
STUDYING MEDIA ACCESS AND CONTROL PROTOCOLS

Alaelddin Fuad Yousif Mohammed
Department of Computer Engineering, Faculty of Engineering and Technology, University of Gezira,Wad Medani, Sudan

Keywords: GNU Radio, USRP, MAC, Bluetooth, IEEE 802.11.

Abstract: The goal of this project is to enable undergraduate students to gain insight into media access and control
protocols based upon carrying out laboratory experiments. The educational goal is to de-mystifying radio
and other link and physical layer communication technologies as the students can follow packets from the
higher layers down through the physical layer and back up again. The project fills the gap between the
existing documentation for the Universal Software Radio Peripheral (USRP) resources and the knowledge
of undergraduate students. The project is targeted at (1) instructors of undergraduates who might use this
work to develop their own lesson plans and course material and (2) students of physical and link layer
protocols who want a practical tool for carrying out experiments in these layers.

1 INTRODUCTION

Software-defined radio (SDR) introduces flexibility
and rapid development to radio communication
systems by using a software-oriented approach. As
software-based approach offers greater flexibility
when developing wireless communication systems,
since the wireless system architecture is not frozen
into the hardware, but can be changed at any time
via changing the software which is loaded into the
device. By delaying the binding of design decisions
until execution time, the designers can incorporate
the latest developments - enabling them to improve
the performance of the systems. This reduces the
difference between the state of the art and the state
of practice for wireless communication systems.
Additionally, this software-oriented approach to
wireless communication devices allows both
flexibility and simpler maintenance, as most
upgrades can be done by loading new software,
rather than changing physical modules.

The Ettus Research Universal Software Radio
Peripheral (USRP) is an example of an SDR. It
provides an “RF front end for a computer running
the GNU Radio software, converting radio waves
picked up by an antenna into digital copies that the
computer software can handle or, conversely,
converting a wave synthesized by the computer into
a radio transmission” (1). In Figure 1, "IF" standards
for intermediate frequency, representing a version of
the signal at a lower frequency that the actual RF.

Figure 1: Introduction to USRP and GNU Radio.

2 SOFTWARE DEFINED RADIO
(SDR) HISTORY

A SDR is a radio in which software defines signals,
frequencies, modulation, and (optionally)
cryptography. SDR design began 1987, when the
United States Air Force’s Rome Laboratory (AFRL)
developed a programmable modem. The modem was
based on the Integrated Communications,
Navigation, and Identification Architecture (ICNIA)
(2). The term software defined radio was introduced
by Joseph Mitola III in 1991 "to signal the shift from
digital radio to multiband multimode software-
defined radios where "80%" of the functionality is
provided in software, versus the "80%" hardware of
the 1990's." (3).

131
Fuad Yousif Mohammed A. (2010).
STUDYING MEDIA ACCESS AND CONTROL PROTOCOLS.
In Proceedings of the International Conference on Data Communication Networking and Optical Communication Systems, pages 131-134
DOI: 10.5220/0002999301310134
Copyright c© SciTePress

Table 1: Time line with some representation examples.

Prject Size Features
ICNIA, 1978 Fit in a small

room
A collection of several single-
purpose radios in one box

Speakeasy
Phase I, 1992

Six foot (182
cm) rack

Included a programmable
cryptography chip.

Speakeasy
Phase II, 1995

Stack of two
pizza boxes

The first SDR to include a voice
coder and digital signal
processing resources.

Digital
Modular
Radio, 2000

44.45 x 48.90
x 55.9 cm

Implemented four full duplex
channels and could be remotely
controlled using the Simple
Network Management Protocol
via an Ethernet interface.

USRP, 2004 Fit in 21 x 17
x 5.5 cm box

Allows creating a software radio
using any computer with a USB2
port.

3 THE UNIVERSAL SOFTWARE
RADIO PERIPHERAL (USRP)

The USRP has a Cypress FX2 USB 2.0 interface,
four high speeds digital to analog converters, four
high speed analog to digital converters, and a large
Altera Cyclone field programmable gate array
(FPGA) that interconnects all of the aforementioned
devices.

The USRP includes Analog Devices Mixed
Signal Processor (AD9862). Each AD9862 contains
four ADCs. Programmable gain amplifiers, placed
in-front of the ADCs provides input signal level
adjustment. Further details of the AD9862 can be
found at (6). Each of ADCs runs at 64 Million
samples per second (64 Msps) with 12 bits per
sample, the DAC accept as input 14 bits per sample
generating 128 Msps. As the maximum signaling
rate of a USB 2.0 link is 480 Mbps, this means that
we can not simply forward the entire received signal
to an attached processor - nor can we receive a
signal from an attached processor and output it
directly via the DAC. Reducing the sample rate in
the receive path and increasing the sample rate in the
transmit path must be accomplished by the FPGA.

3.1 USRP Daughter Boards

There are four expansion slots on the USRP mother
board. These enable a user to plug in up to two
transmitter daughter boards and two receiver
daughter boards. These daughters implement the
specific radio frequency front end for a given range
of frequencies. Thus the motherboard only performs
baseband (or intermediate frequency) processing of
the signals. On the USRP motherboard the

transmitter expansion slots are labelled TXA and
TXB, while the receiver expansion slots are labeled
RXA and RXB. Each transmitter expansion slot has
access to two high speed DACs; as the motherboard
has four DACs with two connected to TXA and two
to TXB. Each receiver expansion slot has access to
two high speed ADCs, as the motherboard has four
ADCs with two for RXA and two for RXB.

Figure 2: USRP Block Diagram.

4 GNU RADIO

GNU Radio is free Python-based software
architecture implemented to run on a Linux
platform. More specifically, GNU Radio provides a
collection of signal possessing blocks that support
the USRP.

The GNU Radio code is written in both C++ and
Python. The computationally intensive processing
blocks are implemented in C++, while Python is
used for developing applications that sit on top (and
control) these blocks. The GNU radio code assumes
that the FPGA has already been programmed with a
configuration suitable for use by the GNU radio
code.

4.1 Installing the GNU Radio

This section describes how to build GNU Radio
version 3.2.2 - released on July 15, 2009. In this
project we experienced problems installing GNU
Radio as described in this release’s build guide [9].

The basic concepts underlying the GNU Radio
are flow graphs and blocks (nodes of the graph). The
blocks carry out the actual signal processing. The
data passed between these blocks could be of any
kind.

4.2 GNU Radio Signal Processing
Blocks

The GNU Radio project provides many signal
processing blocks (implemented in C++) as a library

DCNET 2010 - International Conference on Data Communication Networking

132

and supports the ability to be establish connections
between these blocks. The programmer develops a
radio by building a flow graph in which the signal
processing blocks are represented as vertices and the
data flow between them is represented as edges.
Blocks’ attributes specify the number of input ports
and/or output ports and the data type (for example:
short, float, and complex) for this port.

5 LABORATORY EXPERIMENTS

This section describes some of the laboratory
exercises that have been designed during this
project.

5.1 Experiment 1: Simplex Data
Transmission

In this exercise we will learn how simplex data
communication can be implemented. In this case
there will not be any feedback from the receiver
packets arrival of the packets at the receiver. The
transmitter sends 5 packets, then waits one second
and sends the next 5 packets. The equipment
required for this exercise is a PC, together with one
USRP, Basic TX, Basic RX, and an RF cable. Based
on the exercise plan, the following objectives were
developed for the simplex data transmission.

Figure 3: Simplex data transmitter and receiver.

5.2 Experiment 2: Voice Transmission

This experiment is similar to experiment 1; but
instead of a file we are sending and receiving a voice
signal. The code uses GSM-FR encoder and decoder
to as a voice CODEC. The code used in this exercise
is part of the GNU Radio examples.

5.3 Experiment 3: Carrier Sense
Multiple Access Protocol

In this experiment we introduce Carrier Sense
Multiple Access (CSMA) (without collision

detection) as a link layer protocol. This experiment
illustrates a common media access and control
protocol (MAC). Its also provides a framework for
students to build their own MACs, by modifying the
code. In this experiment we use the “TUN/TAP”
Linux interface to intercept frames that are being
sent to (or received from) a virtual network
interface. This enables the student to run any
network protocol or higher level protocol of their
choice – while seeng the frames passed to their
MAC and physical layer.

Figure 4: TUN/TAP and GNU Radio.

5.4 Experiment 4: Bluetooth
(or IEEE 802.15.4) Sniffer

It is hard to sniff Bluetooth because of its wide
frequency band and fast random hopping (calculated
by the master device). We need eleven USRPs to
sniff the 83.5 MHz wide band (USRP can work with
8 MHz wide band centred in a frequency), or we can
use four USRP2.

In this experiment we use gr-bluetooth. This
code was developed by Dominic Spill and Michael
Ossmann (10) and they made the code freely
available (11). This experiment is used to listen to
packets exchanged between a cellular phone and a
Bluetooth headset.

5.5 Experiment 5: IEEE 802.11
Implementation

In this experiment we use the BBN 802.11
implementation by the Adaptive Dynamic Radio
Open-source Intelligent Team and funded by
DARPA’s ACERT program. This project used GNU
Radio and implemented an 802.11 receiver and
transmitter (12).

6 EVALUATION AND ANALYSIS

In this section we will evaluate each of the
laboratory experiment from a pedagogical point of
view.

STUDYING MEDIA ACCESS AND CONTROL PROTOCOLS

133

6.1 GNU Radio: Analysis

There is no enghough documentation of how GNU
Radio is implemented, during runig application we
found that there are some messages printed from
diffrernt classes and tracing and understanding these
message takes some time. The GNU Radio
developers did not found acceptable way to provide
unifed documentation for the system (15). The Gnu
Radio has many releases developed. In release
version 3.2.x the higher block of the system is
updated. This will affect applications developed
under old release from running in new releses.

6.2 USRP: Analysis

The USRP is a device we used in this project to
develop undergraduate’s experiment . This device
has various daughterboards which operate on
different radio frequency bands (from DC to 2.9
GHz); you have to plug-in a sutable daughterboard
for you application.

USRP2 was developed and goes to the market on
May 25, 2009. There are some benefits of using
USRP2 than USRP(5).

6.3 Laboratory Exercises: Analysis

The laboratory exercises were designed based upon
the idea of step-by-step learning. The undergraduate
student initialy follow the steps presented in each
experiment to solve a problem and understands
subject terms. These experiments start with simple
communication systems first, a little bit complex
systems, and finaly real world systems. In each
experiment, the student must solve specific problems
and submit a written report to the instructor. The
instructor can choose which experiment are sutable
for the students.

7 CONCLUSIONS

We developed laboratory experiment for
undergraduate students to help them understands
media and access control protocols protocol. The
experiments are designed in a way that easy to
understand experiments first, and the complicated
experiments. Instructors might use these
experiments and add more exercises to develop their
own lessons plan and course material. You can find
the full work and codes in (15).

In conclusion, we can say that it is not easy job
to implement applications using USRP and GNU

Radio because of the weak documentation of the
GNU Radio. And if we started this project again we
would develop a documentations tool for GNU
Radio to help developers to implement their own
applications.

REFERENCES

Susan Karlin,”Tools & Toys: Hardware for your Software
Radio”, IEEE Spectrum, 34(10) , Oct. 2006, pp51-54.

Bruce A. Fette, et al, ”Cognitive Radio Technology”
Newnes, 2006, 656 pages, ISBN-10: 0750679522,
ISBN-13: 978-0750679527.

Greg Colvin and Beman Dawes, Smart Pointers, Web
Page, March 11, 2009, http://
www.boost.org/libs/smart_ptr/smart_ptr.htm.

Walter Tuttlebee, et al, ”Software Defined Radio:
Enabling Technology”, USA, John Wiley & Sons Ltd,
2002.

Ettus Research LLC, web page ” www.ettus.com”, visited
2009-11-11.

Analog Design, AD9862 12-/14-Bit Mixed Signal Front-
End (MxFE®) Processor for Broadband
Communications, Data Sheet, Revision 0, Dec. 2002,
internet site "http://www.analog.com/static/imported-
files/data_sheets/AD9860_9862.pdf"

GNU Radio, web page” www.gnuradio.org “, visited
2009-02-10

Greg Colvin and Beman Dawes, Smart Pointers, Web
Page, March 11, 2009, http://
www.boost.org/libs/smart_ptr/smart_ptr.htm.

Build Guide- GNU Radio, web page,2009-11-05 ”
http://gnuradio.org/trac/wiki/BuildGuide”.

Michael Ossmann and Dominic Spill, "Building an All-
Challe Bluetooth Monitor", ShmooCon 2009, 6
February 2009.

Gr-Bluetooth, web page, Aug 18, 2009,”
http://sourceforge.net/projects/gr-bluetooth/”

Troxel Gregory D, Blossom Eric, et al “Adaptive Dynamic
Radio Open-source Intelligent Team (ADROIT):
Cognitively-controlled Collaboration among SDR
Nodes”, Networking Technologies for Software
Defined Radio Networks, 2006. SDR '06.1st IEEE
Workshop, Sep 2006, pp 8-17, ISBN: 1-4244-0733-8.

BBN80211 - The Comprehensive GNU Radio Archive
Network, web page, “https://128.2.212.19/
wiki/BBN80211”, visited Nov 7, 2009.

GNU Radio 3.2svn C++ API Documentation, web page,
“http://gnuradio.org/doc/doxygen/index.html”, May
22, 2009.

Alaelddin Mohammed, “Studying Media Access and
Control Protocols”, Master Thesis, 2010-02-19,
“http://web.it.kth.se/~maguire/DEGREE-PROJECT-
REPORTS/100119-Alalelddin_Mohammed-with-
cover.pdf”.

DCNET 2010 - International Conference on Data Communication Networking

134

