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Abstract: Almost all knapsack-type public key cryptography has been proven unsafe. To solve this problem, more 
secure public key cryptographic algorithms are urgently needed. This article first discusses the basic theory 
of knapsack-type public key and methods that used to attack the knapsack public key. Then, it analysis the 
literature (Wang & Hu 2006, p.2930), and points out the potential defects of its cryptography safety. 
Meanwhile, the article gives out an improved algorithm, and discusses the safety and efficiency of the 
algorithm. The analysis of the algorithm shows that the improved algorithm is better than the original one in 
security. 

1 INTRODUCTION 

There are many insecure factors on the file 
transformation or e-mail business dealings on the 
Internet , the computer security has thus become a 
very important research area.  

But, the key transmission and custody issues 
of symmetric cryptography can not be solved 
today. 

Public key encryption algorithm separates the 
public key and the private key, so that it 
successfully resolved the key transmission and 
custody issues. However, the speed of public key 
cryptographic algorithm is a serious constraint 
bottlenecks in their applications (Yasuyuki, 
Masao & Takeshi 2008, p. 357). 

In response to these issues, this article did a 
useful exploration and research on the fast public 
key encryption system and the chaotic system 
used in the public key algorithm. 

2 THE CORRELATION THEORY 
OF KNAPSACK PUBLIC KEY 

Description of knapsack problem: Given a bunch 
of objects with different mass, is it possible if we 
get a portion of these objects and put them in a 
knapsack, in order to make the mass of the 

knapsack equals to a given value? 

2.1 Problem 

The solution to the super increasing knapsack 
problem can be easily found, that compare the 
total mass with the largest number in the sequence, 
if the total mass is smaller than this number, it is 
out of the knapsack; if the total mass is lager than 
this number, and it belongs to the knapsack. Then, 
make the mass of knapsack minus this number, 
and afterwards study the second largest number in 
the sequence. Repeat the process till the end. If 
the total mass becomes 0, then there exists one 
solution, otherwise, there is no solution. Here is a 
simple flow chart show in Fig1: 

 

Figure1: The flow chart which solve the Super-increasing 
sequence of Knapsack. 
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At present, most of the public key algorithms 
are constructed based on sum of the set problem, 
due to that this structure is simple, with lower 
complexity in computation, and can efficiently 
solve the problem of the efficiency of algorithm. 
Merkle-Hellman encryption algorithm in 
Knapsack has many deformations. Besides, there 
is also a Chor-Rivest encryption in Knapsack, 
which is the only known public encryption 
algorithm without using the AB mod form to 
disguise as a easy sum of the set problem.  

2.2 Decipher of Knapsack Public Key 
Algorithm 

The strongest attack to the encryption algorithm 
in knapsack that known is L3 -Lattice base 
reduction algorithm which was first proposed by 
A.Shamir and had been improved by many 
scientists. This method reduces the subset sum 
problem by making it into to find a short vector in 
a lattice. 

Definition of subset sum density: Let us 
suppose that },,,{ 21 sssS n is a Knapsack 
set. The density of Knapsack set is defined as  
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Then we call Rbbb n
n,,, 21   a set of 

reduction bases of lattice L. And the L3 -lattice 
base reduction algorithm gradually constructs a 
set of reduction bases bbb n
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through bbb n,,, 21  . It is an algorithm of 
polynomial time. 

  Here is the method that cracks the knapsack 

problem using the L3 -lattice base reduction 

algorithm. Let us suppose Csss n ,,,, 21  are 

positive integers, now we solve the 0-1 vector 
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, repeat Step 1 to Step 3,  and 

get the solution ）（ nxxxx ,,, 21  , then the 

solution of the original knapsack problem 
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is )1,,1,1( 21 xxx n  . 
Because the knapsack set density of 

super-increasing sequence in knapsack must less 
than 1, or there will be multiple solutions. And 
when the knapsack set density of super-increasing 
sequence in knapsack 0.94d  , the success rate of 
cracking the knapsack using the L3 -lattice base 
reduction algorithm is very high. Lagrias-Odlyzko 
and Brickellwill both independently proved that it 
is completely possible to crack the knapsack 
problem when 64.0d (Fleshwound 2009.10). 
For the multiple iterated knapsack encryptions, 
each time it iterated will lower the density of 
knapsack set, when it reaches a certain times, the 
success rate of the L3 -lattice base reduction 
algorithm be greatly improved. So, it is not 
advisable to use the multiple iterated methods.  

3 IMPROVE THE ALGORITHM 

3.1 Analysis of the Original Algorithm 

In the literature (Wang & Hu 2006, p.2930), the 
author proposed a tractable knapsack problem. 

The author used this knapsack problem to 
design the limit of the door knapsack public-key 
algorithms. The basic idea is to produce backpack 
sequence which meets the above conditions. 
Certain degree of transformations is used for the 
sequence, such as modular multiplication 
transformation. And such sequence after the 
transformation can be considered as the public 
key. Through the author's analysis, the efficiency 
and safety of this public key algorithm were very 
high. 

But, we need to explain that, first, the essence 
of tractable knapsack problem, which is proposed 
by the author, is still based on the 
super-increasing knapsack problem, nothing but 
the author conceals the super-increasing sequence 
di. There are no essential differences between 
releasing the knapsack as a public key directly 
and MH public key algorithm; second, it is not 
easy for the algorithm to produce the knapsack 
vector. The author puts forward a method: pick up 

(repeatable) n numbers g1，…gn, randomly from 
U= {14, 17,19,22,23,26,28,29,30,31,34,37,38, 39,  

40,41,42,43,44,46,47,48}, let
n

i kk i
d g


 ,  

then randomly select n-1 numbers h2，…，hn 
which are all relatively prime to g1，…gn. Let 
a1=d1，ai=hidi，i=2 , …, n. The a1 we get meets 
the requirements. But, the author uses octal 
plaintext when construct the algorithm (That is 
why the elements of U are no larger than 49), 
because we select gi from U only, the variation of 
the parameters is limited, this may bring 
potentially risk to secret key. 

3.2 The Flow Chart of the Improved 
Algorithm 

 

Figure 2: The flow chart of the improved algorithm. 

3.3 Produce the Secret Key 

Select knapsack vector S=(s1,…,sn) randomly, 

which meets the requirements that d1=s1, di=gcd(si, 

di-1), dn=gcd(sn, dn-1)=1, select a random 

replacement f to replace the knapsack vector S, 
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and we get the replaced knapsack vector S`. 

Randomly select vector a=( a1,…,an), 

b=( b1,…,bn), which makes s`i = ai + bi. Randomly 

select mode number p> 1

n
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i

a
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 , q> 1

n

i

i

b
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, and 

produce secret parameters v, w which meets the 

requirements gcd(v,p)=1,gcd(w,q)=1, that makes 

v and w have inverse element of modulo p and 

modulo q. 

  Let αi = v ai (modp), βi = w bi (modq) 
The public key and private key we get are as 
follows: 

Public key: α=（α1，…，αn），β=（β1，…，βn） 
Private key: s，v，w，p，q，a，b，f 

4 ANALYSIS OF ALGORITHM 

4.1 Computational Complexity 
Analysis 

Let us suppose the binary length of the plaintext 

M is k, the binary length of vector α and β are 

approximately k. We need to calculate Ep = 

1

n

i i

i

m
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  ，Eq = 

1

n

i i

i

m 
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  to  encrypt. But the 

computation of encryption is linear, so the 
computation’s complexity of encryption is 0 (k). 
The complexity of encrypt time is 20 (k). We 
know that the complexity of encryption’s 
computation of the traditional public key 
encryption algorithm RSA(Rivcs, Gau & 
Adlcman 1978, p.120)，ElGamal(Guan 1987, p.51) 
are 3 powers. 
  During the decryption process, the improved 

algorithm needs to calculate Mp = 

1 (mod )v Ep p and Mq= 1w q(mod q)E
，and 

respectively used one degree modular 

multiplication and one degree computation of 

inversion. That is to say, the complexity of this 

section is O (k2). Besides, according to 

1
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we also need to make n-times multiplication and 
n-times division, the complexity of these 
computations is one degree, which is O (n k). In 
addition, we also need to carry out n-times 
modular multiplication, whose complexity is O (n 
k2 ). Finally, the complexity of f’s inverse 
replacement is linear, and it can be ignored. The 
strict complexity of decryption’s computation is O
（nk）+ O（k2）+ O（n k2）. So, the complexity 
of decryption’s computation is O（n k2）, which 
is still smaller when it compared to O(k3). 
Meanwhile,  the complexity of the improved 
decrypt computation is at the same index level of 
that in the original text. 

4.2 Security Analysis 

1) Secret key security: according to s = a + b，at 
least we can randomly get a complete random 
sequence from a and b. Assume that a is generated 
totally randomly, then b = s-a. Public key α and β 
are created from two irrelevant modules. A is 
completely random, which implies that α and β 
are completely random sequence for the attacker. 
We can say that the attacker can not get s through 
α and β. Then we can avoid the potentially risk 
that the knapsack vector would be released 
directly as a public key. 

2) Defend low-density subset sum attack (Coster, 

Joux, LaMacchia, et al 1992, p.111): 

In the knapsack problem, the knapsack density of 
knapsack vector S is usually defined as the 
followings: 

2max(log s |1 )i
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According to the L3 – lattice base reduction 
algorithm, if this algorithm can always get a base 
that includes the shortest non-zero lattice vector, 
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and when d<0.9408, the rate of effective attack is 
very high. The attack can use lattice as follows:  
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Among them, select the suitable integer m, 

satisfies m>
1

2
n . The dimension lattice of the 

matrix is (n+ 1), S=
1

n

i i
i

s x

 . Considering the 

infinite extension: Let’s make it that the size of si 

is L bits, suppose the size of a is similar with s, 

which is also L bits. According to p> 1

n

i

i

a



, the 

size of modulus p is L + log2 n, when L>n-log2 n, 

then d>1, that is Cp can defend LDA attack; For 

the similar reason, Cq can defend LDA attack. 

4.3 Some Comparison to the Original 
Algorithm 

1) The original algorithm has some restrictive 

conditions to produce a certain backpack vector: 

select n parameters from U = (14,17,19, 

22,23,26,28,29,30,31,34,37,38,39,40, 41,42,43,44, 

46,47,48) to further generate backpack vector. 

This brought the key space so small, although  

the parameters selected from the U should be 

multiplied with the random  parameter h before 

it's used to be the knapsack vector S, it can not be 

eliminated that the key constraints on U, because 

the elements of S will be the multiples of the 

corresponding elements of U. In the improved 

algorithm, knapsack vector is generated from the 

multiplication of two completely random numbers, 

so the key security issues of original algorithm is 

well solved. 

2) The improved algorithm is based on the ease of 

solution of the original algorithm knapsack 

problem, so the efficiency of encryption and 

decryption are equal to the original algorithm. 

There is a problem that the speed of decryption is 

slow in this algorithm and the original one. We 

can see the efficiency between this algorithm and 

the traditional RSA(Rivcs, Gau & Adlcman 1978, 

p.120) and other mode refers to operation is more 

or less the same, which is made by the complexity 

of making knapsack problem. In addition, the 

original algorithm generates knapsack vector 

quickly at the expense of the key security. 

Although the security of the key algorithm has 

been required higher in the improved algorithm, 

the terms 0 ≤ x ≤ k-1 should be met still, so there 

are still some limitations during the key 

generating. 

5 CONCLUSION AND PROSPECT 

This paper introduces the basic theory of 

knapsack-type public key cryptography, and the 

strongest attacking method to this public key 

cryptography. Then, the article analysis the 

literature(Wang & Hu 2006, p.2930), pointing out 

the potential defects of the security of secret key, 

and gives the improved method, discusses its 

safety and efficiency, and finally obtains the 

conclusion that on the premise of same efficiency, 

the safety is better than the original algorithm. 
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