. 

2 FROGLINGO 

In traditional data models, an entity is either 
dependent on one and only one other entity, or 
independent from the rest of the world. The 
functional dependency in relational data model and 
the child-parent relationships in hierarchical data 
model are the typical examples. This restriction, 
however, doesn’t reflect the complexities of the real 
world that are manageable using a computer. The EP 
(Enterprise-Participant) data model suggests that if 
an entity is dependent on others, it precisely depends 
on two other entities. Drawing the terminologies 
from the structure of an organization or a party, one 
depended entity was called enterprise (such as 
organization and party), the other called participant 
(such as employee and party participant), and the 
dependent entity called participation. An enterprise 
consists of multiple participations. Determined by its 
enterprise and its participant, a participation yields a 
value, and this value in turn is another enterprise. 

The EP data model is the core of Froglingo. It 
establishes the entire semantic space for practical 
software applications. Variable is a way of using 
finite expressions for the (infinite) semantics 
established in the EP data model. It is intended to be 
a supplement semantically to the EP data model 
although it unfortunately brings non-termination 
processes into Froglingo (Xu et al., 2010). 

2.1 EP Data Model 

The core concepts are terms, assignment, database, 
normal form, and reduction. 

A term is a constant, an identifier, or a pair of 
parenthesized terms, i.e., 
• If T is a constant, then T is a term, 
• If T is an identifier, then T is a term, 
• If T1 and T2 are terms, then (T1 T2) is a 

term. 
Integers, real numbers, timestamps, and strings are 
constants. In addition, files, as long as not 
embedding Froglingo expressions, are also 
constants. For example, 3.14, ‘5/2/2009’, 
“any strings”, and a file content at operating 
system level are all constants. Identifiers are the 
tokens to represent high-order functions. The 
examples are an_id, salary, Mike, and 
www.aclient.com. 

A term is used to express data, to embed 
relationships between data, and to serve as a name in 
data communications. The examples are 3.14, 
Mike, (Mike Salary), ((country state) 
county), and (tax (Mike salary)).  

When a term consists of an ordered pair of two 
other terms, it is called a combinatory term, 
abbreviated as comb-term. The first term of a comb-
term is called the left-term; and the second term the 
right-term. For example, the comb-term (Mike 
salary) has Mike as the left-term and salary 
as the right-term. 

If the right-term of a comb-term is not another 
comb-term, the parentheses surrounding the term 
don't have to be written. For example, ((country 
state) county) is equivalent to (country 
state county); and ((a b) (c d)) is 
equivalent to (a b (c d)). 

A term can be assigned with a value. An 
assignment is a state that a term takes another term 
as its value. For example, (Mike salary) = 
2000, 2 = 3, and a = b. Given an assignment, 
the term at the left side of the symbol ‘=’ is the 
assignee; and the term at the right side the assigner 
(also called value). 

A database is a finite set of terms and 
assignments. To make a database meaningful, the 
terms and the assignments in a database must satisfy 
the following conditions: 
• A constant cannot be an assignee, and cannot be 

a left-term,  
• The right-term of a comb-term appeared in an 

assignee must not have an assigner; and 

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

248



 

• Assignments cannot form a circle, i.e., if there is 
a sequence of assignments: M0 = M1, M1 = 
M2, …, Mn-1 = Mn, Mn must not be identical 
to M0. 

As an example, we may have the following database 
for a school administration: 
SSD John SSN = 123456789; 
SSD John birth = ‘6/1/1990’; 
SSD John photo.jpg = …;  

/* a file is a binary stream*/; 
College admin (SSD John) enroll =  
 ‘9/1/2008’; 
College admin (SSD John) Major =  
 College CS; 
College CS CS100 (College admin (SSD 
John)) grade = “F”; 

The normal form of a term is the final form, i.e., 
the value, reducible from the term. An arbitrary term 
can be reduced to its normal form. Here are a few 
examples of the reduction process: 
SSD John SSN  123456789; 
College CS CS100 (College admin (SSD 
John)) grade  “F”; 
College CS CS100  College CS CS100; 
College admin (SSD John) Major CS100  
College CS CS100; 

In EP data model, we say that a comb-term 
functionally depends on its left-term because the 
existence of the comb-term depends on the existence 
of its left-term in a database. Similarly, we say that a 
comb-term argumentatively depends on its right-
term. A database is ordered as a tree structure either 
under the functional dependency or under the 
argumentative dependency. 

The EP data model has built-in operators for the 
dependencies. For example, we have SSD {=+ 
SDD, SSD John {+ SSD (or equivalently SSD 
John {=+ SSD), and SSD John birth {=+ 
SSD. 

Pre-ordering relations (Xu et al., 2010) are the 
additional relations existing among high-order 
functions and lead to the corresponding built-in 
operators in the EP data model, e.g., (=+, (=-, and 
(=, which are not further explained here. 

2.2 Variables 

A variable in Froglingo is represented by an 
identifier preceded with the symbol $. For example, 
$a_variable, and $student. A variable is a term too. 
To be in a database, a variable must satisfy the two 
conditions:  

• If a variable appears in an assigner, it must 
appear in assignee; 

• A variable cannot be a left-term in an assignee. 
With the addition of variables, we can have the 

following valid assignments in database:  
fac 0 = 1;  
fac $n = ($n * (fac ($n - 1)));  

Syntactically, the first assignment is for finite 
data and the second for infinite data. However, they 
are managed together, i.e., both are stored physically 
together in the same data structure; and both can be 
updated with the same manner. For example, one 
can issue the expression: delete fac;, which 
removes both assignments from database. 

Semantically, the two assignments represent the 
factorial function and they are equivalent to a 
database having infinite assignments in the EP data 
model: fac 0 = 1; fac 1 = 1; fac 2 = 2; 
fac 3 = 6; …;. 

A variable can have a range to prevent unwanted 
data from being the instances of the variable. For 
example, the factorial function can be redefined to 
allow integers only being the instances of the 
variable $n: 
fac 0 = 1; 
fac $n:[$n isa integer] =  

($n * (fac ($n - 1))); 
Data, having variables or not, is equally 

applicable to the built-in operators in Froglingo, and 
produces the meaningful values according to the 
semantics of the data. Here is an example: select all 
the integers that are less than 7 and applicable to the 
factorial function fac: 
select $x where fac $x != null  

and $x < 7; 

Please note that variables bring non-termination 
process to Froglingo. It is users’ responsibility to 
avoid it. 

To express the multiple actions triggered by a 
single event, Froglingo adopts the sequential order 
of the statements in a traditional programming 
language, i.e., a statement is not executed until its 
preceding statement is executed in a procedure of an 
application program. For example, transferring 
money between bank accounts is expressed in 
Froglingo as: 
transfer $m =  
 (update acnt2 = (acnt2 - $m)),  
 (update acnt1 = (acnt1 + $m)); 

provided that the two accounts were established 
earlier: acnt1 = 100;, and acnt2 = 300;. 

FROGLINGO - A Monolithic Alternative to DBMS, Programming Language, Web Server and File System

249



 

3 DBMS AND DATA MODELING 

The relational data model and the hierarchical data 
model, and the conceptual Entity-Relationship 
model, from which the traditional commercial 
database management systems (DBMS) are 
established, are the special cases of the EP data 
model. In this section, we use examples to 
demonstrate it. 

The employees table in the relational data model: 

Employees 
ID Name salary 
1 “Jone” 50000 
2 “Mary” 60000 

can be presented in Froglingo as: 
employees 1 name = “Jone”; 
employees 1 salary = 50000; 
employees 2 name = “Mary”; 
employees 2 salary = 60000; 

The query of finding all the employees whose 
salary is greater than 55000 is expressed in 
Froglingo as: 
select $e name, $e salary where 
where $e salary > 55000; 

A car consisting for its body and its engine (and 
the engine further consisting for its piston and its 
cylinder), that is traditonaly managed by using the 
hierarchical data model, can be expressed in 
Frogingo as: 
car body; 
car engine piston; 
car engine cylinder; 

The query: retrieve all the parts and assembles 
under the car is expressed in Frogling: 
select $p where $p {=+ car; 

The network-oriented data is the favourite of the 
conceptual model: Entity-Relationship model. It can 
also be presented in Froglingo. Given the directed 
graph: G = {A->B, B->A, B->C, C->D}, as an 
example, one has a Froglingo presentation: 

A B = B; 
B A = A; 
B C = C; 
C D = D; 

A database in the EP data model is a high-order 
function, and all the total recursive (high-level) 
functions can be expressed by the EP data model. 
This is not the case for the relational and the 
hierarchical models. The relational can only express 
functions of level 3 (Hillebrand and Kanellakis, 
1994); and the hierarchy data model can express 

only those functions expressed in the EP data model 
where the right-terms are not comb-term. For 
example, the term College admin (SSD John) 
cannot be expressed in the hierarchical data model. 

4 APPLICATION PROGRAM 

The main function of application programs, i.e., 
application-oriented executable files in a traditional 
programming language, is to express infinite data in 
finite expressions. Froglingo has its variables to 
counter this function as discussed in Section 2.2.  

A traditional programming language is also used 
to express finite data and the queries on the finite 
data. A typical example is to express the following 
query: Is there a path from vertices A to vertices D 
in the directed graph given in Section 3. The EP data 
model has the following  expression for it: D <=+ 
A;. 

Placing data access controls and generating web 
page contents are also application-specific. We will 
discuss them in Sections 7 and 5 correspondingly 
and conclude that all of them are managed as data in 
Froglingo. 

Historically, many efforts have been made to 
couple DBMS and programming together as 
discussed in Section 2. However, it was concluded 
that there was a difficulty, called “impedance 
mismatch”, when one wanted to manage relational 
data model and programming language together 
(Ohori et al, 1989). In other words, the clear obstacle 
is the lower expressive power of traditional data 
models and the lower productivity of traditional 
programming languages in representing finite data 
(Xu et al., 2010). A stored procedure in relational 
DBMSs appears to be a “monolith” physically. But 
it retains two exclusive languages, i.e., a data model 
and a programming language. There are many other 
attempts for a monolith with high productivity. 
Without a data model equivalent to a class of total 
recursive functions, however, none of them can get 
rid of the issues raised from the traditional 
technologies. Please reference (Xu et al., 2009) for 
more discussion on this topic. 

5 WEB SERVER 

In addition to DBMSs, application programs also 
need web servers to communicate with web 
browsers on networks.  A web server is to perform 
the common task of software applications: parsing 

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

250



 

HTTP requests and generating HTTP responses. A 
web server as a off-the-shelf product is at the front-
end facing the networks while a DBMS as another 
off-the-shelf product is at the back-end. 

When the functions of the application programs 
are expressed as data and the physical executable 
files for the application programs disappear from the 
architecture of Frogingo, the function of web servers 
is further supported by Froglingo itself, and 
therefore the web servers as off-the-shelf products 
are also eliminated from the architecture of 
Froglingo . See a graphical view of the evolution in 
the diagram of Section 8 that compares the software 
architectures of the traditional technologies and 
Froglingo. 

When we conclude that the application programs 
and the web servers are eliminated from the 
architecture of Froglingo, we assume that the 
function of generating web page contents, that is 
application-specific, is expressed as data in 
Froglingo as well. Here is an example to show how 
Froglingo stores and generates web pages. Froglingo 
accepts a HTML file (named as store.html) 
embedded with Froglingo expressions: 
<html> 
<body> 

Welcome to my store <br> 
The price of apple is  
<frog>storage apple price</frog>  
<br> The price of milk is  
<frog>storage milk price</frog>  
<br> 

</body> 
</html>; 

The contents between the pairs of tags <frog> 
and </frog> are Froglingo expressions. When the 
file is uploaded to Froglingo database, it is stored as 
a set of assignments: 
store.html 1 = “<html> 
<body> 

Welcome to my store <br> 
The price of apple is ”; 

store.html 2 = storage apple price; 
store.html 3 =” 

<br> The price of milk is “; 
store.html 4 = storage milk price; 
store.html 5 =” 

<br> 
</body> 
</html>”; 

When the HTML file is sent to the web clients as the 
responses, the terms originally between the pairs of 

tags <frog> and </frog> are evaluated and 
replaced with their normal forms.  

A HTML file embedded with Froglingo 
expression in database is uniformly stored as data 
and can be as complex as a business application 
needs. For other relevant features including 
recursively set-oriented query expressions and 
parameters passing with HTML files, please see the 
reference (Xu and Zhang, 2010). 

6 DATA EXCHANGE AGENT 

A typical application software in the traditional 
technologies stores data in a relational DBMS, 
processes data with the objects (user-defined data 
structures) of programming language, and transfers 
data in a third format (data communication protocol, 
such as XML). Years ago, the data parsing and 
conversions between the different data formats were 
done by writing code as a part of application 
program. Now, we utilize off-the-shelf data 
exchange agents (such as Hibernate) to do the 
common task: message parsing and data conversion 
based on application-specific conversion rules 
defined by developers. 

Froglingo uses the single format – the EP data 
model for data storage, data process, and data 
transformation. Therefore, there is no need to 
perform data conversion using an agent. Here is a 
sample data communication in Froglingo by using 
the built-in operator print: 
Print College   

College admin (SSD John) enroll =  
‘9/1/2008’; 
College admin (SSD John) Major =  
College CS; 
College CS CS100 (College admin (SSD 
John)) grade = “F”; 

7 ACCESS CONTROL 

An application program, where a relational DBMS is 
used, also needs to specify data access controls (or 
called user entitlements) against the relational data. 
This is necessary because the data access control, in 
the correspondence of total recursive functions, 
cannot be expressed by the relational data model, but 
by programming language. This becomes no issue in 
Froglingo due to its equivalence to a class of total 
recursive functions. In addition, Froglingo offers a 
set of built-in operators, stemming from the 
dependent relationships, to specify data access 

FROGLINGO - A Monolithic Alternative to DBMS, Programming Language, Web Server and File System

251



 

controls as if a file system specified file access 
controls. 

In an integrated environment such as at a 
corporate level with multiple applications, an off-
the-shelf security product, such as Microsoft Active 
Directory for Windows-based applications, IBM 
Tivoli Access Manager or RSA ClearTrust for web-
based applications, is utilized to coordinate 
corporate level security policies. Given the 
traditional technologies, it simplifies the 
management of data access controls among the 
multiple applications by utilizing a centralized 
database. When the applications in an integrated 
environment establish a trusted relationship and 
communicate with each other in Froglingo, the off-
the-shelf security products don’t have a place in the 
architecture of Frolingo either. 

Application
Business Logic
Access Control

Webpage generator

Web Server
HTTP Parser

APIs

Business
Data DBMS

Froglingo
DBMS

HTTP Parser

Business Data
Business Logic
Access Control

Webpage generator

Data Exchange
Agent

Froglingo System Architecture

Traditional Software Architecture

Legends:

A on-shelf tool

Application Program

Data Storage

 
Figure 1. 

8 CONCLUSIONS 

The functions of the multiple software components 
in the architecture of the traditional technologies 
have never been segregated. In addition to the 
primary copy in DBMS, for example, an employee 
ID discussed in Section 3  may need to be duplicated 
and re-processed in almost every other component, 
i.e., application program, data exchange agent, and 
data access controls.  

Froglingo is a monolith powered by nothing but 
high-order functions. It is a monolith for every 
software application. It is a monolith consolidating 
the multiple components of the traditional 
technologies. 

The consolidation itself improves the 
productivity of software development and 
maintenance. In addition, we have concluded in the 
article (Xu et al., 2010) that Froglingo reaches the 

greatest possible ease when we assumed that 1) a 
data model is easier to use than a programming 
language in the development and maintenance of 
those applications expressible in the data model; 2) 
if one data model is more expressive than another 
data model, the former is easier than the latter in the 
development and maintenance of those applications 
where a programming language is involved. The 
easiness further suggests that Froglingo improves 
the productivity. 

REFERENCES 

G. Hillebrand, P. C. Kanellakis, “Functional Database 
Query Languages as Typed Lambda Calcluli of Fixed 
Order”, ACM SIGMOD/PODS 94. 

P. Loucopoulos, K. Lyytinen, K. Liu, T. Gilb, L.A. 
Maciaszek. “Project Failures: Continuing Challenges 
for Sustainable Information Systems”, Enterprise 
Information Systems VI, 1-8, 2006 Springer. 

A. Ohori, P. Buneman, V. Breazu-Tannen. “Database 
Programming in Machiavelli – a polymorphic 
language with static type inference”. In ACM 
SIGMOD, 1989, page 46 – 57. 

K. H. Xu, J. Zhang, S. Gao. “High-Ordering Functions and 
their Ordering relations”. The Fifth International 
Conference on Digital Information Management, 
2010. 

K. H. Xu, J. Zhang, S. Gao. “An Assessment on the 
Easiness of Computer Languages”. The Journal of 
Information Technology Review, 2010. 

K. H. Xu, S. Gao, J. Zhang, R. R. McKeown. “Let a Data 
Model be equivalent to a Class of Total Recursive 
Functions”. The International Conference on 
Theoretical and Mathematical Foundations of 
Computer Science (TMFCS-10), 2010. 

K. H. Xu, J. Zhang, S. Gao. “Assessing Easiness with 
Froglingo”. The Second International Conference on 
the Application of Digital Information and Web 
Technologies, 2009. 

K. H. Xu, J. Zhang. “A User’s Guide to Froglingo, An 
alternative to DBMS, Programming language, Web 
Server, and File System”. 
http://www.froglingo.com/froglingoguide10.pdf, 
January 2010. 

K. H. Xu. “EP Data Model, a Language for Higher-Order 
Functions”. Manuscript unpublished, March 1999. 
http://www.froglingo.com/ep99.pdf. 

K. H. Xu and B. Bhargava. “An Introduction to 
Enterprise-Participant Data Model”. The Seventh 
International Workshop on Database and Expert 
Systems Applications, September, 1996, Zurich, 
Switzerland, page 410 - 417. 

 

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

252


