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Abstract: Autonomous learning of objects using visual information is important to robotics as it can be used for local
and global localization problems, and for service tasks such as searching for objects in unknown places. In
a robot team, the learning process can be distributed among robots to reduce training time and produce more
accurate models. This paper introduces a new learning framework where individual representations of objects
are learned on-line by a robot team while traversing an environment without prior knowledge on the number
or nature of the objects to learn. Individual concepts are shared among robots to improve their own concepts,
combining information from other robots that saw the same object, and to acquire a new representation of an
object not seen by the robot. Since the robots do not know in advance how many objects they will encounter,
they need to decide whether they are seeing a new object or a known object. Objects are characterized by
local and global features and a Bayesian approach is used to combine them, and to recognize objects. We
empirically evaluated our approach with a real world robot team with very promising results.

1 INTRODUCTION both, single robot and robot teams. Learning capa-
bilities can provide robots flexibility and adaptation
The design of robot teams is a very active research do-needed to cope with complex situations. In the con-
main in the mobile robotics community. Robot teams text of robot teams, the most common machine learn-
have effectively emerged as an alternative paradigming approach has been reinforcement learning, where
for the design and control of robotic systems becausethe idea is to learn optimal policies using a set of
of the team’s capability to exploit redundancy in sen- robots to improve the coordination of individual ac-
sing and actuation. tions in order to reach common goals (Asada et al.,
The research on robot teams has focused on de-1994; Mataric, 1997; Parker, 2002; Fernandez et al.,
veloping mechanisms that enable autonomous robots2005).
to perform collective tasks, such as strategies for co-  In this work we use visual information to learn,
ordination and communication (Asada et al., 1994; with a team of robots, descriptions of objects placed
Mataric, 1997); exploration, mapping and deploy- in a particular environment. Learning to recognize
ment (Howard et al., 2006); sensing, surveillance and particular objects in an environment is important for
monitoring (Parker, 2002); and decentralized decision robotics as it can be used for local and global local-
making (Wessnitzer and Melhuish, 2003). In these ization tasks as well as for simple service tasks such
works, a robot team can reduce time to complete a as searching for objects in unknown places. Contrary
complex task that is allocated among its members.  to previous approaches, in our learning setting, the
Despite constant research on the design of robotrobots are not told the number or nature of the objects
teams, very little attention has been paid so far to the to be learned.
development of robot teams capable of learning from  Vision is a primary source of perception in
their interaction with their environment. In addition robotics and provides different features that can be
to their capability for accelerated learning, learning used to classify objects. In general, using a particu-
robot teams can be used to acquire a much richer andar set of features can be adequate for particular tasks
varied information compared to the information ac- but inadequate for other tasks. In this work, objects
quired by single learning robots. are characterized by two complementary features: (i)
Learning is a key issue to achieve autonomy for SIFT features (Lowe, 2004) and (ii) information about

79

Palacios-Garcia A., Mufioz-Meléndez A. and F. Morales E. (2010).

COLLECTIVE LEARNING OF CONCEPTS USING A ROBOT TEAM.

In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, pages 79-88
DOI: 10.5220/0002952800790088

Copyright ¢ SciTePress



ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

the silhouettes of objects. Other features could be information of objects.
used as well, but the main objective in this work is to In the work of Mitri et al. (2004), a scheme for
show the different cases and possible confusions thatfast color invariant ball detection in the RoboCup con-
can arise in the recognition of objects and merging of text is presented. To ensure the color-invariance of
concepts, and how they can be addressed. the inputimages, a preprocessing stage is first applied
Numerous difficulties arise in robot teams when for detecting edges using the Sobel filter, and specific
learning as well as sharing concepts that representthresholds for color removal. Then, windows are ex-
concrete objects. Some of these issues are discussegacted from images and predefined spatial features
by Ye and Tostsos (1996) and include, how do robots such as edges and lines are identified in these win-
represent their local views of the world, how is the dows. These features serve as input to an AdaBoost
local knowledge updated as a consequence of thelearning procedure that constructs a cascade of clas-
robot's own action, how do robots represent the local sification and regression trees (CARTs). The sys-
views of other robots, and how do they organize the tem is capable of detecting different soccer balls in
knowledge about themselves and about other robotsRoboCup and other environments. The resulting ap-
such that new facts can be easily integrated into the proach is reliable and fast enough to classify objects
representation. This article addresses the individual jn real time.
and collective representation of objects from visual Concerning the problem of collective learning of

information using a team of autonomous robots. objects using robot teams there are, as far as we know,
The rest of the paper is organized as follows. Sec- very few works. Montesano and Montano (2003) ad-

tion 2 reviews related work. Sections 3y 4 describe, yess the problem of mobile object recognition based
respectively, the stages of individual learning and col- o, jnematic information. The basic idea is that if

Iectivg learning of concepts. S_ection 5 dt_ascribes OUl the same object is being tracked by two different
experimental results, and Section 6 provides conclu- opots the trajectories and therefore the kinematic in-
sions and future research work. formation observed by each robot must be compati-
ble. Therefore, location and velocities of moving ob-
jects are the features used for object recognition in-
2 RELATED WORK stead of features such as color, texture, shape and size,
more appropriate for static object recognition. Robots

Interesting experiments where physical mobile robots Puild maps containing the relative position of moving
learn to recognize objects from visual information OPJ€CtS and their velocity at a given time. A Bayesian
have been reported. First we review significant work PProach is then applied to relate the multiple views
developed for individual learning, and then we review ©f @n object acquired by the robots.
learning approaches developed for robot teams. In the work of O’Beirne and Schukat (2004), ob-
Steels and Kaplan (2001) applied an instance- jects are represented with Principal Components (PC)
based method to train a robot for object recognition learned from a set of global features extracted from
purposes. In this work objects are represented byimages of objects. An object is first segmented and
color histograms. Once different representations haveits global features such as color, texture, and shape are
been learned from different views of the same object, then extracted. Successive images in a sequence are
the recognition is performed by classifying new views related to the same object by applying a Kalman fil-
of objects using the KNN algorithm (Mitchell, 1997). ter. Finally, a 3D reconstructed model of an object is
Ekvall et al. (2006) used different learning tech- Obtained from the multiple views acquired by robots.
niques to acquire automatically semantic and spatial FOr that purpose, a Shape From Silhouette based tech-
information of the environmentin a service robot sce- Nique (Cheung et al., 2003) is applied.
nario. In this work, a mobile robot autonomously In contrast to previous works, in our method each
navigates in a domestic environment, builds a map, member of the robot team learns on-line individual
localizes its position in the map, recognizes objects representations of objects without prior knowledge on
and locates them in the map. Background sub- the number or nature of the objects to learn. Indi-
traction techniques are applied for foreground ob- vidual concepts are represented as a combination of
jects segmentation. Then objects are representedylobal and local features extracted autonomously by
by SIFT points (Lowe, 2004) and an appearance- the robots from the training objects. A Bayesian ap-
based method for detecting objects named Receptiveproach is used to combine these features and used for
Field Co-occurrence Histograms (Ekvall and Kragic, classification. Individual concepts are shared among
2005). The authors developed a method for active ob- robots to improve their own concepts, combining in-
ject recognition which integrates both local and global formation from other robots that saw the same object,
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and to acquire a new representation of an unnoticed
object. @
&)
3 INDIVIDUAL LEARNING OF
CONCEPTS @) (b) (©

Figure 1: Examples of the silhouette (b) and average silhou-

L . tt f bject (a).
The individual concepts are learned on-line by a robot ette (c) of an object (a)

team while traversing an environment without prior

knowledge on the number or nature of the objects to
learn. The individual learning of concepts consists
of tree parts: object detection, feature extraction and
individual training.

Individual concepts of objects are represented by
Principal Component (PC) over the information about =
the silhouettes of objects and Scale Invariant Features,:igUIre 2: Examples of the SIFT features extracted from a
(SIFT). Learned concepts are shared among robots. set of images and the final set of SIFT features.

3.1 Object Detection an average silhouette, this is added by the robot to a

set of known average silhouettes. After that, the robot
uses PCA to reduce the dimensionality of all average
silhouettes learned to get the PC features that repre-
sent them.

Robots move through an environment and learn des-
criptions of objects that they encountered during na-
vigation. Objects are detected using background
substraction. In this paper we assume a uniform and
static background. We performed morphological o-
perations (closing - erode) to achieve better segmen-Training using Local Features. Each robot ex-
tation. Once an object is detected, it is segmented andtracts local SIFT features of each image of the set of
scaled to a fixed size, to make the global PC featuresimages, and groups them in a final set which contains

robust to changes in scale and position. all the different SIFT features that represent an object.
In Figure 2 we show an example of the SIFT points
3.2 Feature Extraction and I ndividual obtained from a set of images ofvaseand the final
Training set of SIFT points obtained. The PC features and the
SIFT features represent the individual concept of the
The segmented objects are grouped autonomously b>pbserved object.

the robots in sets of images containing the same ob- ]

ject. Robots assume that they are observing to the3.3 Sharing Concepts

same object while it can be detected, and they finish

to see it when they can not detect objects in the cap-The concepts learned by robots are shared among

tured images. Only one object can be detected in anthem to achieve collective learning. This can be done

image at the same time. For each set of images, theoff-line or on-line. In the case of collective off-line

robot obtains an individual concept that represents thejearning the robots share their individual concepts

object. once they have learned all the training objects. On
the other hand, in the collective on-line learning the

Training using Global Features. We applied Prin- robots share their individual concept as soon as a new

cipal Component Analysis (PCA) over the average objectis learned.

silhouettes that are automatically extracted from the

set of images of a particular object. The average pro-

vides a more compact representation of objects and4 COLLECTIVE LEARNING OE

reduces segmentation errors. Figure 1 (a) shows an

object used in the training phase, Figure 1 (b) shows CONCEPTS

its silhouette, and Figure 1 (c) illustrates the average

silhouette obtained from a set of images that representCollective learning of concepts enables robots to

the object of Figure 1 (a). Once the robot has obtained improve individual concepts combining information
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from other robots that saw the same object, and to ac-and| is the index of the distance vector, where the

quire a new representation of an object not seen by themaximum size of the vectaE' is numOb js.

robot. Therefore, a robot can learn to recognize more - The distance valugE' is divided by a maximum dis-

objects of what it saw and can improve their own con- tance value,T hresholdMax determined experimen-

cepts with additional evidence from other robots. tally to obtain a similarity metric also called the pro-

A robot has to decide whether the concept shared bability vectorv,, as shown in formula 3.

by another robot is of a new object or of a previously _

learned concept. A robot can face three possibilities: N dg 3)

coincident, complementary or confused information. A ThresholdMax

The shared concepts are fused depending on the kindf dE! is bigger than thé hresholdMaxvalue, then

of information detected, as described below. the probability will be fixed as shown in formula 4,
which indicates that the projections of the objgand

4.1 Pre-analysisof Individual Concepts the one of the objedtare completely different.

The concept learned by a robot is defined as follows: Vi = ; (4)
R~ humObjs
c{( = {Silf(, Sl FTk'} (1) The value of the SIFT similarity metric also called
the probability vector SIFT at the positiov, is

whereC, is the concepk learned by robot, Sil; is obtained calculating the number of coincident SIFT,
the average silhouette, ai®lF T, is the set of SIFT  ncin, between the individual SIFT conceSliF'Il'i
features that form the conceépt learned by robot, and the individual SIFT concept

In order to determine if a shared concept is pre- SIFTkJ shared by robof. If the numbemc, is big-
viously known or not to a robot, it evaluates the pro- ger than an average of coincidences determined ex-
babilities that the PC features and SIFT features areperimentally,AverageCointhen the probability will
previously known by the robot. The probability vec- be fixed tovi; = 1.0, which means that both concepts
tors of PC features calculated by rokiotvp, indi-  contain the same local features SIFT. In other case,
cate the probability that a concept shared by robot the probability will be calculated using formula 5.
i ClJ( is similar to the concepts known by robiot -
_Cil, ++,Chumonjs given the global featuresiumOb js S = W;ne(:cﬂn (5)
is the number of concepts of objects known by robot

i. The process to obtain the probability vector PC is _ 1N€ constanAverageCoirrepresents the average
described as follows: of coincidences between two sets of SIFT points of

- A temporal training set of silhouettes is formed by e same object from different perspectives.

adding the average silhouettes of concepts known by

roboti or actual robotsSil;, ..., Sill, ,opje @nd the a- 4.2 Analysisand Fusion of Individual

verage silhouette of the shared conc8it. Concepts

- The PCAis trained using the temporal set of average _ . ] ] ]

silhouettes. The projection of the average silhouettes ThiS section describes how to detect if the shared con-
know by roboi is obtained as a matrix of projections, C€Pt is coincident, complementary or confused, and

matProys The projection of the average silhouette NOW the individual concepts are fused to form collec-
S”i is obtained in a vectorectProys tive concepts depending on the kind of detected con-

- The Euclidean distancelE) is calculated between cept.
each vector of the matrimnatProysand the vector
vectProysas shown in formula 2, i.e, we obtain the
distance between all the projections already computed
and the projection of the new silhouette.

4.2.1 Coincident Concepts

A coincident concept is detected when two or more
robots of the robot team learned individual concepts
from similar views of the same object. A shared con-
nEigens cept i_s c!assified as co.ir).ciden >a andvk > .
dE = Z (matProys ) fvectProy&,))z ) T_hat is, if both probabilities (PC and SIFT) of a pre-
& viously learned concept are greater than a predefined
threshold valued). If a shared concept is determined
where nEigensis the number of eigenvectors used as coincidentitis merged with the most similar known
during the PCA trainingr(Eigens= numOb j§— 1), concept as follows:
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PCA Fusion. Itis obtained by evaluating a new a-
verage silhouette from the average of the kndih

and newsil; silhouettes. After that, it is necessary to
re-train the PCA substituting the conc&if with the
new average silhouette which contains information of
the concept learned by robpt

SIFT Fusion. Itis obtained by adding the comple-
mentary SIFT points of conce|StIF1[<J to the set of
SIFT points of concepSIF'Il'i. Also, each pair of
coincident SIFT points of both concepts is averaged
in terms of position and their corresponding SIFT des-
criptors.

The main ideato fuse individual concepts is to im-
prove their representation.

4.2.2 Complementary Concepts

A conceptCli contains complementary information
if it differs with all known concepts by robat i.e.,
if both shape and local features are different to all
known concepts by robatC;,...,C That is,

. - *2»~numObjs
if vp < a andvg < a.

A complementary concerﬁi is fused with the
collective concepts known by the rolats follows:

PCA Fusion. The new average silhouette is added

and the new PC concepts are obtained by re-training
the PCA using the updated set of average silhouettes.

SIFT Fusion. The new SIFT features are simple
added to the current set of SIFT concepts known by
the robot.

4.2.3 Confused Concepts

There are two types of confusion that can occur bet-
ween concepts:

Different Shape and Similar Local Features (type
1). Thistype of confusion occurs when the new con-
ceptC, is complementary by shap&il, to all the

concepts known by the robotSil;, ""S”:wmo_bj's but

it is coincident by local SIFT featureSIFT’, with
at least one concept known by the robotThat is,
Vg > aandifvp <a.

Similar Shape and Different Local Features (type
2). This type of information occurs when concept
C; is coincident by shap&il}, to at least one concept
known by the robot, but it is complementary using

its local SIFT feature§IF'I[<j. That is, ifv"H > o and

Vg < Q.

In both types of confusion, type 1 or type 2, there
can be two options:

a) Different Objects. Both concepts correspond to
different objects.

b) Same Object. Both concepts correspond to the
same object but they were learned by robots from
different points of view.

In our current approach, both types of confusions
are solved as complementary objects. The reason is
that roboti cannot distinguish with its current infor-
mation between both, different objects or same object,
using only the individual and the shared concepts. To
solve the ambiguity, as future work each robot should
build autonomously a map and locate its position in
the map. In addition, for each learned object, robots
will locate them in the map. For confused objects a
robot can move to the position of the object marked
in the map to see the object from different perspec-
tives in order to solve the conflict.

5 EXPERIMENTSAND RESULTS

We performed several experiments to demonstrate the
proposed algorithm. In section 5.1, we show the re-
sults of a general experiment that demonstrates the
main features of the proposed approach. In section
5.2 we present the accuracy of the collective concepts
versus the individual concepts.

In these experiments we used a robot team con-
sisting of two homogeneous Koala robots equipped
with a video camera of 320 240 pixels. For more
than two robots our method can be applied straight-
forward. The only difference is that robots will need
to consider the information from more than one robot,
possibly reducing confused concepts.

5.1 Concept Acquisition and Testing

The mobile robots learn on-line a representation of
several objects while following a predefined trajec-
tory without prior knowledge on the number or nature
of the objects to learn. The idea of using pre-planned
trajectories instead of making the robots wandering
randomly, is that we can control the experimental
conditions to show different aspects of the proposed
methodology.

Each robot shares its individual concept as soon as
it is learned to improve the representation of this con-
cept or to include a new concept in the other robot.
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Table 2: Probability vectors SIFT@) obtained by R1.

o

@'«g{,/

Qe ‘, ol
(&>
gt

%
@

Figure 3: Training objects. ajase b) water bottle c) can,
d) dolphin, e) soda bottlef) bottleand g)cone

Figure 3 shows the training objects used in this ex-
periment. As can be seen in the figure, some objects
have the same shape but different texture, some have

the same texture but different shape, some others ar
not symmetric in their shape. The objective of this

experiment is to show the performance of the system
to detect coincident, complementary and confused in-
formation under a wide variety of conditions.

Robot 1 (R1) learned during individual training
concepts for: dolphin, can water bottleand vase
Robot 2 (R2) learned individual concepts forase
soda bottle bottle and cone Note that some ob-
jects are learned by both robots while others are only
learned by one robot.

While learning a new concept, each robot has to
decide whether to fuse the current concept with a pre-
viously known concept or include it as a new one. Ta-
bles 1 and 2 show the probability vectors of the PC
features based on shapg)and of the SIFT features
(vi) obtained by Robot 1. Tables 3 and 4 show the
probability vectors of the PG/) and SIFT (2) fea-
tures obtained by Robot 2. In these tables the coinci-
dent information is represented in bold.

New (collective concepts R1)
Objects|| Dol-| Vase Can| Sodg Waten Bot-| Co-
phin bot- | bot- | tle | ne
tle | tle
Dol- - - - - - - -
phingy
Vasgy || 0.09| - - - - - -
Carry 0.12| 0.12| - - - - -
Soda 0.28| 0.11f 0.40| - - - -
Bottlery
Water || 0.15| 0.59 0.20| 0.20| - - -
b bOttqul
| Bottlezp|| 0.08 | 0.15] 0.65| 0.04| 0.12 | - -
Vasey || 0.16 | 1.00| 0.23] 0.10| 0.08 | 0.09 -
Congy || 0.05| 0.28| 0.43] 0.10| 0.14 | 0.09 -
Table 3: Probability vectors P@3) obtained by R2.
New (collective concepts R2)
Objects|| Vase Dol- | Soda Can| Bot-| Waten Co-
phin | bot- tle | bot- | ne
tle tle
Vasen || - - - - - - -
Dol- 0.19 - - - - - -
phingy
Soda 0.28 0.36 | - - - - -
bottlezy
Canz; || 0.26/ 0.31| 0.58] - - - -
Bottlezo || 0.17| 0.31| 0.61| 0.56| - - -
Water || 0.29) 0.44| 0.73 | 0.54| 0.58 - -
bottlexy
Congy || 0.01) 0.31| 0.28| 0.28/ 0.43| 0.33 | -
Vasey || 0.69| 0.25| 0.43| 0.42| 0.32] 0.41 | 0.01

Table 1: Probability vectors PG‘/,j-_() obtained by R1.

New (collective concepts R1)

Objects|| Dol-| Vase Can| Sodgd Waten Bot-| Co-

phin bot- | bot- | tle | ne

tle tle

Dol- - - - - - - -
phingy
Vasegy || 0.19] - - - - - -
Carg; || 0.31| 0.26 - - - - -
Soda 0.36| 0.28 0.58 - - - -
bottlery
Water || 0.43| 0.28| 0.53 0.73 | - - -
bottler
Bottlezo|| 0.31| 0.17| 0,56 0.61| 0.58 | - -
Vasgy || 0.25| 0.69| 0.42 0.43| 0.41 | 0.32 -
Congy || 0.31| 0.01] 0.28| 0.28| 0.33 | 0.43 -

cepts, witha = 0.65 as threshold value, and the
probability vectors of Tables 1, 2, 3 and 4.

Tables 5 and 6 show the results of the analysis per-
formed by each robot. As can be seen from these ta-
bles, each robot encountered the three types of possi-
ble information and fuse its concepts accordingly.

For instance, Table 1 shows how are the probabi-
lities of objects of R1 affected using only PCA over
shapes of objects, as both robots encounter and learn
concepts while traversing the environment. In the first
row, R1 learns about the concejatiphinand acquires
it. In the second row, R2 then learns abwasteand
shares this concept to R1. The probability, according
to the PCA features to bedolphinis 0.19 (second
row). R1 learns the objectan which has a probabi-
lity of 0.31 to be adolphinand a probability of 0.26
to be avase which was learned by R2 and shared to

We used the defined criteria in Section 4.2 to R1 (third row). In the fifth row, R1 learns aboute-
recognize coincident, complement or confused con- ter bottlebut it confuses with theoda bottldearned
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Table 4: Probability vectors SIFT3) obtained by R2. Table 6: Detected information by R2 for each own and
shared individual concepts.

New (collective concepts R2)

Objects|| Vas¢ Dol- | Sodd Can| Bot| Waterl Co- Individual | Related | v3 v§ Kind of
phin | bot- tle | bot- | ne concepts | objects info.
tle tle Vasgp - - - Comple-
Vasgy || - - - - - - - mentary
Dol- 0.18 - - - - - - Dol- All k va < [ V& < | Comple-
. . Pk Szk
phings phingy 065 | 065 | mentary
Soda | 0.11 0.28] - - - Soda All k Py < | Vs < | Comple-
téOtﬂQ?z S R R bottlery 0.65 0.65 mentary
arki : : - _ - - _ Carg; All k v%(m < vém < | Comple-
Weter [ 053 018 0201 020 013 T 0% | 055 | e
ater ‘ . . : : Bottler, | All k < | v&_ < | Confuse
bottlez; Pk Ssk)
0.65 0.65 type 1
Congz || 0.09] 0.05| 0.10| 0.43 0.09 0.14 | - 2 2
Vasgy || 1.00| 0.16] 0.10| 0.23 0.09 0.08 | 0.12 Water Soda Pag . [WSegr~ | SOMuse

bottlers Bottle 0.73 0.65 type 2
Congyp All k

By < vém < | comple-

Table 5: Detected information by R1 for each own and 0.65 0.68 mentary

shared individual concepts.

_ : . : Vase; Vase VB, = | V&, = | Coinci-
Individual Re]ated Vp Vg _Klnd of 0.69 1.00 dent
concepts | objects info.

Dol- - - - Comple-  tected by the robot team in the following ordenne
hi mentar ;
PhINRL y water bottle vase bottle soda bottleand dolphin
1 1 p
Vase A|”_ L tl VBayy < | Vaay < Comtple- Once an object is detected, the robigtevaluates its
Em?nObO} 0.65 0.65 mentary class using the PG/) and SIFT ¢y probability vec-
T T tors and combines both probabilities using a Bayesian
Canyt All | vp(s_l) < VSsAu < | Comple- approach:
0.65 0.65 mentary '
Soda All'l vb, < | Vi < | Comple- .
bottlez, 065 os(gg mentary PL = Vh * Vg X Pu
. — : :
Water Soda v%,m) = vé(sw < | Confuse (V'H X Vg X Pu) + ((1—V'H) x(1-vg)x(1- Pu))
bottlez; bottle 0.73 0.65 type 2 (6)
Bottlez, Can vi < |vi = | Confuse
Pe1) S623) . . - N
0.65 0.65 type 1 where F’ul is a uniform probability distribution
Vasey Vase Véﬂ.z) = Vé(n) — | Coinci- (Pu : numOb—jS)’ VIP = p(PC prOJect|0n| C|a§S:
0.69 1.00 dent i), Vg = p(SIFT matching| Class= i), Pg is
Conexp All | o< V% < | Comple- the Bayesian probability vectorp(Class = i |
065 | 06t | mentary|  PCprojectionSIFTmatchiny andl is the index of

the Bayesian probability vector, where the maximum
and shared before by R2. As can be seen from Fig- size of the probability vector isumOb js.
ure 3, both objects have the same shape and conse- Figures 4, 5 and 6 show the average probabilities
qguently the PCA features are not able to discriminate obtained during the object recognition task for each
between these two objects. This is not the case for set of images of the same class, using the individual
the SIFT features, which prevent R1 to consider it as and collective learned concepts. The dotted bars in-
the same object (as explained below). In the seventhdicate the classification errors. A classification error
row, R1 learns abowtasewhich was already learned is produced when a robot classifies an unknown ob-
and shared by R2, and in this case both concepts argect with a probability> 0.6. The unknown objects
merged. for robots 1 and 2 are those which were not learned
To test the performance of the individual concepts during their individual training.
and the collective concepts acquired by each robot, The classification errors of Robot 1 in Figure 4
the concepts were used in an object recognition task.occur when the objectsone bottle andsoda bottle
Each robot followed a predefined trajectory to recog- are classified adolphin water bottleandwater bot-
nize objects in the environment. The objects were de- tle, respectively. The classification errors of Robot 2
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B Individual concepts R1
Individual concepts R2

M Collective concepts
R1

B Individual concepts RL
Collective concepts Individual concepts R2
R2 [ Collective conce pts

B Classification errors
R1 Collective concepts
R2

Average of PC probabilities
Average of Bayesian probabilities

Bl Classification errors
R2 B Classificationerrors
R1

T

B Classificationerrors
R2

J T S R TR W

o B
a
2 5
&
=

C

one Water bottle Vase e So

Test objects

o ottle Dolphin

one Water bottle Vase
Test objects

Figure 4: Average PC classification probabilities for the ob ~ Figure 6: Bayesian classification probabilities which uses
ject recognition task using the individual and collectiv@ P the Bayesian fusion of the PCA and SIFT classification
concepts. probabilities.

parentheses). As can be seen the collective concepts

o - B i corceps produce a significantly better precision.

£ - I Clecte conepts

¢ I e coneeps 5.2 Accuracy of the Individual and
& = B Classification errors .

 lsicatonerors Collective Concepts

; In this section we compare the results of the indivi-
N e eRe dual concepts with that of collective concepts. In each
Figure 5: Average SIFT classification probabilities for the experiment, a different set of objects W?‘S used, and
object recognition task using the individual and colleetiv  POth robots learned the same set of objects. There-
SIFT concepts. Any robot makes classification errors. fore, all the shared concepts were coincident, that is,
robots learned both individually and collectively the
same number of concepts. At the end of each ex-
periment the robots learned four concepts that were
proved by a test sequence. In Figure 7 we present
the accuracy obtained by the robots using the PC fea-
tures of the individual and collective concepts in an
object recognition task. Figure 7 shows the averages
in accuracy of the number of images well classified
under six experimentgérreci, the average percent-
ages of the number of non detected or non classified
images (o detectey] and the average percentage of
false positives for each concegalse +). Figure 8
and 9 show, respectively, the accuracy obtained by the

robots when using the SIFT vectors and the Bayesian
Table 7: Precision in the object recognition task using the approach.

- B

occur when the objectsan water bottleanddolphin

are classified abottle soda bottleand soda bottle
respectively. For theasethere is no classification er-
ror because both robots learn individual concepts of
it.

Although the probability bars presented in the pre-
vious figures show a higher probability for individual
concepts than for collective concepts, in reality the
collective concepts are more robust as they represen
the probabilities considering a larger number of ob-
jects. This will be discussed in Section 5.2.

individual and collective concepts acquired by each robot. As it can be observed in Figures 7, 8 and 9, the

R1 R2 R1-R2 | R2-R1 accuracy that indicate the quantity of well classified

PCA | 55.69 % | 49.98 % | 86.15% 86.16 % images €orrecy using the collective concepts for the
(10000 %) (94.82% object recognition task, is in general better than the

SIFT | 4832 % | 4289 % | 87.84% 87.84% accuracy using the individual concepts. For PC, SIFT
(86.23%) | (79.11% and Bayes there is an improvement in the accuracy up

Bayes 5259 % | 51.68 % | 80.73% 80.73% to 256 %, 1379 % and20.62 %, respectively. This
(94.20 %) | (81.54% demonstrates that the collective concepts have better

coverage than the individual concepts because they
We show in Table 7 the precision of the object contain information acquired from different points of

recognition task using the individual and collective view, which allows a better recognition of test ob-

concepts. The precision is presented in two ways, jects. Also, the percentages of the number of non de-

one considering the total number of objects, and the tected images of collective concepts are smaller than

other one taking into a count only the number of ob- the ones of the individual concepts.

jects used during the individual training (reported in In Table 8 we present the average percentages of
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false positives for both, the individual and the collec-

tive concepts acquired by the robots. We conclude
that the collective concepts have better quality than
the individual concepts.

In general for both, the individual and the collec-
tive concepts, we observed an improvementin the ac-
curacy when using the Bayesian approach. In Table 9
we present the average percentages of accuracy using
the individual and collective concepts.

The average profit in the percentages of classifica-
tion using the Bayesian approach using the collective
concepts with regard to the individual concepts is of

Table 8: Average percentages of false positives.

PCA SIFT Bayes
Individual | 1442 % | 0.64 % | 0.64 %
Collective | 13.14% | 0.00 % | 0.00 %

Table 9: Average percentages of accuracy.

PCA SIFT Bayes
Individual | 84.94 % | 67.88 % | 80.18 %
Collective | 87.18% | 81.12% | 94.81 %

14.63%.
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Figure 7: Accuracy in coverage using the part PC of con-

cepts.

Average percentages SIFT

Figure 8: Accuracy in coverage using the part SIFT of con-

cepts.
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Figure 9: Accuracy in coverage using the Bayesian ap-

proach.
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6 CONCLUSIONSAND FUTURE
WORK

In this paper we have introduced a new on-line learn-
ing framework for a team of robots. Some of the main
features of the proposed scheme are:

e The robots do not know in advance how many
objects they will encountered. This pose several
problems as the robots need to decide if a new
seen object or shared concept, is of a previously
learned concept or not.

e The representation of objects are learned on-line
while the robots are traversing a particular en-
vironment. This is relevant for constructing au-
tonomous robots.

e Three possible cases in which to merge concepts
and how to merge them were identified.

The detection of coincident concepts avoids pro-
ducing multiple concepts for the same object. The
detection of complementary concepts allows to detect
and learned unknown objects not seen by a particular
robot. The detection of confused concepts allows to
fuse information: 1) when the object have different
shape and similar SIFT features, and 2) when the ob-
jects have similar shape and different SIFT features.
These cases are particularly difficult to deal with be-
cause the objects may be genuinely different or may
be the same but seen from different points of view by
the robots.

In general, the object recognition using the collec-
tive concepts had a better performance than using the
individual concepts in terms of accuracy. This occurs
because the collective concepts consider information
from multiple points of view producing more general
concepts.

As future work we propose to integrate schemes to
object segmentation for dynamic environments. For
instance, using an object segmentation based on dis-
tance as in Méndez-Polanco et al., 2009. Use a differ-
ent set of features and identify possible conflicts be-
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tween more that two kind of features. We also plan to
incorporate planning of trajectories to autonomously
allocate the environment among robots. We also plan

stereo vision in dynamic indoor environmentBro-
ceedings of the 8th Mexican International Conference
on Artificial Intelligence (MICAI '09) pages 349-359.

to add strategies to solve some confusions in sharedMitchell, T. M. (1997). Machine Learning McGraw-Hill

concepts by taking different views from these objects.

Finally, we plan to incorporate our algorithm for robot

localization and search of objects, and to test our work

for robot teams with three or more robots.

ACKNOWLEDGEMENTS

The first author was supported by the Mexican Na-
tional Council for Science and Technology, CONA-
CYT, under the grant number 212422.

REFERENCES

Asada, M., Uchibe, E., Noda, S., Tawaratsumida, S., and

Hosoda, K. (1994). Coordination of multiple behav-
iors acquired by vision-based reinforcement learning.
Proceedings of the International Conference on Intel-
ligent Robots and Systenmages 917-924.

Cheung, G. K. M., Baker, S., and Kanade, T. (2003). Vi-
sual hull alignment and refinement across time: A 3-
D reconstruction algorithm combining Shape-From-
Silhouette with stered?roceedings of the IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR '032:375-382.

Ekvall, S., Jensfelt, P., and Kragic, D. (2006). Integmtin
active mobile robot object recognition and SLAM in
natural environments|EEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS '06)
pages 5792-5797.

Ekvall, S. and Kragic, D. (2005). Receptive field cooccur-
rence histograms for object detectiolEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS '05)pages 84-89.

Fernandez, F., Borrajo, D., and Parker, L. E. (2005). A re-
inforcement learning algorithm in cooperative multi-
robot domainsJournal of Intelligent and Robotic Sys-
tems pages 161-174.

Howard, A., Parker, L. E., and Sukhatme, G. S. (2006).
Experiments with a large heterogeneous mobile robot
team: Exploration, mapping, deployment and detec-
tion. International Journal of Robotics Research
25:431-447.

Lowe, D. G. (2004). Distinctive image features from scale
invariant keypoints. International Journal of Com-
puter Vision 60(2):91-110.

Mataric, M. J. (1997). Reinforcement learning in the multi
robot domain. Autonomous Robatd(1):73-83.

Méndez-Polanco, J. A., Mioz-Meléndez, A., and Morales,
E. F. (2009). People detection by a maobile robot using

88

Science/Enginering/Math.

Mitri, S., Pervolz, K., Surmann, H., and Nuchter, A.
(2004). Fast color independent ball detection for mo-
bile robots. Proceedings of the IEEE International
Conference Mechatronics and Robotics (MechRob
'04), pages 900-905.

Montesano, L. and Montano, L. (2003). Identification of
moving objects by a team of robots based on kine-
matic information. Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS '03)1:284-290.

O'Beirne, D. and Schukat, M. (2004). Exploration and ob-
ject recognition using cooperative robd&soceedings
of the International Conference on Imaging Science
Systems and Technology (CISST ,@8ges 592-598.

Parker, L. E. (2002). Distributed algorithms for multi-mib
observation of multiple moving target&utonomous
Robots 3(12):231-255.

Steels, L. and Kaplan, F. (2001). AIBO’s first words. The
social learning of languaje and meaniriguolution of
Comunication4(1):3-32.

Wesshnitzer, J. and Melhuish, C. (2003). Collective deaisio
making and behaviour transitions in distributed ad hoc
wireless networks of mobile robots: Target-hunting.
Advances in Artificial Life, 7th European Conference
(ECAL '03), pages 893-902.

Ye, Y. and Tsotsos, J. K. (1996). On the collaborative object
search team: a formulatiomistributed Artificial In-
telligence Meets Machine Learning (ECAI '96 Work-
shop) pages 94-116.



