
INFORMATION MICROSYSTEMS

Jordi Pradel, Jose Raya and Xavier Franch
Agilogy, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Keywords: Information Systems, Data Conceptual Models, Architectural Styles.

Abstract: Given their need to manage the information they have under control, organizations usually choose among
two types of widely used IT solutions: 1) information systems based on databases (DBIS) that are powerful
but expensive to develop and not much flexible; 2) spreadsheets, which threaten the integrity of the data and
are limited in exploiting it. In this paper we propose a new type of IT solution, namely information
microsystems (MicroIS), that aims at reconciling the best of these two worlds: the low development and
maintenance costs, ease of use and flexibility of spreadsheets, with the structure, semantics and integrity of
DBIS. The goal is not to replace any of the above two paradigms but to lie somewhere in between
depending on the changing needs of the organization. From the various possible points of interest of this IT
solution, the article will focus specifically on issues related to data management, introducing the conceptual
model of MicroIS, the transformations and validations that can be done around it, and they way in which the
structure of the information is inferred from the data that users provide.

1 INTRODUCTION

Nowadays, organizations of any kind require storing
and processing a big amount of information of all
types. With this goal, they may follow different
options. On the one hand, the development of
information systems (IS) allows managing the
information in a highly efficient and secure way
with purposes such as transaction processing,
decision-making support, knowledge management,
etc. Such systems usually are deployed as a
collection of services (bespoke, acquired or licensed)
over an architectural solution that relies on a
(typically relational) data base. We label this type of
solution with the acronym DBIS (Data Base-based
Information System).

Another type of tool that has facilitated
information processing in organizations is that of
spreadsheets. Through an extremely simple and easy
to understand paradigm and offering an almost
unlimited flexibility concerning the contents of each
table’s cell, it becomes straightforward to create, at a
minimum cost, small systems that allow storing
information and solving, at least partially, the
automation needs of the organization without being
necessary to face a complex IT solution
development process.

Both paradigms lie in opposite edges with
respect to flexibility: whilst DBIS restrict the system

entries that are valid, spreadsheets allow writing
almost any value at any cell. This divergence results
in a big difference concerning data integrity, that is
almost complete in DBIS and virtually inexistent in
spreadsheets. They are very different with respect to
development cost: spreadsheets allow reusing the
same generic user interface in all the applications,
whilst in DBIS it is necessary either to develop the
whole, or part of a former one, system, or to
parameterise a generic system, being required in
both cases to have some knowledge on software
development and integration, which results in a high
initial cost to be invested before obtaining the
implied benefits. Last, another aspect equally
important is the difference with respect to mobility:
whilst spreadsheets may be ported without much
effort from one platform to another, DBIS require a
migration process that is not so straightforward.

The purpose of this paper consists on presenting
a solution that allows building IS with the same
properties than spreadsheets: easy of use, a minimal
initial cost and short-term return on investment but
that, unlike spreadsheets, supports evolution into an
DBIS, with integrity rules, relationships among data,
etc. The proposal will reflect the decisions made by
two of the three authors in their daily work in a
small IT solution-provider company (4 IT workers)
that is specialized in deploying custom-made IT
solutions to small enterprises that usually cannot
afford the high cost of DBIS. In fact, the case study

57
Pradel J., Raya J. and Franch X. (2010).
INFORMATION MICROSYSTEMS.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 57-62
DOI: 10.5220/0003020000570062
Copyright c© SciTePress

that will be used throughout the paper for illustration
purposes reflects one of these real projects. Since
our purpose is to facilitate the deployment of small
IS, we have named this new type of IT solution as
Information Microsystems (MicroIS for short). Fig.
1 summarises the main purpose of MicroIS as a
compromise among DBIS and spreadsheets.

Structure and semantics
Personalization

Integrity

Flexible structure
Ease of use

Short-term Return on Investment

Limited functionality
Proliferation of copies

Lack of integrity

Rigidity
Need of programming
Aprioristic modeling

DBIS Spreadsheet

Information
Microsystems

Figure 1: MicroIS: a trade-off among DBIS and
spreadsheets.

As shown in this introduction, the problem faced
by MicroIS is complex and for reasons of space we
focus on this work in areas directly related to the
issue of data structuring. In particular we address the
two following features:

 Semi-automatic data modeling: The system shall,
by appropriate heuristics, suggest the user
possible improvements in the data schema from
the analysis of the stored information so far, in a
way that that a user without knowledge of
conceptual modeling may add structure to his/her
IS. Therefore, the data schema can evolve safely
and easily, without affecting the data already
stored.

 Non-intrusive integrity constraints: The system
will know the data integrity constraints and will
show and ask the user for those values that do
not comply them, and eventually will provide
suggestions for corrections, but these possible
violations of the rules will never prevent the user
to enter the data that they want. At every
moment, the user will be able to locate and
correct the inconsistencies if desired.

2 RELATED WORK

The dichotomy DBIS – Spreadsheets is well-known
and has been addressed by several authors. The
Dabble blog (2005) presents clearly the problematic

of those DBIS whose utility does not guarantee the
return on investment that its development requires
and relates this fact with the concept of "long-tail"
(Kraus, 2005), stating that there is a great deal of
small IS that have not been developed as such for
this reason. The conclusion, however, is very clear
stating that the solution to this problem is not
spreadsheet adoption.

Why, then, are spreadsheets used to implement
this type of system? Baker, Foster-Johnson, Lawson,
and Powell (2006) did an analysis of spreadsheets
over a population of approximately 1600
individuals, noting that only 23% of respondents did
some form of modeling prior to the development of
the spreadsheet. It is reported that the absence of a
need for aprioristic modeling facilitates the IS
creation, because the user can start to enter data
from the very beginning, and add formulas and
formats as need, whilst they are discovered.
Problems arise once information needs evolve, and
inconsistencies start to appear or simply its daily use
becomes cumbersome given the little support
provided by the system for the introduction and
exploitation of data (unlike DBIS, which normally
have a presentation layer designed for that purpose).
At this point, the spreadsheet solution cannot evolve
further and the organization faces again the need of
affording the development cost of an IS. The
DabbleDB application aims at facilitating the
handling of data and schema evolution. Despite
sharing the motivation, we believe that DabbleDB is
not the ideal choice for this type of systems because
it requires an active connection to an Internet server
and, therefore, is not usable in a great deal of
situations. Moreover, it lacks the ability of self-
organizing, so that the whole modelling
responsibility falls on the user without assistance
from the system.

An alternative solution would be the relational
treatment of the information stored in a spreadsheet.
Thus, Cunha, Saraiva and Visser (2009) proposed
the HaExcel tool, which proposes a bidirectional
correspondence between spreadsheets and relational
databases (RDB). However, the objectives
mentioned in the introduction of this paper, namely
implicit modeling and non-intrusive integrity
constraints, are not part of the HaExcel objectives.
In Microsoft ADO.net the possibility of establishing
this correspondence is also mentioned but with the
toll of limiting significatively limiting the starting
structure of the spreadsheet.

Another approach to the problem consists on
reducing the cost of developing the IS through the
automatic generation of applications, based on:

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

58

models, such as AndroMDA; code, as in OpenXava;
or in existing databases such as Ruby On Rails.
Despite their reported benefits, we believe that all
these tools share a number of disadvantages derived
from the use of RDB: the need for modelling from
the start, that prevents users without development
skills to implement their own solutions (thus their
fail on overcoming "pragmatic" solutions as
spreadsheets); lack of flexibility in the
implementation of the scheme; and the difficulty of
evolution, since the process of generating the
application is unidirectional.

3 CASE STUDY

For illustration purposes, we present a simplified
version of a real project developed by Agilogy, an
application that manages the information of anthro-
pometric data and the visits of customers to a small
dietetics organization, Lalinia. Given this small size,
Lalinia couldn’t afford the development and exploit-
tation of an DBIS due to the high cost of this type of
solution. But on the other hand, Lalinia wouldn’t
accept the spreadsheet option due to the risks related
to the low level of data integrity. The most
fundamental factors for choosing MicroIS were:

 Reduced information. The volume of data to
manage is limited enough as not to require a data
base with rich functionality.

 Low development cost. Given the skeleton of the
MicroIS solution type, creating a new MicroIS as
the one for Lalinia becomes basically a
customization/adaptation process.

 Flexibility. Since Lalinia didn’t have a similar
system before, the main stakeholders (basically,
the dietist and the secretary) were not sure of
knowing the appropriate system requirements in
advance. Even more, the stability of data
requirements along time was not guaranteed. As
a result, it was considered mandatory to be able
to add new structure to the information once new
requirements are gradually discovered.

 Easy of use. It was a requirement that the
application didn’t interfere with the natural flow
of a client’s visit, so Lalinia accepted to allow
incorrect data entry during the visit that would be
correct at some later moment, or even could
eventually remain incorrect.

 Data entry support. The system should be aware
of the data semantics so as to make possible their
input (choosing the values of an association from

a combo box, help fulfilling the constraints
bound to an attribute, etc.).

In Fig. 2, we show a possible scenario that
illustrates the factors above mentioned. The two
main types of information to store are represented in
a tabular form: the personal information and the
anthropometric data; in the second sheet each visit is
represented using a row (item). It may be observed
some of the situations that are typical in these
MicroIS related to data structuring:

 Attributes which are specific to an item. For
instance, there is an item (Luisa Fernández) that
has a datum (the vacation home address) that, for
the rest of clients, is rarely known. These data
are not known in advance, i.e. each client may
provide some particular data and Lalinia wants to
be able to classify the information that is
considered useful instead of simply maintaining
it in a generic comment field. Also, it may
happen that at some future moment, one of this
datum becomes standard, either because a lot of
clients provide it, or because Lalinia discovers
some unexpected utility that increases its
criticality.

 Document that has some potential errors. The
client Juan Pérez has not given his telephone
number but nevertheless Lalinia wants to keep
the rest of data of this item whilst the missing
information does not arrive.

 Lack of structure. Whilst the weight is a data that
is sampled in each single visit, the height may be
just measured the first time, except for the case
of children and teenagers. But nevertheless, if the
dietist decides to measure the height beyond the
first visit, it must be possible to record the new
measure.

 High variability. We may observe the different
forms in which the clients provide their contact
telephone number. Any attempt to anticipate to
all the possible cases and determine a structure in
advance is condemned to failure.

The proposed solution allows these situations to
exist but at the same time provokes some
vulnerability bound to the possible existence of
inconsistencies. These inconsistencies may appear at
the intra-sheet level (for instance, in the
Anthropometric Data sheet we may observe a
typographic mistake in the second client row, first
name, that should be the same than the row above)
or at the inter-sheet level (e.g., in this very sheet the
first and last names of the client are copied and
pasted manually from the contents written in the
Personal Data sheet, therefore if some data is

INFORMATION MICROSYSTEMS

59

modified in the latter, the required modification in
the former should be made manually, it is not
enforced). These undesired situations must be also
considered in the given solution.

Personal Data

First
name Last name Telephone e-mail Fax Address Vacation

address

Jordi Garcia Gil 934130000
ext. 512 +54875 Spring, 1

Montse Tolrà

934444444
10-14h
666666666
(mobile)

mtolra@
gmal.com River, 5

Marta Vallès

45665432
morning
99999999
afternoon

 +54875 Hope, 65

Juan Pérez
López juan@hot

m.com +34567

Luisa Fernández
Martínez 935559876 luisa@ya

hoo.com Pine, 14 Tower
Heights, 5

Anthropometric Data

First name Last name Date Weight Height

Juan Pérez López 15/5/09 120 kg 185 cm

Jusn Pérez López 20/5/09 115 kg

Luisa Fernández Martínez 17/5/09 50 kg 160 cm

Luisa Fernández Martínez 25/5/09 52 kg 1’60

Figure 2: A possible, valid state for Lalinia’s MicroIS.

4 MICROIS MODEL

A MicroIS is basically a small data repository.
However, its nature is closer to that of an office
product than to the nature of a typical relational data
base, since it has to manage sets of information of a
reasonable size by means of an interactive tool that
manages the structure, the data and the user interface
altogether. This graphical interface will be based on
a generic model for all the application although, as
usual office tools do, will allow customization.

If we focus on the data perspective, the main
difference among a DBIS and a spreadsheet is the
independence of the stored data with respect to the
scheme that determines its structure, as in the “Type
Object” pattern by Johnson and Woolf (1997). This
can be observed in the UML conceptual data model
presented in Fig. 3, where there appear two areas
neatly differentiated: data (to the left) and structure
(to the right) of the MicroIS class.

Given that the data items exist independently of
classifications, they will be identified individually
by means of an artificial key generated by the
system. Each item will have bound a set of
properties (identified by their name inside the item,
e.g., Last Name or Vacation Address) that will be

composed by an ordered set of values (e.g., the class
Telephone in those items that have more than one
telephone). These values may be primitive values,
references to other types or formulae.

At their turn, the type system defined by the
schema of a MicroIS is composed of primitive types
(supported natively by the system) and classes.
Classes are generic definitions of items’ structure
(e.g., Personal Data and Anthropometric Data) and,
as such, they define a set of attributes that will of a
concrete type: primitive type, formula or reference
(bidirectional, therefore it will be also required to
know the inverse attribute, see for instance the
inverse association in the figure). The classes allow
adding consistency to the MicroIS whilst facilitating
the input of data by the user. They also allow
creating views, formula and queries since they
provide a method for selecting items.

Each item may be classified as belonging to a
particular schema’s class. Each class will act as a
template of the properties that are expected that the
item has (each attribute will correspond with the
property of the item that has the same name), in
addition to establishing a set of validation rules (see
Section 5).

5 SEMANTIC VALIDATION

Validations are part of the very schema and thus
they are defined together with it, and its fulfilment is
checked in the same way that the other constraints of
the schema; in fact, the type of validations that a
given item must fulfil will depend on its classes and
attributes. A tool implementing the proposed para-
digm should, consequently, validate the fulfilment of
the schema and the validations for all the different
items. The validation subsystem has been defined in
an extensible way so that in future versions of the
MicroIS concept, adding new types of integrity
constraints becomes an easy process. Even, with an
appropriate user interface, the ultimate intention is to
let the final client of the particular MicroIS instance
to define their own validation checks.

The validation subsystem has been integrated
into the MicroIS conceptual data model, as it is
shown in Fig. 4, where several restrictions currently
implemented are shown.

It may be observed that the class Constraint
offers two operations over Items.
Constraint::appliesTo?(i: Item) indicates if a
Constraint must be checked for a particular item,
whilst Constraint::compliant?(i: Item)
indicates if an item for which a Constraint must be

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

60

Figure 3: A UML data conceptual model for MicroIS.

check is compliant with it or else it violates it.
These operations are abstracts, therefore they must
be defined in each type of constraint. As an example,
Fig. 5 shows the definition of those operations for
two particular types of Constraint. Both constraints
are applicable to items whose class corresponds to
the class of the attribute bound to the Constraint.

6 TRANSFORMATIONS

From the viewpoint of data structure, the main
characteristic of MicroIS is schema flexibility. To
maintain the integrity of the information it is
necessary to define exactly what transformations can
be carried out on the schema and how they will
affect both the scheme itself and the population of
existing items. To study this problem we rely partly
on Ambler and Sadalage’s work (2006), which
studies a set of refactoring operations for introducing
changes in relational data bases that are already in
production and proposes a series of techniques to
gradually migrate systems utilizing these data bases.
Unlike refactoring in data bases, modifying the
schema is much easier when items are out of it and
the compliance to the schema is optional and
therefore it is permitted to be in a temporary
situation where no all the restrictions are met.

Figure 4: A UML data conceptual model for MicroIS
validations.

context MandatoryAttributeConstraint::

appliesTo?(i:Item) =

i.class=self.attribute.class

context MandatoryAttributeConstraint::

compliant?(i:Item) =

i.property[self.attribute.name]->size()>0

context ValueTypeConstraint::appliesTo?(i:Item) =

i.class=self.primitiveAttribute.class

context ValueTypeConstraint::compliant?(i:Item) =

(i.property[self.primitiveAttribute.name]

->size()==0 or

i.property[self.primitiveAttribute.name]->

foreach(v|v.oclIsTypeOf(PrimitiveValue)

and

self.primitiveAttribute.

primitiveType.compliant?(v)))

Figure 5: OCL definition of two types of constraints.

So far, we have identified 16 atomic
transformations that we have implemented in this
first version of MicroIS. As an example, Figure 6
shows the detail of one of them, the classification of
items, using a template that we have defined for this
purpose.

INFORMATION MICROSYSTEMS

61

Name: Classify Item

Summary: Binds a class C to an item I

Motivation: Indicates that the item I belongs to class C with the goal

 that, from this moment, all the validation rules defined over C are

 applied over I, and that I is included in all the views and queries of

 items of class

Effects over data: None

Effects over the schema: the item I includes the class C as its class

Restrictions that may be violated: All that apply over C

Contract: -- effects of the transformation on the model

context MicroIS::classifyItem

 (itemId: String, className: String)

let I: Item = self.items[itemId] in

let C: Class = self.types[className] in

pre: I->notEmpty()

pre: C->notEmpty()

post: I.class = C

Figure 6: Definition of the transformation Classify.

7 CONCLUSIONS

This article has proposed a new paradigm of
information system, the MicroIS, which stands in the
middle between information systems based on
databases and spreadsheets. This paradigm, although
it had originated in the context of information
systems for managing the core business of small
organizations in a desktop application setting, could
be applied in other type of environments.
Concerning data, the main feature of the new
paradigm is the ability to fluctuate between different
states of consistency / structure according to user
needs. For this purpose, it has been necessary to
standardize and document all possible
transformations on the scheme so that, at all times,
integrity of information is preserved.

The paradigm that we propose involves the user
in maintaining the integrity of the data to allow it to
store information that does not follow the rules of
integrity. For this reason we believe that this
paradigm does not apply to systems where the
information handled is critical (because of the
possibility of inconsistencies) or systems where the
volume of information is too large for manual
processing and individual potential inconsistencies.
Given our experience over 10 years in development
projects for organizations of all types, conditions
that make the MicroIS an attractive alternative are:
flexibility, because the possibility of having different
states of structuring and consistency, facilitates
adaptation to changing requirements; low
development cost, because it is possible to develop

small information systems without the need for
specialists and with an investment much lower than
in the case of DBIS and with a return on investment
much faster; usability, due to the existence of a
generic interface for all MicroIS, which facilitates
their usability.

Some aspects of MicroIS have not been covered
in this article for space reasons, including self-
structuring, the creation of queries (based on an
expression language), the creation of views (based
on the same expression language that queries) and
the presentation of the generic user interface that
allows working consistently with different MicroIS
while establishing the standard mechanisms of
personalization (based on views).

Our future work is aimed at giving more
expressiveness to auto-modeling features, both
regarding the detection of situations and the
suggestion of alternatives, especially in reference to
the identification of non-trivial situations like
generalization / specialization relationships.

ACKNOWLEDGEMENTS

This work is partially supported by the project
TIN2007-64753.

REFERENCES

Ambler, S. W., Sadalage, P. J. (2006). Refactoring
Databases: Evolutionary Database Design. New
York: Addison-Wesley.

Dabble blog. (2005). Shouldn’t be Spreadsheets. Retrieved
April 30, 2010, from http://blog.dabbledb.com/
2005/03/shouldnt-be-spr.html

Baker, K. R., Foster-Johnson, L., Lawson, B. and Powell,
S.G. (2006). A Survey of MBA Spreadsheet Users.
Retrieved April 30, 2010, from http://mba.tuck.
dartmouth.edu/spreadsheet/product_pubs.html.

Cunha, J., Saraiva, J. and Visser, J. (2009). From
Spreadsheets to Relational Databases and Back.
Proceedings of ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM09,
Savannah, Georgia, USA.

Johnson R. and Woolf B. (1997). Type Object Pattern.
New York: Addison-Wesley.

Kraus, J. (2005). The long Tail of Software. Millions of
Markets of Dozens. Retrieved April 30, 2010, from
http://bnoopy.typepad.com/bnoopy/2005/03/the_long_
tail_o.html.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

62

