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Abstract: Structure-preserving algorithms for solving discrete-time algebraic matrix Riccati equations are presented.
The proposed techniques extract the stable deflating subspaces for extended, inverse-free symplectic matrix
pencils. The algorithms are based on skew-Hamiltonian/Hamiltonian pencils derived by an extended Cayley
transformation, which only involves matrix additions and subtractions. The structure-preserving approach
has the potential to avoid the numerical difficulties which are encountered for a traditional, non-structured
solution, returned by the currently available software tools.

1 INTRODUCTION There are several basic approaches for solving al-
gebraic Riccati equations (ARES):

Consider theontinuous-time algebraic Riccati equa- 1 Treat an ARE as a nonlinear system of equations

tion (CARE) usingNewton’s method (with line search)
0=Q+A"XE+E"XA-E"XWXE 2. Use the connection tdamiltonian eigenproblem

and the discrete-time algebraic Riccati equation The second approach for CARE, wih= I, is based

(DARE) on the identity

E"XE = Q+A"XA- A"XB(R+B"XB) 1B XA A —W I I

where A E,W,Q € C™", B € C™™, R e C™M, { -Q -A" ] [ X ] B { X ](A_WX)’

W =W", Q=Q" R=R", E is nonsingular, and  hence, ifx is stabilizing, them (A—WX) = A (H)
W:=BR "B". More general equations are obtained - \hereH is the first matrix in the above formula,
by replacinge"XB andA"XB above byL + E"XB  anqC-:= {ze C : O(2) < 0}. Consequently, the
andL + A"XB, respectively, wheré € C™™. The  columns of[I, XT|T span thestableinvariant sub-
real case is obtained by replacifigby R, and the  space of the Hamiltonian matrid. Therefore, it is
conjugate-transpose operatdrby the transpose op-  possible to compute the statfteinvariant subspace

eratorT. ; _ via eigendecomposition or block-Schur factorization,
In applications, usually thetabilizing solution X

is required, hence, e.g., for DAREE — (A—B(R+ 1 Hi1 Hi Uir U2

BHX.B)1B"X.A) is a (Schur) stable matrix pencil, Y Y= | Hoy | U= Uy U |

i.e, A(A-B(R+B"X.B)"1B"X.AE) c C :={zc

C : |7 < 1}, whereA (M) denotes the spectrum of a and the solution is given by = Up U ;%

matrix or pencilM. If Ris ill-conditioned, it is advisable to use ex-
CAREs and DAREs arise in many applications, tended matrix pencils, for better accuracy (Bender

such as, stabilization and linear-quadratic regulator and Laub, 1987a; Bender and Laub, 1987b; Lancaster

problems, Kalman filtering, linear-quadratic Gaus- and Rodman, 1995; Mehrmann, 1991; Van Dooren,

sian Hz-) optimal control problems, computation of 1981):

(sub)optimalH., controllers, model reduction tech- —extended pencil for CARE

niques based on stochastic, positive or bounded real A O B E 0

LQG balancing, factorization procedures for transfer n_\m = [ Q AH L ] Y [

functions (here, usuallg # I,,). tH BH R
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—extended pencil for DARE

A 0 B E 0 O
N-AM=| Q —-E" L |-x]| 0 —-A" o0].
LH 0 R 0 -BY 0

If [U] U] U] ] spans the stable deflating sub-
space ofN — AM, thenX, = Up(EU;)~. The feed-
back gain matrix for the linear-quadratic optimal reg-
ulator can be computed directly vigi= UzU; 1

If Ris nonsingularg = I, andL = 0, the above
pencils can be reduced tonZ 2n Hamiltonian and
symplectic pencils, respectively, by removing the sub-
pencils with infinite eigenvalues (Paige and Van Loan,

1981; Pappas et al., 1980; Mehrmann, 1991). A pen-

cil N — AM is Hamiltonianif N9JMH = —MJN", and
it is symplectidf NJN" = MsM", where

: 0 I
y.[,no]
The general pencils inherit most of the spectral prop-
erties of the corresponding reduced Hamiltonian or
symplectic pencils.

The pencils above have much structure, which
should be exploited in order to improve the numer-
ical properties of the Riccati solvers. The approach
we follow is to transform the discrete-time problem
to an equivalent continuous-time problem, and use
the newly developed skew-Hamiltonian/Hamiltonian
eigensolvers for the latter problem, suitably extended.

2 EQUIVALENCE OF PENCILS
IN CONTINUOUS-TIME AND
DISCRETE-TIME PROBLEMS

A block column permutation (and sign change) gives,

equivalently:
— extended pencil for CARE:

0 E O 0", AN B
M -EH o0 of|-| A" Q L |;
0 0 0 B LH R
— extended pencil for DARE:
0 E O 0 A B
A -A" 0 o|-| -E" Q L |.
-B" 0 o0 o " R

These pencils are special cases of the follovidtogk
structured C-typ@ndD-type pencilgXu, 2006):

Afc—ﬂczA[_(FlH E]—[é’H g] ()
and
A%%A{%H E]{gH S],(Z)
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respectively, wher&,G,F,G € C"9, q=n+m, and
D, D € C%9 areHermitian, i.e.,D = D", D = D".

These pencils have importagpiectral properties
C-type: symmetry abouf (z) =0, i.e., pairA,—A);
D-type: symmetry about|z = 1, i.e., pairgA,A71).

An equivalence transformation between the C-
type and D-type pencils can be established starting
from the Cayley transformationc: CU {0} — CU
{0}, defined by

H=cA)=A-1)(A+1)"% ¢(—1) = o, c(w) = 1.

Specifically, thegeneralized Cayley transformation
for matrix pairs is given by

(F,B)=c(E,4)=(A+E,4-F). (3)

Let o

(£,A4) = c(Ep, Ap)-
Then, an eigenvalue paiiA,A~!) of AEp — 4p is
transformed to an eigenvalue p&ir, —p) of AE — 4,
with u=c(A), —pt=c(A1).

Unfortunately, AE — 4 has not the same block
structure a\'Ec — Ac, and it cannot be put into the
continuous-time setting. This inconvenience can be
removed using the Cayley transformation followed by
adrop/add transformatioiiXu, 2006):

(‘Zb;ﬂc):t(‘ZD;ﬂD>v

where t(-) = d(c(:)), andd corresponds to drop-
ping/addingD in the E part.

The Cayley plus drop/add transformation is sug-
gestively represented by the followingransforma-
tion diagram

oo 80 5[ &0 ]
clret
R EHECH
droprrom%u addDto £
enes] 8 5]-[& 8]

whereF :=G+F, G:=G—F, D=D. Itis worth
mentioning that the transformation involves matrix
additions and subtractions only.

Only regular pencils are considered in the sequel.
A pencilA\E — 4 isregularif £ and4 are square and
detlyE — 4) # 0 for somey € C. A necessary regu-
larity conditionis: if the C-type and D-type pencils
of ordern+ g are regular, then

gq—rankD <n<q,
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whereD = D andD = D, for C-type and D-type pen-
cils, respectively.

The relation between the eigen-structure\@f —
Aand\F — B, (F,B) =t(E,A4), can be summarized
as follows (see, e.g., (Mehrmann, 1991; Xu, 2006)):
() AE — A4 is regular if and only if (iff)AF — B is
regular.

(i) A e A(E,A) iff p=c(A) € A(F,B), andA andp
have the same geometric, partial, and algebraic multi-
plicities.

(iii) If AE— Ais regular, then®y = Ry, L) = L, U=
c(A), where®y and Ly are theright andleft deflating
subspacesorresponding to eigenvaluefs)

The C-type pencil (1) iskew-Hermitian/Hermi-
tian, i.e., Y = —Zc, 4 = A4c, and it has the fol-
lowing main eigen-structure properties:

(i) A € A(Ec, Ac) iff =N € N(Ec, Ac), andh and—A
have the same geometric, partial, and algebraic multi-
plicities.

(i) Ry = L _y andLy = R 5.

(iif) U is a basis matrix of a right deflating subspace
of AE — 4 corresponding taS—T iff U is a basis
matrix of a left deflating subspace corresponding to
A=S1)—TH.

The eigenvalue pairin@\, —A) does not hold for
A with O(A) = 0, since therh = —A. But for such an
eigenvalue®, = £,. This also holds fok = .

The regular D-type pencil (2) has the following
main eigen-structure properties (Mehrmann, 1991;
Xu, 2006):

(i) Nonzero finite eigenvalues come in pajis A1),
and\, A~1 have the same geometric, partial, and al-
gebraic multiplicities.

(i) spanU = R,, spanV = £, iff spanV = R 1,

spanU = £, 1, where sparX denotes the subspace
spanned by the columns of the matkxand

Ml WU V1 n+a,l
U[UZ},V[VJGC ,

EoUT = AU, SV Ey =VH a2y, (4)

for T,Sc CH with A(T) = A(SH) = {A}, A # 0 (with
algebraic multiplicity?), and

B ViS

) V2

VSt =2V, T HUHE, =0 5. (5)
Moreover, dev/H EpU £ 0 iff det UM ZpV £ 0.

(i) U=[ Ul UJ ] is a basis matrix of a right
deflating subspace (left deflating subspace})ﬁj —
Ap corresponding td € CP-P nonsingular, iffU =

~

V =

[ U U] }T is a basis matrix of a left deflat-
ing subspace (right deflating subspace\@&b — 4p
corresponding t@ ™.

(iv) If 0 € A(%p,Ap) with algebraic multiplicity
Lo, thenoo € A(Ep, Ap) with algebraic multiplicity
greater than or equal .

(v) The formulas for the relations between the basis
matrices of right/left deflating subspace foe= 0 or

oo are more complicated than for the case‘ 0, .

The sizes of the submatrices depend on the algebraic
multiplicities of 0c A(GH,FH) and 0c A(F,G).

The eigenvalue pairingh, A1) does not hold for
|A| = 1, since therA = A~L. But for such an eigen-
value,U in (4) is a basis matrix o, iff Jin (B)isa
basis matrix ofz, .

Eigenvalues 0 aneb arepaired in a weak sense,
since the algebraic multiplicity ok may be greater
than or equal to the algebraic multiplicity of 0, and
Ro and Lo are only related to certain subspacedf
and R, respectively.

The equivalence relation between D-type and C-
type pencilss shown below.

Assume(‘Zc, Ac) =t(‘Ep, Ap) and that\ Ep — 4p
(orAEc — Ac) is regular. Then,

(i) A € A(Ep,4p), A # -1, iff p=-c(A) €
N(Ec, Ac), W# 0,1, andA andp have the same geo-
metric, partial, and algebraic multiplicities.

(i) spanU = P, spanV = LD iff spanU = RS,
spanV = [1? where the superscrif or D refers
to (1) or (2), respectivell) andV satisfy (4) for
T,Se CH with A(T) = A(S7) = {A} (with algebraic
multiplicity ¢), and
Ui(I1+T) Vi(l+9)
2U» ’ pAYS ’
TcUT = 40U, SWHE =V ac,
whereT =c(T),S=¢(S), A(T) =A(S") = {i}, u=
c(A). Moreover, deV" £pU +# 0 iff det VP £cU # 0.
(iii) If —1 € A(Ep,4p), with algebraic multiplic-
ity ¢_1, theno € A(Zc, Ac), with algebraic multi-

plicity greater than or equal t6_;. Suppose also
—1¢e A(GH FH), with algebraic multiplicityr;. Let

U:

V =

U= |: U(j)_l 822 :| c (Cn+q,€,1, U11€ (Cn,rl’
FpUT = ApU, rankEpU =/_1,
T= |: Tél_)l :;;2 :| c (Cf,l,f,l’ Tll c (CI’J_,I’J_7

with A(T) = {—1}. If U is a basis matrix o 2, then
the columns of

g [ 2u

0

U12(To2+1)
2
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span arf_1-dimensional (right and left) deflating sub-
space o\ Ec — Ac corresponding to eigenvalue

(iv) Let £_4, fo, and /s, be the algebraic multiplic-
ities of the eigenvalues-1,0,00 € A(%p,4p) and
(1, L the algebraic multiplicities of the eigenvalues
1,00 € A(Ec, Ac). Then,fo = /1 and

lo="lo—Llo+0_1,  lo="lo—{_1+01.

Specifically, witht, « € A(%c,4c) comes from
—1 € A(%p,Ap) (with multiplicity ¢_1) and o €
NA(Ep, Ap) (with multiplicity e — £o).

If —1e€ A(%Ec,Ac) (i.e., 0 A(Ep, Ap)), then 1€
NA(Ec, A4c), and it comes frome € A(Ep, Ap). Only
part ofeo € A(ZEp, 4p) is transformed into 1, to match

—1eN(Ec, Ac).

3 DEFLATING SUBSPACESFOR
SKEW-HAMILTONIAN/
HAMILTONIAN PENCILS

Thestructure-preserving algorithms and softwane
more advanced for CARESs, based on deflating sub-
spaces for skew-Hamiltonian/Hamiltonian pencils.
Extensions of thetHAPACK approachare currently
under development. In the sequel, the pendils— N

will be represented in the numerically better form
oM — BN, with A = a/B (possiblye).

Since the structured algorithms for skew-Hamil-
tonian/Hamiltonian pencils work on problems with
even size, a basic idea is to embed the matrix pen-
cil, addingk > 0 fictitious controls, so than+k is
even. The solution of the optimal control problem
corresponding to CARE, hence to

E 0 0 A S0 B
aF—BA=a| 0 —EH o0 |-B| Q A L |
0O 0 o0 LH B R

is unchanged fok new controls, wit~hI§ = Onuk,
R = Iy, andD replaced by block-diad, R), with

o:-| & &|

LH
Partition, with? = (m+k)/2, Bi € C™, L; €
(Cnxé, Rjj c (CZX(,’, i,j — 172,

L
R

(B B] = [B B ],
Q L O Q L L
" R O = LY Rt Ry |.
0 0 R Ly R R

Reordering the variables and equations, the following
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skew-Hamiltonian/Hamiltonian pendsg obtained

E 0 O O
0O 0 0 O
e e __
0Fc—BA =0l 5 o EH 0
0O 0 0 O
A By 0 By
-B |-|2_| R?Z Bg Ro2 (6)
-Q -L A" -
LY —Ruu -BY —Rp

LetasS — B#H be skew-Hamiltonian/Hamiltonian, i.e.,
(SHH = -89, (H9)" = #J. For some cases,
including in linear-quadratic optimization applica-
tions, § is given in a factored form, the so-called
skew-Hamiltonian Cholesky factorizatiatefined by
S =192"97 z. For instance, in (6) witts = ¢,

I, O 0 0
lo 1, 0 0
Z2=10 0 E" O
00 0 0

A skew-Hamiltonian matrix having such a factoriza-
tion is said to bef-semidefinite

Some properties of skew-Hamiltonian/Hamilto-
nian pencils are summarized below (Benner et al.,
2002):

(i) Real skew-Hamiltonian matrices argsemide-
finite.
(ii) The structure of skew-Hamiltonian/Hamiltonian
matrix pencils is preserved undgércongruence

as —BH — 3" 7T (a5 —BH)Y,
for & nonsingular.

(iii) A skew-Hamiltonian matrix$§ of order A is J-
semidefinite {-definite) iff 175 has at most (exactly)
n positive and at most (exactly) negative eigenval-
ues, where := (—1)¥/2,

(iv) If S is skew-Hamiltonian4{ is Hamiltonian) and
there i nonsingular, such that

H,T -~ S S
ISy = [ 5 gfl]

H,T -~ Hi1  Hi2
U HY = [ 0 -Hfj ])

with S11,S12(H11,H12) € C™ N thensS (1H) is J-
semidefinite.

(v) Let aS — BH be regular skew-Hamiltonian/
Hamiltonian withv pairwise distinct, nonzero finite
eigenvaluesa;, of algebraic multiplicityp;, and as-
sociated right deflating subspa@g i =1 :v; let po,
Q. be defined similarly for eigenvalue. The fol-
lowing statements are equivalent:
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(a) There exists a nonsingular matfi% such that
I (08 - BH)Y =
Si1 Sz Hix  Hi2
o[ 5 &[T ] oo
where §1 and Hy1 are upper triangulars, skew-
Hermitian, andHi2 Hermitian.
(b) There exists a unitary matrig, such that (7)
holds for9 replaced byQ.
(©) QkH]_SQk is congruent to gk x px copy of 7,
k=1,2,...,v; Q' 7H Q. is congruent to g X P
copy of17J.
(vi) Factored version: Let oS — BH be a skew-
Hamiltonian/Hamiltonian pencil with nonsingulgr
semidefinite skew-Hamiltonian past= 72" 77 z. If
any of the equivalent statements above holds, then
there is a unitary matrix) and a unitary symplectic
matrix U, such that

H o Z11 Z1o
ahzq = { 1 222],
HaT Hi1  Ho

]Q, J }[Q - |: 0 _Hjl:ll :| )

whereZ;1, Z}z, andHj1 aren x n upper triangular.

(vii) If 174 is also nonsingulay-semidefinite, i.e.,
1H = W 5T W, then

H - 711 Za2
aze = [ 0 Zx } ;
W, W
Hopo — h1 W2

whereZy1, Z1,, W1, andW,, aren x n upper triangu-
lar.

(viii) Factored version, real skew-Hamiltonian/skew-
Hamiltonian case: Let a$§ — BA_ be a real regu-
lar skew-Hamiltonian/skew-Hamiltonian pencil with
S = 92" 97 z. Then, there is an orthogonal mati
and an orthogonal symplectic matrix, such that

T Z11 Zip
U zQ = 0 Zy |’
T, T N1z Ni2

where Z;1, ZJ, are upper triangularNy; is upper
quasi-triangular, anbl, = —N/,. Moreover,
N11 le}

IQT I (@S —BN)Q =
]‘B[ 0 N,

a 20,211 23,712 2],75;
0 Z11Z»

is a J-congruent skew-Hamiltonian/skew-Hamilto-

nian matrix pencil.

Comments:

1. The result (viii) above is used to compute gtieic-

tured Schur fornof order 4 for a complex skew-
Hamiltonian/Hamiltonian pencil.

2. The periodic QZ algorithm is used.

3. Algorithms for eigenvalue reordering and deflating
subspace computation are available.

Below is a summary about the related software:

e Fortran and MTLAB software for eigenvalues and
deflating subspaces are under development.

e Both real and complex cases are considered.

e Factored or unfactored versions are covered.

o Auxiliary routines for problems (of even order) with
(quasi-)triangular structure are included.

e Optimized kernels for problems of order 2, 3, or 4,
called by the general solvers, are available.

To compute or reorder the eigenvalues, the com-
putations begin with an initial reduction, callgén-
eralized symplectic URV decompositiavhosefac-
tored versionis defined as follows (Benner et al.,
2007):

Given a real skew-Hamiltonian/Hamiltoniam 2 2n

pencila7 z — B#H, orthogonal matriceg), @ and

orthogonal symplectic matricegl;, U, are deter-
mined, such that

T - Tz Ti2

U TYO= | 0 T2 ] ’
T _ Z11 Z12

(UZ ZQZ - | 0 222 :| )
T [ Hi1 Hi

Ql }[QZ - I 0 H22 :| )

whereTu, T),, Z11, Z3,, andHy1 are upper triangular,
andHJ, is upper quasi-triangular. The matricés
and U, are stored compactly (the firgtrows only),
since, fori =1, 2,

4 NUMERICAL RESULTS

Ui1
—Uiz

Uiz
Uiz

U

This section presents some preliminary numerical re-
sults. These results have been obtained on a portable
Intel Dual Core computer at 2 GHz, with 2 GB
RAM, and relative machine precision~ 1.11 x
10716, using Windows XP (Service Pack 2) operat-
ing system, Intel Visual Fortran 11.1 compiler, and
MATLAB 7.8.0.347 (R2009a). The matrices

A B D E
-[2 2] (2 5]
whereA, B, C, D, E, F € C™", have been initially

generated with MTLAB commands of the form
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I'ist

A = 10*rand(n)-5 + (10*rand(n)-5)*1i;

wherer and is the uniform (0,1) random generator,
andli is the MATLAB notation for the purely imag-
inary unit,1. Then, theB, C, E, andF matrices have
been transformed using the formulas

B:=B-B", B:=B/2; C:=Cc-C",
E:=E+E", E:=E/2, F:=F+F"

to become skew-Hermitian, and Hermitian, respec-

tively. Therefore, the pencihS — H is skew-
Hamiltonian/Hamiltonian.

The ordern took the valuesh = 100 200, ...,
800. For each order < 500, 10 problems have been

5 CONCLUSIONS

Main issues related to the structure-preserving algo-
rithms for solving discrete-time algebraic matrix Ric-
cati equations are summarized. Stable deflating sub-
spaces for extended, inverse-free symplectic matrix
pencils, are computed. Algorithms based on skew-
Hamiltonian/Hamiltonian pencils derived by an ex-
tended Cayley transformation, which only involves
matrix additions and subtractions, are considered.
The preliminary results are encouraging.
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Figure 1: Ratios between the CPU times needed by
the MATLAB function ei g and the structure-preserving
algorithm for randomly generated complex skew-
Hamiltonian/Hamiltonian pencils of order 2n.
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