
STRUCTURE-PRESERVING ALGORITHMS FOR DISCRETE-TIME
ALGEBRAIC MATRIX RICCATI EQUATIONS

Vasile Sima
National Institute for Research & Development in Informatics, 8-10 Bd. Mareşal Averescu, Bucharest, Romania
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Abstract: Structure-preserving algorithms for solving discrete-time algebraic matrix Riccati equations are presented.
The proposed techniques extract the stable deflating subspaces for extended, inverse-free symplectic matrix
pencils. The algorithms are based on skew-Hamiltonian/Hamiltonian pencils derived by an extended Cayley
transformation, which only involves matrix additions and subtractions. The structure-preserving approach
has the potential to avoid the numerical difficulties which are encountered for a traditional, non-structured
solution, returned by the currently available software tools.

1 INTRODUCTION

Consider thecontinuous-time algebraic Riccati equa-
tion (CARE),

0 = Q+AHXE+EHXA−EHXWXE

and the discrete-time algebraic Riccati equation
(DARE),

EHXE = Q+AHXA−AHXB(R+BHXB)−1BHXA,

where A,E,W,Q ∈ Cn×n, B ∈ Cn×m, R ∈ Cm×m,
W = WH , Q = QH , R = RH , E is nonsingular, and
W := BR−1BH . More general equations are obtained
by replacingEHXB andAHXB above byL + EHXB
andL + AHXB, respectively, whereL ∈ Cn×m. The
real case is obtained by replacingC by R, and the
conjugate-transpose operatorH by the transpose op-
eratorT.

In applications, usually thestabilizing solution X∗
is required, hence, e.g., for DARE,λE− (A−B(R+
BHX∗B)−1BHX∗A) is a (Schur) stable matrix pencil,
i.e.,Λ(A−B(R+BHX∗B)−1BHX∗A,E)⊂C

− := {z∈
C : |z| < 1}, whereΛ(M) denotes the spectrum of a
matrix or pencilM.

CAREs and DAREs arise in many applications,
such as, stabilization and linear-quadratic regulator
problems, Kalman filtering, linear-quadratic Gaus-
sian (H2-) optimal control problems, computation of
(sub)optimalH∞ controllers, model reduction tech-
niques based on stochastic, positive or bounded real
LQG balancing, factorization procedures for transfer
functions (here, usuallyE 6= In).

There are several basic approaches for solving al-
gebraic Riccati equations (AREs):

1. Treat an ARE as a nonlinear system of equations
usingNewton’s method (with line search).

2. Use the connection toHamiltonian eigenproblem.

The second approach for CARE, withE = In, is based
on the identity

[
A −W
−Q −AH

][
In
X

]
=

[
In
X

]
(A−WX),

hence, ifX is stabilizing, thenΛ(A−WX) = Λ(H)∩
C−, whereH is the first matrix in the above formula,
andC− := {z∈ C : ℜ(z) < 0}. Consequently, the
columns of[ In XT ]T span thestable invariant sub-
space of the Hamiltonian matrixH. Therefore, it is
possible to compute the stableH-invariant subspace
via eigendecomposition or block-Schur factorization,

U−1HU =

[
H11 H12

0 H22

]
, U =

[
U11 U12

U21 U22

]
,

and the solution is given byX = U21U
−1
11 .

If R is ill-conditioned, it is advisable to use ex-
tended matrix pencils, for better accuracy (Bender
and Laub, 1987a; Bender and Laub, 1987b; Lancaster
and Rodman, 1995; Mehrmann, 1991; Van Dooren,
1981):
– extended pencil for CARE:

N−λM =




A 0 B
Q AH L
LH BH R


−λ




E 0 0
0 −EH 0
0 0 0


 ;
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– extended pencil for DARE:

N−λM =




A 0 B
Q −EH L
LH 0 R



−λ




E 0 0
0 −AH 0
0 −BH 0



 .

If
[

UT
1 UT

2 UT
3

]T
spans the stable deflating sub-

space ofN− λM, thenX∗ = U2(EU1)
−1. The feed-

back gain matrix for the linear-quadratic optimal reg-
ulator can be computed directly viaG = U3U

−1
1 .

If R is nonsingular,E = In, andL = 0, the above
pencils can be reduced to 2n× 2n Hamiltonian and
symplectic pencils, respectively, by removing the sub-
pencils with infinite eigenvalues (Paige and Van Loan,
1981; Pappas et al., 1980; Mehrmann, 1991). A pen-
cil N−λM is Hamiltonianif NJ MH = −MJ NH , and
it is symplecticif NJ NH = MJ MH , where

J :=

[
0 In

−In 0

]
.

The general pencils inherit most of the spectral prop-
erties of the corresponding reduced Hamiltonian or
symplectic pencils.

The pencils above have much structure, which
should be exploited in order to improve the numer-
ical properties of the Riccati solvers. The approach
we follow is to transform the discrete-time problem
to an equivalent continuous-time problem, and use
the newly developed skew-Hamiltonian/Hamiltonian
eigensolvers for the latter problem, suitably extended.

2 EQUIVALENCE OF PENCILS
IN CONTINUOUS-TIME AND
DISCRETE-TIME PROBLEMS

A block column permutation (and sign change) gives,
equivalently:
– extended pencil for CARE:

λ




0 E 0
−EH 0 0

0 0 0


−




0 A B
AH Q L
BH LH R


 ;

– extended pencil for DARE:

λ




0 E 0
−AH 0 0
−BH 0 0


−




0 A B
−EH Q L

0 LH R


 .

These pencils are special cases of the followingblock
structured C-typeandD-type pencils(Xu, 2006):

λEC−AC = λ
[

0 F̃
−F̃H 0

]
−

[
0 G̃

G̃H D̃

]
, (1)

and

λED−AD = λ
[

0 F
−GH 0

]
−

[
0 G

−FH D

]
, (2)

respectively, whereF,G, F̃ ,G̃∈ Cn,q, q = n+ m, and
D, D̃ ∈ Cq,q areHermitian, i.e.,D = DH , D̃ = D̃H .

These pencils have importantspectral properties:
C-type: symmetry aboutℜ(z) = 0, i.e., pairs(λ,−λ̄);
D-type: symmetry about |z| = 1, i.e., pairs(λ, λ̄−1).

An equivalence transformation between the C-
type and D-type pencils can be established starting
from theCayley transformation, c : C∪ {∞} → C∪
{∞}, defined by

µ= c(λ) = (λ−1)(λ +1)−1; c(−1) = ∞, c(∞) = 1.

Specifically, thegeneralized Cayley transformation
for matrix pairs is given by

(F ,B) = c(E ,A) = (A + E ,A −E) . (3)

Let
(Ẽ , Ã) := c(ED,AD) .

Then, an eigenvalue pair(λ, λ̄−1) of λED − AD is
transformed to an eigenvalue pair(µ,−µ̄) of λẼ − Ã,
with µ= c(λ), −µ̄= c(λ̄−1).

Unfortunately,λẼ − Ã has not the same block
structure asλEC −AC, and it cannot be put into the
continuous-time setting. This inconvenience can be
removed using the Cayley transformation followed by
a drop/add transformation(Xu, 2006):

(EC ,AC) = t(ED ,AD) ,

where t(·) = d(c(·)), and d corresponds to drop-
ping/addingD in theE part.

The Cayley plus drop/add transformation is sug-
gestively represented by the followingt transforma-
tion diagram:

λED−AD = λ
[

0 F
−GH 0

]
−

[
0 G

−FH D

]

c ↓↑ c−1

λẼ − Ã = λ
[

0 F̃
−F̃H D

]
−

[
0 G̃

G̃H D

]

dropD from Ẽ ↓↑ addD to Ẽ

λEC−AC = λ
[

0 F̃
−F̃H 0

]
−

[
0 G̃

G̃H D̃

]

whereF̃ := G+ F, G̃ := G−F, D̃ = D. It is worth
mentioning that thet transformation involves matrix
additions and subtractions only.

Only regular pencils are considered in the sequel.
A pencilλE −A is regular if E andA are square and
det(γE −A) 6= 0 for someγ ∈ C. A necessary regu-
larity condition is: if the C-type and D-type pencils
of ordern+q are regular, then

q− rankD̂ ≤ n≤ q,
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whereD̂ = D̃ andD̂ = D, for C-type and D-type pen-
cils, respectively.

The relation between the eigen-structure ofλE −
A andλF −B , (F ,B) = t(E ,A), can be summarized
as follows (see, e.g., (Mehrmann, 1991; Xu, 2006)):

(i) λE −A is regular if and only if (iff)λF −B is
regular.

(ii) λ ∈ Λ(E ,A) iff µ= c(λ) ∈ Λ(F ,B), andλ andµ
have the same geometric, partial, and algebraic multi-
plicities.

(iii) If λE −A is regular, then,Rλ = Rµ, Lλ = Lµ,µ=
c(λ), whereRx andLx are theright andleft deflating
subspacescorresponding to eigenvalue(s)x.

The C-type pencil (1) isskew-Hermitian/Hermi-
tian, i.e., EH

C = −EC,AH
C = AC, and it has the fol-

lowing main eigen-structure properties:

(i) λ ∈ Λ(EC,AC) iff −λ̄ ∈ Λ(EC,AC), andλ and−λ̄
have the same geometric, partial, and algebraic multi-
plicities.

(ii) Rλ = L−λ̄ andLλ = R−λ̄.

(iii) U is a basis matrix of a right deflating subspace
of λE −A corresponding toλS−T iff U is a basis
matrix of a left deflating subspace corresponding to
λ(−SH)−TH .

The eigenvalue pairing(λ,−λ̄) does not hold for
λ with ℜ(λ) = 0, since thenλ = −λ̄. But for such an
eigenvalue,Rλ = Lλ. This also holds forλ = ∞.

The regular D-type pencil (2) has the following
main eigen-structure properties (Mehrmann, 1991;
Xu, 2006):

(i) Nonzero finite eigenvalues come in pairs(λ, λ̄−1),
andλ, λ̄−1 have the same geometric, partial, and al-
gebraic multiplicities.

(ii) spanU = Rλ, spanV = Lλ iff span V̂ = Rλ̄−1,
spanÛ = Lλ̄−1, where spanX denotes the subspace
spanned by the columns of the matrixX, and

U =

[
U1
U2

]
, V =

[
V1
V2

]
∈ C

n+q,ℓ,

EDUT = ADU, SHVHED = VHAD , (4)

for T,S∈Cℓ,ℓ with Λ(T) = Λ(SH) = {λ}, λ 6= 0 (with
algebraic multiplicityℓ), and

Û =

[
U1T
U2

]
, V̂ =

[
V1S
V2

]
,

EDV̂S−1 = ADV̂, T−HÛHED = ÛHAD . (5)

Moreover, detVHEDU 6= 0 iff det ÛHEDV̂ 6= 0.

(iii) U =
[

UT
1 UT

2

]T is a basis matrix of a right
deflating subspace (left deflating subspace) ofλED−

AD corresponding toT ∈ Cp,p nonsingular, iffÛ =

[
(U1T)T UT

2

]T
is a basis matrix of a left deflat-

ing subspace (right deflating subspace) ofλED −AD
corresponding toT−H .

(iv) If 0 ∈ Λ(ED,AD) with algebraic multiplicity
ℓ0, then ∞ ∈ Λ(ED,AD) with algebraic multiplicity
greater than or equal toℓ0.

(v) The formulas for the relations between the basis
matrices of right/left deflating subspace forλ = 0 or
∞ are more complicated than for the caseλ 6= 0,∞.
The sizes of the submatrices depend on the algebraic
multiplicities of 0∈ Λ(GH ,FH) and 0∈ Λ(F,G).

The eigenvalue pairing(λ, λ̄−1) does not hold for
|λ| = 1, since thenλ = λ̄−1. But for such an eigen-
value,U in (4) is a basis matrix ofRλ iff Û in (5) is a
basis matrix ofLλ.

Eigenvalues 0 and∞ arepaired in a weak sense,
since the algebraic multiplicity of∞ may be greater
than or equal to the algebraic multiplicity of 0, and
R0 andL0 are only related to certain subspaces ofL∞
andR∞, respectively.

The equivalence relation between D-type and C-
type pencilsis shown below.

Assume(EC,AC) = t(ED,AD) and thatλED−AD
(or λEC−AC) is regular. Then,

(i) λ ∈ Λ(ED,AD), λ 6= −1,∞, iff µ = c(λ) ∈
Λ(EC,AC), µ 6= ∞,1, andλ andµ have the same geo-
metric, partial, and algebraic multiplicities.

(ii) spanU = R D
λ , spanV = LD

λ iff span Ũ = R C
µ ,

spanṼ = LC
µ , where the superscriptC or D refers

to (1) or (2), respectively,U and V satisfy (4) for
T,S∈ Cℓ,ℓ with Λ(T) = Λ(SH) = {λ} (with algebraic
multiplicity ℓ), and

Ũ =

[
U1(I +T)

2U2

]
, Ṽ =

[
V1(I +S)

2V2

]
,

ECŨT̃ = ACŨ , S̃HṼHEC = ṼHAC ,

whereT̃ = c(T), S̃= c(S), Λ(T̃) = Λ(S̃H) = {µ}, µ=

c(λ). Moreover, detVHEDU 6= 0 iff det ṼHECŨ 6= 0.

(iii) If −1 ∈ Λ(ED,AD), with algebraic multiplic-
ity ℓ−1, then ∞ ∈ Λ(EC,AC), with algebraic multi-
plicity greater than or equal toℓ−1. Suppose also
−1∈ Λ(GH ,FH), with algebraic multiplicityr1. Let

U =

[
U11 U12
0 U22

]
∈ C

n+q,ℓ−1, U11∈ C
n,r1,

EDUT = ADU, rankEDU = ℓ−1,

T =

[
T11 T12
0 T22

]
∈ C

ℓ−1,ℓ−1, T11 ∈ C
r1,r1 ,

with Λ(T) = {−1}. If U is a basis matrix ofR D
−1, then

the columns of

Ũ =

[
2U11 U12(T22+ I)

0 2U22

]
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span anℓ−1-dimensional (right and left) deflating sub-
space ofλEC−AC corresponding to eigenvalue∞.

(iv) Let ℓ−1, ℓ0, and ℓ∞ be the algebraic multiplic-
ities of the eigenvalues−1,0,∞ ∈ Λ(ED,AD) and
ℓ̃1, ℓ̃∞ the algebraic multiplicities of the eigenvalues
1,∞ ∈ Λ(EC,AC). Then,ℓ0 = ℓ̃1 and

ℓ̃∞ = ℓ∞ − ℓ0+ ℓ−1, ℓ∞ = ℓ̃∞ − ℓ−1+ ℓ̃1.

Specifically, with t, ∞ ∈ Λ(EC,AC) comes from
−1 ∈ Λ(ED,AD) (with multiplicity ℓ−1) and ∞ ∈
Λ(ED,AD) (with multiplicity ℓ∞ − ℓ0).

If −1∈ Λ(EC,AC) (i.e., 0∈ Λ(ED,AD)), then 1∈
Λ(EC,AC), and it comes from∞ ∈ Λ(ED,AD). Only
part of∞ ∈ Λ(ED,AD) is transformed into 1, to match
−1∈ Λ(EC,AC).

3 DEFLATING SUBSPACES FOR
SKEW-HAMILTONIAN/
HAMILTONIAN PENCILS

Thestructure-preserving algorithms and softwareare
more advanced for CAREs, based on deflating sub-
spaces for skew-Hamiltonian/Hamiltonian pencils.
Extensions of theHAPACK approachare currently
under development. In the sequel, the pencilsλM−N
will be represented in the numerically better form
αM−βN, with λ = α/β (possibly∞).

Since the structured algorithms for skew-Hamil-
tonian/Hamiltonian pencils work on problems with
even size, a basic idea is to embed the matrix pen-
cil, addingk ≥ 0 fictitious controls, so thatm+ k is
even. The solution of the optimal control problem
corresponding to CARE, hence to

αEc−βAc = α




E 0 0
0 −EH 0
0 0 0



−β




A 0 B
Q AH L
LH BH R



,

is unchanged fork new controls, withB̃ = 0n×k,
R̃= Ik, andD replaced by block-diag(D,R̃), with

D :=

[
Q L
LH R

]
.

Partition, with ℓ = (m+ k)/2, Bi ∈ Cn×ℓ, Li ∈
Cn×ℓ, Ri j ∈ Cℓ×ℓ, i, j = 1,2,

[
B B̃

]
=

[
B1 B2

]
,




Q L 0
LH R 0
0 0 R̃



 =




Q L1 L2
LH

1 R11 R12
LH

2 R21 R22



 .

Reordering the variables and equations, the following

skew-Hamiltonian/Hamiltonian pencilis obtained

αEe
c −βAe

c = α




E 0 0 0
0 0 0 0
0 0 EH 0
0 0 0 0




−β




A B1 0 B2
LH

2 RH
12 BH

2 R22
−Q −L1 −AH −L2
−LH

1 −R11 −BH
1 −R12


 . (6)

Let αS −βH be skew-Hamiltonian/Hamiltonian, i.e.,
(SJ )H = −SJ , (H J )H = H J . For some cases,
including in linear-quadratic optimization applica-
tions, S is given in a factored form, the so-called
skew-Hamiltonian Cholesky factorization, defined by
S = J ZHJ TZ. For instance, in (6) withS = Ee

c ,

Z =




In 0 0 0
0 Iℓ 0 0
0 0 EH 0
0 0 0 0


 .

A skew-Hamiltonian matrix having such a factoriza-
tion is said to beJ -semidefinite.

Some properties of skew-Hamiltonian/Hamilto-
nian pencils are summarized below (Benner et al.,
2002):

(i) Real skew-Hamiltonian matrices areJ -semide-
finite.

(ii) The structure of skew-Hamiltonian/Hamiltonian
matrix pencils is preserved underJ -congruence:

αS −βH → J Y HJ T(αS −βH )Y ,

for Y nonsingular.

(iii) A skew-Hamiltonian matrixS of order 2n is J -
semidefinite (J -definite) iff ıJ S has at most (exactly)
n positive and at most (exactly)n negative eigenval-
ues, whereı := (−1)1/2.

(iv) If S is skew-Hamiltonian (H is Hamiltonian) and
there isY nonsingular, such that

J Y HJ T SY =

[
S11 S12

0 SH
11

]

(J Y HJ TH Y =

[
H11 H12

0 −HH
11

]
)

with S11,S12(H11,H12) ∈ Cn×n, then S (ıH ) is J -
semidefinite.

(v) Let αS − βH be regular skew-Hamiltonian/
Hamiltonian withν pairwise distinct, nonzero finite
eigenvaluesıαi , of algebraic multiplicitypi , and as-
sociated right deflating subspaceQi , i = 1 : ν; let p∞,
Q∞, be defined similarly for eigenvalue∞. The fol-
lowing statements are equivalent:
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(a) There exists a nonsingular matrixY , such that

J Y HJ T(αS −βH )Y =

α
[

S11 S12

0 SH
11

]
−β

[
H11 H12

0 −HH
11

]
, (7)

whereS11 and H11 are upper triangular,S12 skew-
Hermitian, andH12 Hermitian.
(b) There exists a unitary matrixQ , such that (7)
holds forY replaced byQ .
(c) Q H

k J SQk is congruent to apk × pk copy of J ,
k = 1,2, . . . ,ν; Q H

∞ J H Q∞ is congruent to ap∞ × p∞
copy ofıJ .

(vi) Factored version: Let αS − βH be a skew-
Hamiltonian/Hamiltonian pencil with nonsingularJ -
semidefinite skew-Hamiltonian partS = J ZHJ TZ. If
any of the equivalent statements above holds, then
there is a unitary matrixQ and a unitary symplectic
matrix U, such that

UHZQ =

[
Z11 Z12
0 Z22

]
,

J Q HJ TH Q =

[
H11 H12

0 −HH
11

]
,

whereZ11, ZT
22, andH11 aren×n upper triangular.

(vii) If ıH is also nonsingularJ -semidefinite, i.e.,
ıH = J W

H
J TW , then

UHZQ =

[
Z11 Z12
0 Z22

]
,

UHW Q =

[
W11 W12
0 W22

]
,

whereZ11, ZT
22, W11, andWT

22 aren×n upper triangu-
lar.

(viii) Factored version, real skew-Hamiltonian/skew-
Hamiltonian case: Let αS − βN be a real regu-
lar skew-Hamiltonian/skew-Hamiltonian pencil with
S = J ZTJ TZ. Then, there is an orthogonal matrixQ
and an orthogonal symplectic matrixU, such that

UTZQ =

[
Z11 Z12
0 Z22

]
,

J Q TJ TN Q =

[
N11 N12

0 NT
11

]
,

where Z11, ZT
22 are upper triangular,N11 is upper

quasi-triangular, andN12 = −NT
12. Moreover,

J Q TJ T(αS −βN )Q =

α
[

ZT
22Z11 ZT

22Z12−ZT
12Z22

0 ZT
11Z22

]
−β

[
N11 N12

0 NT
11

]

is a J -congruent skew-Hamiltonian/skew-Hamilto-
nian matrix pencil.

Comments:

1. The result (viii) above is used to compute thestruc-

tured Schur formof order 4n for a complex skew-
Hamiltonian/Hamiltonian pencil.
2. The periodic QZ algorithm is used.
3. Algorithms for eigenvalue reordering and deflating
subspace computation are available.

Below is a summary about the related software:

• Fortran and MATLAB software for eigenvalues and
deflating subspaces are under development.
• Both real and complex cases are considered.
• Factored or unfactored versions are covered.
• Auxiliary routines for problems (of even order) with
(quasi-)triangular structure are included.
• Optimized kernels for problems of order 2, 3, or 4,
called by the general solvers, are available.

To compute or reorder the eigenvalues, the com-
putations begin with an initial reduction, calledgen-
eralized symplectic URV decomposition, whosefac-
tored versionis defined as follows (Benner et al.,
2007):
Given a real skew-Hamiltonian/Hamiltonian 2n× 2n
pencil αT Z − βH , orthogonal matricesQ1, Q2 and
orthogonal symplectic matricesU1, U2 are deter-
mined, such that

Q T
1 T U1 =

[
T11 T12
0 T22

]
,

UT
2 ZQ2 =

[
Z11 Z12
0 Z22

]
,

Q T
1 H Q2 =

[
H11 H12
0 H22

]
,

whereT11, TT
22, Z11, ZT

22, andH11 are upper triangular,
andHT

22 is upper quasi-triangular. The matricesU1
andU2 are stored compactly (the firstn rows only),
since, fori = 1,2,

Ui =

[
Ui1 Ui2
−Ui2 Ui1

]
.

4 NUMERICAL RESULTS

This section presents some preliminary numerical re-
sults. These results have been obtained on a portable
Intel Dual Core computer at 2 GHz, with 2 GB
RAM, and relative machine precisionε ≈ 1.11×
10−16, using Windows XP (Service Pack 2) operat-
ing system, Intel Visual Fortran 11.1 compiler, and
MATLAB 7.8.0.347 (R2009a). The matrices

S =

[
A B
C AH

]
, H =

[
D E
F −DH

]
,

whereA, B, C, D, E, F ∈ Cn×n, have been initially
generated with MATLAB commands of the form
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list
A = 10*rand(n)-5 + (10*rand(n)-5)*1i;

whererand is the uniform (0,1) random generator,
and1i is the MATLAB notation for the purely imag-
inary unit, ı. Then, theB, C, E, andF matrices have
been transformed using the formulas

B := B−BH, B := B/2; C := C−CH ,

E := E +EH, E := E/2; F := F +FH ,

to become skew-Hermitian, and Hermitian, respec-
tively. Therefore, the pencilλS − H is skew-
Hamiltonian/Hamiltonian.

The ordern took the valuesn = 100,200, . . . ,
800. For each ordern≤ 500, 10 problems have been
solved, and the means of the results are reported.
For largern values, one problem has been solved for
eachn. The generalized eigenvalues computed by a
structure-preserving algorithm have been compared
with those delivered by the standard QZ algorithm,
optimally implemented in the MATLAB functioneig.

Fig. 1 presents the ratios of the mean CPU times,
in seconds, i.e., the speed-up factor of the structured
algorithm, in comparison with the standard algorithm.
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Comparison of CPU times for eig / structured algorithm

Figure 1: Ratios between the CPU times needed by
the MATLAB function eig and the structure-preserving
algorithm for randomly generated complex skew-
Hamiltonian/Hamiltonian pencils of order 2n.

The deviation from symmetry of the eigenval-
ues computed byeig has also been computed as
the difference between the vector of eigenvaluesλ =
[λ1,λ2, . . . ,λ2n]

T and a permutation of the elements
of the vector−λ̄, chosen so that the elements with
the same indices in the two vectors be as close as
possible. The largest norm has been 4· 10−10, and
the smallest norm has been 1.90· 10−12. The norms
should theoretically be 0.

5 CONCLUSIONS

Main issues related to the structure-preserving algo-
rithms for solving discrete-time algebraic matrix Ric-
cati equations are summarized. Stable deflating sub-
spaces for extended, inverse-free symplectic matrix
pencils, are computed. Algorithms based on skew-
Hamiltonian/Hamiltonian pencils derived by an ex-
tended Cayley transformation, which only involves
matrix additions and subtractions, are considered.
The preliminary results are encouraging.
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