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Abstract. In this contribution we will provide the reader with outcomes of the
development of a novel software framework for an unique wafer-scale neuromor-
phic hardware system. The hardware system is described in an abstract manner,
followed by its software framework which is in the focus of this paper. We then
introduce the benchmarks applied for process evaluation and provide examples
of the achieved results.

1 Introduction

Several current neuromorphic research projects, suéfastsAnalog Computing with
Emergent Transient States — FACETSH or the Spiking Neural Network Simulator —
SpiNNaker{2], aim at the exploration of novel computational aspects of large scale,
biologically inspired neural networks with over a million neurons, simulated in real-
time or even with a speed-up in respect of the biological archetypes on full custom or
modified general purpose hardware.

The undertaken hardware research of FACETS encompasses the development of
a novel neuromorphic wafer-scale hardware system in an collaborative effort of the
Ruprecht-Karls-Universiit Heidelberg — UHEland theTechnische Universit Dres-
den—TUD The current level of developme&ttage Ancorporates the design of a wafer
element and its dedicated software framework for the mapping of neural architectures
onto the hardware substrate as well as the configuration and control of said system.

The wafer-scale hardware system is first described in section 1.1 followed by the
details of the software framework in section 2. The benchmarks applied are presented
in section 3 along with examples. An outlook concludes this contribution.

1.1 FACETS Stage 2 Architectural Overview

For the description of the FACETS Stage 2 hardware system as introduced by [1], [3]
and in the following referred to &S2 hardware we will focus on details of the architec-
ture that influence the mapping of given neural networks onto the hardware. Figure 1 (a)
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shows an abstract view of one wafer element of &2 hardware system. The foun-
dation layer of the=S2 hardware is an array of reticles shown as light gray squares,
housingHigh Input Count Analog Neural Network — HICANM HC circuitry that was
developed at UHEI [1] and implements neural functionalitgls as neurons, synapses
and weight adaptation. On top resides a layer of communpicaircuits calledigital
Network Chip — DNGdeveloped at TUD [3]. The third and topmost layer represents
a regular grid of FPGAS colored dark gray. Disabled or inoperable components are
colored white.
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Fig. 1. Abstract view of a) one wafer from top and b) the communigati@rarchy from side.

Figure 1 (b) depicts the communication networks, theirdrighy and connectivity.
Two distinct communication networks can be distinguisedasynchronous, address
coded, namedlayer 1 — L1utilized by HCs at wafer level foiintra-wafer communi-
cation and a second one, nameaer 2 — L2utilized by DNCs and FPGAs for syn-
chronous, packet bas@uter-wafercommunication. Host computers are connected via
Ethernetto the FPGAs to handle the mapping, configuration and coptatess de-
scribed in the following.

1.2 TheHICANN

A simplified view of theHC chip following [1], [4] is drawn in figure 2 as a symmetric
array of neural and communication elements. @eeadritic membranesr denmems
are the neural core components. Each denmem provides tvaptsyrinput circuits
emulating ion channels. Up & denmems can be grouped, i.e. connected together to
form a neuron with a higher synaptic input count or a moreiggtanodel by increasing

the number of conductive time constanBy/napsessituated in an adjacersynapse
array are connected to the denmems. Whether a synapse is contettedxcitatory

or inhibitory input of a denmem is decided row-wise in Hymapse drivepr syndriver

A syndriver is fed from one of x 27 vertical L1 bus lanes viaelect-switchesr from

a neighboring syndriver. It drives the synapsessitabe linesas depicted as thin lines

in figure 2 lenq 1) , and selects the receiving synapse via an address, thelitigsk

A fixed part of the synapses address determines the strabéolinse and follows the
address pattern shown in lep8) . Each synapse belongs to the denmem located below
the synapse array in the same column. A group of denmems iscted to one o2°

3 Field Programmable Gate Array



horizontal L1 bus lanes and L2 bypaiority-encoderthat multiplexes and prioritizes
the bus access.
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Fig. 2. A schematic view of one HICANN [1], [4].

Repeaterandcross-barsare then configured to interconnect the vertical and hori-
zontal buses withunidirectionalconnections. The neural pulses generated by the den-
mems are transmitted asynchronously on L1 as bit sequemcelieig the senders ad-
dress or arbitrarily on L2 encoding the address and the pinhseg.

1.3 Parameter Space

Every denmem implements the dynamics of &aaptive Exponential Integrate-and-
Fire — AdExmodel [5] including model’s mechanisms such as spike fraggadaption
and active spike generation. A total of 24 parameters déterthe behavior of a den-
mem, some of which correspond directly to the AdEx modelerstare of technical
naturé.

The synaptic weight of a synapse is determined by an indalidigital weight
value of4-bit resolution and a fixed maximum conductamgggy, Which can be set for
every synapse row by a programmable analog parameter. Tlapsg circuit generates
a square current pulse, which is injected into one of the gymanput circuits of the
denmem, where it modulates a transient synaptic conduetdiine amplitude of this
square current pulseiseight X gmaxand its length isstpr, Whererstpr is modulated
by theshort term depression or facilitation — STOB] plasticity mechanism in the
synapse driver.

We assume a hardware model setup for configuration of 8#&hardware follow-
ing [1], [4]. With an8 x 8 HCreticle array oB HCs per reticle and8 functioning reticles
per wafer, thus a total &f12 HCs. Furthermore§ HCs per DNC result intl8 DNCs and
4 DNCs per FPGA give a total of2 FPGAs. WithNysa.nc € {2%,2%,...,28}° a

4 As configurable parameters allow to vary time constants ofal@nd synaptic dynamics it is
possible to operate tHeS2 hardware system with a speed-up fra6? to 10° compared to
biological scale, depending on the system’s load, as exeegseed-up may lead to pulse loss
due to limited bandwidth.

5 Narawme is held constant for a network and determined by the detedl lef the neuron
model [1] or the synaptic input count of a neuron [4].



maximum neurons pdtiC the total number of available neurons is given/Byy, =
H x Nyazrc, WhereH denotes the number 6fCs available for mappirfg The num-
ber of synapses available on the hardw&ger = H x Sy, with Sge being number
of synapses pefC, which for the used configuration is constant withz 2562 and the
number of dendritic elements peIC D which equal® x 256. With 26 denmems per
priority encoder this results i priority encoders and thus@abit L1 address.

2 TheFACETS Stage 2 Software Framewor k

The FS2 software framework provides the functionality to map a givetwork onto
the hardware, configure it, control the simulation and exantire results of the map-
ping and simulation process.

2.1 PyNN & HardwareAbstraction Layer

For the FACETS hardware systems, a user interface is novablaithat provides a
novel way to bridge the gap between the domains of pure sodtaienulators and neu-
romorphic hardware devices [7], [8]. The Python-based alewgtwork modeling lan-
guage PyNN [9], see Figure 3 has been developed by FACETS srsnibrepresents
a simulator-independent set of functions, classes andiatds for units and random
number generation that can be used to describe complex soidettworks of spiking
neurons using a biological terminology - either in an int&ike or in a scripting fashion.
Models written with the PyNN API can be executed with variestablished software
simulation tools such as NEURON [10], NEST [11], Brian [L2RCSIM [13]. For all
supported back-ends a specific Python module automaticatiglates the PyNN code
into the native scripting language of the individual sintateand re-translates the re-
sulting output into the domain of PyNN. Thus, PyNN allows &si¢y port experiments
between all supported simulators and to directly and gtetiviely compare the results.
Among many other benefits, this unification approach careame the reproducibility
of experiments and decreases code redundancy.
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Fig. 3. PyNN framework following [9] and th&€S2 HAL.

The integration of the FACETS hardware systems into the PgNihtept adopts
these benefits. Additionally, the PyNN hardware modulerefégtransparent method via
which the communities of computational neuroscience amtamorphic engineering

5 H is not necessarily equal to the total numbeHGE available in the system.



can exchange experiments and results. With the novel apiproan-hardware-experts
can be provided with a well documented interface that is s@mjlar to interfaces of
most established software simulators [14].

While PyNN itself represents a precise definition of the usterface, théHardware
Abstraction Layer — HAlmodule actuallymplementshe automated translation of any
given network setup into the data model described in theviotig, which performs the
mapping of the experiment onto the available hardware resswand into the hardware
parameter domain. The said translation process also ctsthedransition between the
Python domain of PyNN and the C++ objects of the mapping fraonk and all lower
software layers.

2.2 DataMode

To cope with the hierarchical structure of the hardwaressyst data model resembling

a hierarchical hyper graph was developed [15]. The graphetnoahsists ofvertices
representing data objects agdgesas relationships among them. Where a vertex holds
atomic data, an edge can benhirarchical a namedor a hyper edge. Hierarchical
edges model a parent-child relationship, thus structutiegnodel. Named edges form

a directed and named relation between two vertices fronmjgd@cation in the model
and hyper edges assign a vertex to a named edge, charagétizi more detail. Its
flexibility allows to store every information during the daguration process, i.e. the
models itself as well as the placement, routing and parartretesformation data.

2.3 Datalnterface

To overcome the access of nodes and edges or subsets of s giaments by navi-
gating the native data structure we provide a npath-based query-languageamed
GWPat h. Via GMPath, along with its corresponding API as descrilrethe accompa-
nying publication [16] data can be retrieved from or stor@the models by a program
via static or dynamically created queries.

2.4 The Mapping Process

With regard to topology constraints between hardware dscich as connectivity, con-
nection counts, priorities and distances as well as sdarget counts the mapping
determines a network configuration and parameter set fdrahshware. This is accom-
plished in the three steps pfacementrouting andparameter transformatian

During placement, the mapping process assigns neural etsrlike neurons or
synapses to distinct hardware elements. As placement ¢sespdifferent optimiza-
tion objectives, it can be characterized as a multi-caterioblem the solution quality
of which influences the overall mapping results significarflossible objectives are,
e.g. to minimize the neural input/output variability clestise, to minimize the neural
connection count, also clusterwise, or to minimize routiiggances while maintaining
compliance with constraints such as parameter limitat@rsardware element capac-
ities. As the optimization problem is NP-complete a foressdx optimization heuristic



with user-defined weightings, namBBC, was developed to achieve these objectives in
acceptable computation time. This algorithm balances<#st, the implementation of
said optimization objectives in an n-dimensional spacd antequilibrium is reached.

In a subsequent separation step it assigns its data objeditssters with affine proper-
ties. We distinguish between the simple algorithms desdrib [17] and theNFC.

The routing subsequently determines a configuration fosymaptic connections
on L1 and L2 and can be split into the two subsequent stepgraf iand inter-wafer
routing. The intra-wafer routing algorithms [4] route cewtivity exclusively on L1
and reserve L2 for inter-wafer routing which is inactive éowafer-scale system.

Parameter transformation finally maps the model paramefeagiven neurons and
synapses, such as weights, types or thresholds into haagwaaameter space. As not
every biological parameter, or its corresponding modedaater in the PyNN descrip-
tion, has its individual counterpartin hardware but is o#enulated by a set of correlat-
ing parameters, an adequate biology-to-hardware paratnatslation has to be found,
e.g for the membrane circuits a transformation from 18 lgwal parameters of the
PyNN AdEx neuron model description into a configuration ofa2justable electrical
hardware parameters.

The desired speedup factor betweaéh to 10° which is determined by the temporal
dynamics of the membrane and synaptic circuitry is finaltybgeadjusting parameters
as the size of the membrane capacitances, conductancess#ésp for charging it or
the current controlling the synaptic conductance.

25 Analysis

A new standalone application nam@&daph Visualization Tool — GraViTaids the user
with the analysis and debugging of mapping data. GraViTorperatesenvi si oNN
andH3 graph viewer [18] modules that display graph models in taix&nd graphical
form and gathers statistical data. One can selectivelysaiagle nodes inside the data
structure and visualize its context, dependency and oglatwith other nodes in the
system.

Views of GraViTo are shown in figure 4, such as thee viewto browse the hierar-
chical structure of the graph model, the GMPgtlery viewand the3D view The 3D
view is specialized on renderirBMandHMand the mapping between them in three
dimensional form to provide a contextual view over the medileir components and
connectivity. It also provides a global overview over thedveare components and the
networks. To support the analysis of the mapping resuliewaistatistics are gathered
and displayed, e.g. as histograms for utilization of thessbars, théiC blocks or the
synaptic connection lengths.

3 Benchmarks

Benchmarks aid in evaluating the mapping process. Firgtliraarks concerning map-
ping efficiency with focus on intra-wafer routing and hardevatilization were car-
ried out at UHEI [4] with random networks, macrocolumns amehlly dense/globally
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Fig. 4. Screenshot of GraViTo's viewers.

sparse connected networks in order to explore the systezsigml space. New bench-
marks are listed in table 1. The new benchmarks are implesdéntPyNN and were
provided from FACETS project partners but also from the nearphic research com-
munity outside of FACETS.

Table 1. Selected Benchmarks.

Benchmark  Description

INCM ALUF Synfire Chain based on [19], provided by
L'Institut de Neurosciences Cognitives de la Méediteg@n
—INCM, Marseille, Francén cooperation with
Albert-Ludwigs-Universitat Freiburg — ALUF, Freiburg,eBmany

KTH Layer 2/3 Attractor Memory following [20], provided by
Kungliga Tekniska Hogskolan - KTH, Stockholm, Sweden
UNIC Model of Self-Sustained Al States following [21], pided by the

Integrative and Computational Neuroscience Unit — UNiGhe
Centre national de la recherche scientifique — CNRS, Gi{Yatette, France

As an example we apply the mapping process to the scaled twamksin ad x 4 ret-
icle configuration with ariV 7. ;7o = 2° to evaluate the mappirguality. As a measure
of the overall mapping quality the parameters as defined eydgly. Therouting quality
QRoute = SMap/SBI10, With Sh4, being the number of mapped synapses dero,
which is the number of synapses in &l Thus,(1 — groute) IS therelative synapse
loss The hardware efficiencys described by:yw = Saap/Saw, WhereSyy de-
notes the synapses available on #82 hardware for mapping. As a further parameter
for network classification we define the connection density, = Sg10/N3 ;0.
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Fig. 5. Connection matrices of the (a) INCM, (b) KTH and (c) UNIC netks.

Connection matrices for networks 68> neurons as shown in figure 5 illustrate the
benchmarks synaptic connectivity types. Darker areagset groups of neurons with
anpg,, above average.

As stated in [2] the worst scenario are randomly connectedorks with a constant
psyn due to their absent locality. In case of afi ;o above the configureHWIlimit
one may reduce the neurons p#E, provide more synapses and thus improwe,:c
at the expense of less;yy, but an expanded distribution of neurons and thus longer
connections may consume even more routing resources iratarcertain point again
reducingqroute -

The pgyn Of the benchmarks however decrease with apptgx, see 6 (a) leading
to an almost constant or only slightly increasing averagmptic input count. Never-
theless the mapping results for networks witg ;o abovel0® show a clear decrease in
qroute Dy €xceeding 5% compared to fully routed which may be caused by intra-wafer
routing resources utilized to capacity, invigorated by beesvation of the steepest de-
cline ingroute for UNIC, the network with the lowest avgg;y,.

Tests also showed that thiEC algorithm can minimize the routing losses compared
to the simple algorithms up t80% for networks with a higher locality, such as the
INCM, the more efficient the larger the network.
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As a second major requirement for the usability of &2 hardware simulator
platform a fast configuration and reprogramming is inevéao we use the scaling test
also to determine the software processalabilityin terms of time and space.

Figure 6 (b) shows that tH&Mgraph grows almost linearly depending on the number
of neurons and the synaptic density. So for the given bendtsithe model sizes for



networks with a neuron count d¥z;0 < 10° and an approximate average,, <
10% stay within a acceptable limt DG B. The simpler algorithms runtime scales with
O(n) and remains within an upper bound of approximately 3 hoursreds the NFC
algorithms, in spite of the cubical problem, grows betow:?), as can bee seen in 6 (c)
fulfilling the requirement of a resonable runtime for comqteapping problems.

Test where carried out und®ed Hat4.1.2 running on anrAVMD Opt er on'" 875
Dual Core CPUQ2.2G H =z quad processor system wiRG Byte of RAM.

4 Conclusions

Although theFS2 hardware system is on a higher level of abstraction simiather
reconfigurable hardware architectures it is unique in bistfunctionality and the sys-
tems dimension. So new algorithms and heuristics are nagetdst take into account
the peculiarities of such a system. We presented outconteisemthmark examples of
the completd=S2 software framework which seamlessly integratesRB2 hardware
system into PyNN.

As shown by the benchmarks, a mapping is found in a reasotiatdehowever, the
networks structure of larger networks is modified by thewgafe process and through
hardware resource limitations. To examine the impact cdg¢Hesses on the networks
behavior comparative simulations with pre- and post- magpietlists are carried out
on simulators introduced in section 3. As a further conseqei@ve consider the incor-
poration of L2 into intra-wafer communication as esserdiit will alleviate the L1
losses. Iterative optimization of the mapping results thiéin trade-off between simula-
tion speedup, hardware efficiency and routing quality busiilig the software process
parameters.

An in depth evaluation of the benchmark results will follovittwthe upcoming
publication of the NFC algorithm.
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