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Abstract: Predictive method which allows applying constraints in the process of designing control system has wide 
practical significance. The method developed in the article consists of feedback linearization and linear 
quadratic control applied to obtained linear system. Employment of interpolation method introduces 
constraints of variables into control system design. The control algorithm was designed for a model of 
exothermic reactor, results illustrate its operation in comparison with PI control. 

1 INTRODUCTION 

The predictive algorithms have a wide industrial 
applications because of the simplicity of its 
operation and good features of regulation. One of 
important advantages of the predictive control is the 
possibility to impose the signal constraints in the 
process of designing the control law. In the practical 
applications it is convenient  to use the linear models 
for the theory of them is well known. 

First examples of the industrial use of the MPC 
applications had place in 1970’s, but the idea was 
known earlier (Lee, Markus, 1967). One of the most 
important algorithms was the Dynamic Matrix 
Control (Cutler, Ramaker,1980) and Quadratic DMC 
(Garcia et al.,1989) with linear models. There 
appeared a number of articles with nonlinear models 
with the exact and suboptimal algorithms. The use of 
nonlinear models cause additional problems with 
finding global minimum and can have an effect on 
calculation time (Tatjewski, 2002). Adaptation of a 
controller with linearization around the working 
point may result in system instability (Dimitar et al., 
1991), changes of variables have to be limited. 

The aim of the work was to design an application 
used for control of an exothermic reactor with 
constraints, to propose use of feedback linearization 
for this nonlinear plant, present predictive control 
method solving problem of constraints(Poulsen et 
al., 2001) and its modification (Ziętkiewicz 2008) 
for changed reference signal. 

 

2 EXOTHERMIC REACTOR 

2.1 CSTR Model 

The plant to be controlled is the Continuous Stirred 
Tank Reactor (CSTR). The structure of reactor is 
presented on figure 1. It contains tank, cooling 
jacket, inflow and outflow of both elements. It is 
assumed that, because of perfect mixing, there are 
no spatial gradients of parameters in the tank area.  

The work of reactor is described by 3 differential 
equations. First equation (1) illustrates the mass 
balance, 
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where C(t) is the concentration of product measured 
in [kmol/m3]. The second and the third equations 
(2,3) represent the balance of energy in the reactor, 
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Figure 1: Model of exothermic reactor. 
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and the balance of energy in the cooling jacket 
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where T(t) is the temperature inside the reactor and 
Tj(t) temperature in the cooling jacket, measured in 
Kelvin. )(tj [m3/h] represents cooling flow through 

the reactor jacket. Remaining equations represent  
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- thermal energy in the process of cooling, 
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        - velocity of reaction. (5)

Constant values used in experiments are placed in 
the table 1. 

Table 1: Constant values of CSTR model. 

const. value const. value 
  1.13 [m3/h] Tj0 294.4 [K] 
V 1.36 [m3] ρj 998 [kg/m3] 
Ci 8 [kmol/m3] cpj 4186.8 [J/(kgK)] 
ρ 801 [kg/m3] k0 7.08*1010 [1/h]
cp 3140.1 [J/(kgK)] E 6.96*107 [J/kmol]
Ti 294.4 [K] R 8314.3 [J/(kmolK)] 

(-Δi) 6.96*107 [J/kmol] αc 3.07*106 [J/(hKm2)]
vj 0.109 [m3] Ac 23.2 [m2] 

 
In the further parts of the paper the function of 

time will be omitted to simplify equations. The 
control signal will be denoted as )(tu j  and the 

state variables x1=C(t), x2=T(t), x3=Tj(t). The system 
(1-3) can be describe by 3 equations: 
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2.2 Formulation of Control Problem 

The objective of control is to make the temperature 
inside the reactor T(t) track a desired trajectory w(t) 
using the control signal u. The complete model with 
output signal can be described by (6) with defined 
output signal 

.2xy   (7)

Furthermore the control signal is constrained 

hmhm j /5.2/0 33    (8)

3 FEEDBACK LINEARIZATION 

The functions describing the considered system are 
smooth and have continuous derivatives of any 
required order in region Ω={(x1, x2, x3)єR

2|x2>Tj0, 
x3>Tj0}, which is the normal area of reactor 
operation. Since the relative degree is equal to 2 and 
the system order was equal to 3, the system has 
internal dynamic described by one equation. From 
(6) it takes form: 
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Parameters E and R are positive (tab.1). The output 
signal y is also positive. If we assume, that control 
law provides, that signal y is bounded 
(y(t)=e(t)+w(t), where e(t) is the tracking error), then 
the internal dynamic of the system is stable. 

The system (6,7) can be described in a the form  
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There exists a diffeomorphism z=φ(x) in region 
Ω,  
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which conditions normal form of transformed 
system. Lfh(x) is the Lie derivative of h(x) with 
respect to f(x). All variables of vector z have to be 
independent, therefore η(x) should satisfy Lgη(x)=0. 
One of solutions is η(x)=x1. The feedback law is 
defined as 
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where v is the new input signal. The feedback 
linearization method is illustrated in fig.3. 
The system with new coordinates takes form 
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1zy  , 
for which the mapping z=φ(x): 

(14)
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(15)
and the inverse mapping x=φ-1(z): 
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The transformed system is linearized partly, the third 
equation is nonlinear. However, the relation between 
input and output signal is linear, which will be used 
in control algorithm. 
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Figure 2: Feedback linearization. 

4 PREDICTIVE CONTROL 

To design the control algorithm we will use linear 
model obtained in previous section 
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Third equation of (13) will be used only to calculate 
successive variables of vector z, and then from (15) 
vector x. After discretisation of the linear model 
with Ts=60s and adding reference signal wk which is 
imposed by using an additional variable 
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we obtain a discrete model 
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where Ad, Bd, and Cd denote matrices of discrete 
model. 

4.1 Linear Quadratic Control 

The predictive control algorithm for the system 
without constraints and infinite horizon can be 

designed by LQ control method (Maciejowski, 
2002). The cost function which prevents too large 
deviation from equilibrium point is given by: 

0 0
0 2

0 0
( ) ,

T

k k k k
t k k

k t k k k k

z z z z
J Q R v v

p p p p





 
  

 

   
   
      

  (19)

with 


















100

010

001

Q
 and R=0.1. The optimal gain L is 

obtained from LQ method. Then the control law 
describes 
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where M is the first element of L, because the output 
is the first element of the state vector z. The index k|t 
denotes the sample of variable predicted for the 
moment t and calculate in the instant k.  

4.2 Constrained Predictive Control 

In order to include the constraints to the control 
problem, there will be applied the interpolation 
technique (Poulsen et al., 2001). It consists in using 
the LQ method for a system with so changed 
required output trajectory 

tkw |
~  that the obtained 

variables fulfil the constraints. The changed 
trajectory is defined by 

,ˆ~
|| tkttk sww   (21)

then the control law 

.ˆ~ˆ ||| tktktk zLwMv   (22)

The so called perturbation trajectory tks |ˆ  calculated 

in the instant k for successive steps k≤t≤H is 
obtained from 

tkktk ss |1| ˆˆ  , (23)

where 0≤αk≤1. 
It can be seen from (21) and (23), that αk=0 

corresponds to the unconstrained LQ control. To 
find proper tks |ˆ  assuring feasibility of tkw |

~  we use  

the initial perturbation trajectory 
ts |0ˆ , which ensures 

fulfilling the constraints. One of solution is to chose 
the ts |0ˆ  so it maintains trajectory tkw |

~  unchanged for 

future t, therefore every variable in model is 
unchanged (assuming that initial condition is stable 
and fulfil given constraints). 
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With above reasoning the objective of control is 
to minimize the parameter αk with respect to 
constraints on assumed horizon H. Even though the 
model (18) is linear, the relation between 
constrained variable u and α is nonlinear, because it 
goes through the function ),( xvu  . To solve this 

nonlinear problem it is possible to use simple 
numeric procedure as bisection. 

The above procedure was designed for the 
instant change of the set point. When desired output 
trajectory wk changes in another way the following 

method of calculation of tks |ˆ can be used: 

tkktktktk swws |1|1|| ˆˆ    . (24)

Under assumption that initial conditions are 
stable and then the initial perturbations sequence is 
stable, because of the constraints values the control 
law designed on the interpolation algorithm is 
asymptotically stable. 

5 RESULTS 

Two experiments were performed in matlab 
environment. The PI controller tuned experimentally 
was used as comparison was. In the first experiment 
the trajectory wt was suddenly changed from one 
value to another. In the second experiment wt was 
changed along the linear function, which is a proper 
behaviour of desired temperature in the reactor. In 
every figures placed below first chart illustrate the 
desired trajectory wt and the output yt, whilst the 
second chart show the behaviour of constrained 
input of the reactor ut. 

The results of the first experiment are illustrated 
below. The desired trajectory was changed from 333 
to 338K with jump in t=20min. Figure 4 illustrate 
the result obtained from use of PI method, figure 5 
with predictive algorithm developed in the article. 

t[h]
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3/h] 
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Figure 3: First experiment, PI control. 
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t[h]
ut[m

3/h] 

t[h] 

Figure 4: First experiment, predictive control. 

In the second experiment trajectory was changed 
in linear function from 310 to 340K. Results are 
placed below in a way as in the first experiment. 

 

Figure 5: Second experiment, PI control. 

 

Figure 6: Second experiment, predictive control. 

5.1 Conclusions 

The operation of predictive method presented in the 
paper was correct, it fulfils the constraints. In both 
experiments the use of the algorithm improved the 
quality of control in comparison with PI control. 
However the disadvantage of the method is that it 
relies on feedback linearization, which can be use to 
limited class of objects. 
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