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Abstract. In this contribution we will provide the reader with outcomes of the
development of a novel software framework for an unique wafer-scale neuromor-
phic hardware system. The hardware system is described in an abstract manner,
followed by its software framework which is in the focus of this paper. We then
introduce the benchmarks applied for process evaluation and provide examples
of the achieved results.

1 Introduction

Several current neuromorphic research projects, such asFast Analog Computing with
Emergent Transient States – FACETS[1] or theSpiking Neural Network Simulator –
SpiNNaker[2], aim at the exploration of novel computational aspects of large scale,
biologically inspired neural networks with over a million neurons, simulated in real-
time or even with a speed-up in respect of the biological archetypes on full custom or
modified general purpose hardware.

The undertaken hardware research of FACETS encompasses the development of
a novel neuromorphic wafer-scale hardware system in an collaborative effort of the
Ruprecht-Karls-Universiẗat Heidelberg – UHEIand theTechnische Universität Dres-
den – TUD. The current level of development,Stage 2incorporates the design of a wafer
element and its dedicated software framework for the mapping of neural architectures
onto the hardware substrate as well as the configuration and control of said system.

The wafer-scale hardware system is first described in section 1.1 followed by the
details of the software framework in section 2. The benchmarks applied are presented
in section 3 along with examples. An outlook concludes this contribution.

1.1 FACETS Stage 2 Architectural Overview

For the description of the FACETS Stage 2 hardware system as introduced by [1], [3]
and in the following referred to asFS2 hardware we will focus on details of the architec-
ture that influence the mapping of given neural networks onto the hardware. Figure 1 (a)
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shows an abstract view of one wafer element of theFS2 hardware system. The foun-
dation layer of theFS2 hardware is an array of reticles shown as light gray squares,
housingHigh Input Count Analog Neural Network – HICANNor HC circuitry that was
developed at UHEI [1] and implements neural functionality such as neurons, synapses
and weight adaptation. On top resides a layer of communication circuits calledDigital
Network Chip – DNCdeveloped at TUD [3]. The third and topmost layer represents
a regular grid of FPGAs3, colored dark gray. Disabled or inoperable components are
colored white.

(a) (b)

Fig. 1. Abstract view of a) one wafer from top and b) the communication hierarchy from side.

Figure 1 (b) depicts the communication networks, their hierarchy and connectivity.
Two distinct communication networks can be distinguished.An asynchronous, address
coded, namedLayer 1 – L1utilized byHCs at wafer level forintra-wafer communi-
cation and a second one, namedLayer 2 – L2utilized by DNCs and FPGAs for syn-
chronous, packet basedinter-wafercommunication. Host computers are connected via
Ethernetto the FPGAs to handle the mapping, configuration and controlprocess de-
scribed in the following.

1.2 The HICANN

A simplified view of theHC chip following [1], [4] is drawn in figure 2 as a symmetric
array of neural and communication elements. Thedendritic membranes, or denmems
are the neural core components. Each denmem provides two synaptic input circuits
emulating ion channels. Up to26 denmems can be grouped, i.e. connected together to
form a neuron with a higher synaptic input count or a more detailed model by increasing
the number of conductive time constants.Synapses, situated in an adjacentsynapse
array are connected to the denmems. Whether a synapse is connectedto the excitatory
or inhibitory input of a denmem is decided row-wise in thesynapse driver,or syndriver.
A syndriver is fed from one of2× 27 vertical L1 bus lanes viaselect-switchesor from
a neighboring syndriver. It drives the synapses viastrobe lines, as depicted as thin lines
in figure 2 lens(1), and selects the receiving synapse via an address, the thicklines.
A fixed part of the synapses address determines the strobe line to use and follows the
address pattern shown in lens(2). Each synapse belongs to the denmem located below
the synapse array in the same column. A group of denmems is connected to one of26

3 Field Programmable Gate Array
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horizontal L1 bus lanes and L2 by apriority-encoderthat multiplexes and prioritizes
the bus access.

Fig. 2. A schematic view of one HICANN [1], [4].

Repeatersandcross-barsare then configured to interconnect the vertical and hori-
zontal buses withunidirectionalconnections. The neural pulses generated by the den-
mems are transmitted asynchronously on L1 as bit sequence encoding the senders ad-
dress or arbitrarily on L2 encoding the address and the pulsetiming.

1.3 Parameter Space

Every denmem implements the dynamics of theAdaptive Exponential Integrate-and-
Fire – AdExmodel [5] including model’s mechanisms such as spike frequency adaption
and active spike generation. A total of 24 parameters determine the behavior of a den-
mem, some of which correspond directly to the AdEx model, others are of technical
nature4.

The synaptic weight of a synapse is determined by an individual digital weight
value of4-bit resolution and a fixed maximum conductancegmax, which can be set for
every synapse row by a programmable analog parameter. The synapse circuit generates
a square current pulse, which is injected into one of the synaptic input circuits of the
denmem, where it modulates a transient synaptic conductance. The amplitude of this
square current pulse isweight× gmax and its length isτSTDF, whereτSTDF is modulated
by theshort term depression or facilitation – STDF[6] plasticity mechanism in the
synapse driver.

We assume a hardware model setup for configuration of theFS2 hardware follow-
ing [1], [4]. With an8×8 HC reticle array of8 HCs per reticle and48 functioning reticles
per wafer, thus a total of512 HCs. Furthermore,8 HCs per DNC result in48 DNCs and
4 DNCs per FPGA give a total of12 FPGAs. WithNMaxHC ∈

{
23, 24, ..., 28

}
5 a

4 As configurable parameters allow to vary time constants of neural and synaptic dynamics it is
possible to operate theFS2 hardware system with a speed-up from103 to 105 compared to
biological scale, depending on the system’s load, as excessive speed-up may lead to pulse loss
due to limited bandwidth.

5 NMaxHC is held constant for a network and determined by the detail level of the neuron
model [1] or the synaptic input count of a neuron [4].
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maximum neurons perHC the total number of available neurons is given byNHW =
H ×NMaxHC , whereH denotes the number ofHCs available for mapping6. The num-
ber of synapses available on the hardwareSHW = H ×SHC , with SHC being number
of synapses perHC, which for the used configuration is constant with:2× 2562 and the
number of dendritic elements perHC D which equals2 × 256. With 26 denmems per
priority encoder this results in8 priority encoders and thus a6-bit L1 address.

2 The FACETS Stage 2 Software Framework

TheFS2 software framework provides the functionality to map a given network onto
the hardware, configure it, control the simulation and examine the results of the map-
ping and simulation process.

2.1 PyNN & Hardware Abstraction Layer

For the FACETS hardware systems, a user interface is now available that provides a
novel way to bridge the gap between the domains of pure software simulators and neu-
romorphic hardware devices [7], [8]. The Python-based neural network modeling lan-
guage PyNN [9], see Figure 3 has been developed by FACETS members. It represents
a simulator-independent set of functions, classes and standards for units and random
number generation that can be used to describe complex models of networks of spiking
neurons using a biological terminology - either in an interactive or in a scripting fashion.
Models written with the PyNN API can be executed with variousestablished software
simulation tools such as NEURON [10], NEST [11], Brian [12] or PCSIM [13]. For all
supported back-ends a specific Python module automaticallytranslates the PyNN code
into the native scripting language of the individual simulator and re-translates the re-
sulting output into the domain of PyNN. Thus, PyNN allows to easily port experiments
between all supported simulators and to directly and quantitatively compare the results.
Among many other benefits, this unification approach can increase the reproducibility
of experiments and decreases code redundancy.

Fig. 3. PyNN framework following [9] and theFS2 HAL.

The integration of the FACETS hardware systems into the PyNNconcept adopts
these benefits. Additionally, the PyNN hardware module offers a transparent method via
which the communities of computational neuroscience and neuromorphic engineering

6 H is not necessarily equal to the total number ofHCs available in the system.

46



can exchange experiments and results. With the novel approach, non-hardware-experts
can be provided with a well documented interface that is verysimilar to interfaces of
most established software simulators [14].

While PyNN itself represents a precise definition of the userinterface, theHardware
Abstraction Layer – HALmodule actuallyimplementsthe automated translation of any
given network setup into the data model described in the following, which performs the
mapping of the experiment onto the available hardware resources and into the hardware
parameter domain. The said translation process also conducts the transition between the
Python domain of PyNN and the C++ objects of the mapping framework and all lower
software layers.

2.2 Data Model

To cope with the hierarchical structure of the hardware system a data model resembling
a hierarchical hyper graph was developed [15]. The graph model consists ofvertices
representing data objects andedgesas relationships among them. Where a vertex holds
atomic data, an edge can be ahierarchical, a namedor a hyper edge. Hierarchical
edges model a parent-child relationship, thus structuringthe model. Named edges form
a directed and named relation between two vertices from/to any location in the model
and hyper edges assign a vertex to a named edge, characterizing it in more detail. Its
flexibility allows to store every information during the configuration process, i.e. the
models itself as well as the placement, routing and parameter transformation data.

2.3 Data Interface

To overcome the access of nodes and edges or subsets of the graphs elements by navi-
gating the native data structure we provide a novelpath-based query-language, named
GMPath. Via GMPath, along with its corresponding API as described in the accompa-
nying publication [16] data can be retrieved from or stored to the models by a program
via static or dynamically created queries.

2.4 The Mapping Process

With regard to topology constraints between hardware blocks such as connectivity, con-
nection counts, priorities and distances as well as source/target counts the mapping
determines a network configuration and parameter set for thehardware. This is accom-
plished in the three steps ofplacement, routingandparameter transformation.

During placement, the mapping process assigns neural elements like neurons or
synapses to distinct hardware elements. As placement comprises different optimiza-
tion objectives, it can be characterized as a multi-criteria problem the solution quality
of which influences the overall mapping results significantly. Possible objectives are,
e.g. to minimize the neural input/output variability clusterwise, to minimize the neural
connection count, also clusterwise, or to minimize routingdistances while maintaining
compliance with constraints such as parameter limitationsor hardware element capac-
ities. As the optimization problem is NP-complete a force-based optimization heuristic
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with user-defined weightings, namedNFC, was developed to achieve these objectives in
acceptable computation time. This algorithm balances ”forces”, the implementation of
said optimization objectives in an n-dimensional space until an equilibrium is reached.
In a subsequent separation step it assigns its data objects to clusters with affine proper-
ties. We distinguish between the simple algorithms described in [17] and theNFC.

The routing subsequently determines a configuration for thesynaptic connections
on L1 and L2 and can be split into the two subsequent steps of intra- and inter-wafer
routing. The intra-wafer routing algorithms [4] route connectivity exclusively on L1
and reserve L2 for inter-wafer routing which is inactive fora wafer-scale system.

Parameter transformation finally maps the model parametersof given neurons and
synapses, such as weights, types or thresholds into hardware parameter space. As not
every biological parameter, or its corresponding model parameter in the PyNN descrip-
tion, has its individual counterpart in hardware but is often emulated by a set of correlat-
ing parameters, an adequate biology-to-hardware parameter translation has to be found,
e.g for the membrane circuits a transformation from 18 biological parameters of the
PyNN AdEx neuron model description into a configuration of 24adjustable electrical
hardware parameters.

The desired speedup factor between103 to 105 which is determined by the temporal
dynamics of the membrane and synaptic circuitry is finally set by adjusting parameters
as the size of the membrane capacitances, conductances responsible for charging it or
the current controlling the synaptic conductance.

2.5 Analysis

A new standalone application namedGraph Visualization Tool – GraViToaids the user
with the analysis and debugging of mapping data. GraViTo incorporatesenvisioNN
andH3 graph viewer [18] modules that display graph models in textual and graphical
form and gathers statistical data. One can selectively access single nodes inside the data
structure and visualize its context, dependency and relations with other nodes in the
system.

Views of GraViTo are shown in figure 4, such as thetree viewto browse the hierar-
chical structure of the graph model, the GMPathquery viewand the3D view. The 3D
view is specialized on renderingBM andHM and the mapping between them in three
dimensional form to provide a contextual view over the models, their components and
connectivity. It also provides a global overview over the hardware components and the
networks. To support the analysis of the mapping results various statistics are gathered
and displayed, e.g. as histograms for utilization of the crossbars, theHC blocks or the
synaptic connection lengths.

3 Benchmarks

Benchmarks aid in evaluating the mapping process. First benchmarks concerning map-
ping efficiency with focus on intra-wafer routing and hardware utilization were car-
ried out at UHEI [4] with random networks, macrocolumns and locally dense/globally
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Fig. 4. Screenshot of GraViTo’s viewers.

sparse connected networks in order to explore the system’s design space. New bench-
marks are listed in table 1. The new benchmarks are implemented in PyNN and were
provided from FACETS project partners but also from the neuromorphic research com-
munity outside of FACETS.

Table 1. Selected Benchmarks.

Benchmark Description

INCM ALUF Synfire Chain based on [19], provided by
L’Institut de Neurosciences Cognitives de la Méediterranée
– INCM, Marseille, Francein cooperation with
Albert-Ludwigs-Universität Freiburg – ALUF, Freiburg, Germany

KTH Layer 2/3 Attractor Memory following [20], provided by
Kungliga Tekniska Högskolan - KTH, Stockholm, Sweden

UNIC Model of Self-Sustained AI States following [21], provided by the
Integrative and Computational Neuroscience Unit – UNICof the
Centre national de la recherche scientifique – CNRS, Gif-sur-Yvette, France

As an example we apply the mapping process to the scaled benchmarks in a4×4 ret-
icle configuration with anNMaxHC = 26 to evaluate the mappingquality. As a measure
of the overall mapping quality the parameters as defined in [4] apply. Therouting quality
qRoute = SMap/SBIO, with SMap being the number of mapped synapses overSBIO,
which is the number of synapses in theBM. Thus,(1 − qRoute) is therelative synapse
loss. Thehardware efficiencyis described byeHW = SMap/SHW , whereSHW de-
notes the synapses available on theFS2 hardware for mapping. As a further parameter
for network classification we define the connection densityρSyn = SBIO/N2

BIO.
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(a) (b) (c)

Fig. 5. Connection matrices of the (a) INCM, (b) KTH and (c) UNIC networks.

Connection matrices for networks of103 neurons as shown in figure 5 illustrate the
benchmarks synaptic connectivity types. Darker areas represent groups of neurons with
anρSyn above average.

As stated in [2] the worst scenario are randomly connected networks with a constant
ρSyn due to their absent locality. In case of avg.SBIO above the configuredHW limit
one may reduce the neurons perHC, provide more synapses and thus improveqRoute

at the expense of lesseHW , but an expanded distribution of neurons and thus longer
connections may consume even more routing resources in turnat a certain point again
reducingqRoute.

TheρSyn of the benchmarks however decrease with approx.1/x, see 6 (a) leading
to an almost constant or only slightly increasing average synaptic input count. Never-
theless the mapping results for networks withNBIO above105 show a clear decrease in
qRoute by exceeding15% compared to fully routed which may be caused by intra-wafer
routing resources utilized to capacity, invigorated by an observation of the steepest de-
cline in qRoute for UNIC, the network with the lowest avg.ρSyn.

Tests also showed that theNFC algorithm can minimize the routing losses compared
to the simple algorithms up to20% for networks with a higher locality, such as the
INCM, the more efficient the larger the network.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

103 104

c
o
n
n
e
c
ti
o
n
 d

e
n
s
it
y
 [
%

]

#Neurons

INCM
KTH

UNIC

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

103 104

M
o
d
e
l 
S

iz
e
 [
M

B
y
te

]

#Neurons

INCM
KTH

UNIC

(b)

 0

 100

 200

 300

 400

 500

 600

0 104

N
F

C
 r

u
n
ti
m

e
s
 [
m

in
]

#Neurons

INCM
KTH

UNIC

(c)

Fig. 6. Networks avg.ρSyn (a),BM size (b) andNFC algorithm runtime (c).

As a second major requirement for the usability of theFS2 hardware simulator
platform a fast configuration and reprogramming is inevitable so we use the scaling test
also to determine the software process’scalabilityin terms of time and space.

Figure 6 (b) shows that theBM graph grows almost linearly depending on the number
of neurons and the synaptic density. So for the given benchmarks the model sizes for
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networks with a neuron count ofNBIO ≤ 105 and an approximate averageρSyn ≤
10% stay within a acceptable limt of10GB. The simpler algorithms runtime scales with
O(n) and remains within an upper bound of approximately 3 hours whereas the NFC
algorithms, in spite of the cubical problem, grows belowO(n2), as can bee seen in 6 (c)
fulfilling the requirement of a resonable runtime for complex mapping problems.

Test where carried out underRed Hat4.1.2 running on anAMD Opteron
TM

875
Dual Core CPU@2.2GHz quad processor system with32GByte of RAM.

4 Conclusions

Although theFS2 hardware system is on a higher level of abstraction similar to other
reconfigurable hardware architectures it is unique in both its functionality and the sys-
tems dimension. So new algorithms and heuristics are necessary that take into account
the peculiarities of such a system. We presented outcomes and benchmark examples of
the completeFS2 software framework which seamlessly integrates theFS2 hardware
system into PyNN.

As shown by the benchmarks, a mapping is found in a reasonabletime, however, the
networks structure of larger networks is modified by the software process and through
hardware resource limitations. To examine the impact of these losses on the networks
behavior comparative simulations with pre- and post- mapping netlists are carried out
on simulators introduced in section 3. As a further consequence we consider the incor-
poration of L2 into intra-wafer communication as essentialas it will alleviate the L1
losses. Iterative optimization of the mapping results willthen trade-off between simula-
tion speedup, hardware efficiency and routing quality by adjusting the software process
parameters.

An in depth evaluation of the benchmark results will follow with the upcoming
publication of the NFC algorithm.
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9. Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L.,
Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinform.
2 (11) (2009) 1 – 10

10. Hines, M. L., Carnevale, N. T.: The NEURON Book. Cambridge University Press, Cam-
bridge, U.K. (2006)

11. Gewaltig, M. O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia2 (2007)
1430

12. Goodman, D., Brette, R.: Brian: a simulator for spiking neural networks in Python. Front.
Neuroinform. 2 (2008)
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