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Abstract. Evolving recurrent neural networks for behavior control of robots
equipped with larger sets of sensors and actuators is difficult due to the large
search spaces that come with the larger number of input and output neurons. We
proposeconstrained modularizatioas a novel technique to reduce the search
space for such evolutions. Appropriate neural networks are divided manually into
logically and spatially related neuro-modules based on domain knowledge of the
targeted problem. Thegonstraint functiongre applied to these neuro-modules to
force the compliance of user defined restrictions and relations. For neuro-modules
this will facilitate complex symmetries and other spatial relations, local process-
ing of related sensors and actuators, the reuse of functional neuro-modules, fine
control of synaptic connections, and a non-destructive crossover operator. With
an implementation of this so called ICONE method several behaviors for non-
trivial robots have already been evolved successfully.

1 Introduction

The development of recurrent neural networks for behavior control of autonomous
robots with evolutionary methods has a long and successful history [10], [4], [6]. Nev-
ertheless, most experiments work with robots having only a small number of sensors
and actuators, as in typical experiments described in [9], [8]. Although interesting non-
trivial behaviors have to be expected to come up especially with complex robots having
a larger number of sensors and actuators, only few experiments have been conducted in
this domain. One main reason is that the search space for neuro-controllers gets incon-
veniently large if more and more sensor and motor neurons have to be used. This often
makes it infeasible to evolve interesting solutions in reasonable time.

To cope with such large search spaces, strategies and heuristics have to be found
that reduce the search space or that assist the experimenter to guide evolution towards
effective network topologies. In this contribution, we propose that the manual segmen-
tation of neural networks into smalleonstrainedsub-networks, calledeuro-modules
[11][9], can significantly restrict the search space. Tduastrained modularizatiois
based on domain knowledge about the behavior problem to be solved. The induced re-
strictions on the modules exclude large parts of the search space and focus the search
on network topologies that have a higher chance to provide a desired solution. The kind
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of solution hereby can be biased by the experimenter to & xtend during the mod-
ularization. Furthermore resulting network topologietenfare better to understand
than unconstrained ones, allow an easier identificatiorelefzant network parts, and
make the reuse of already evolved networks structuresiges¥Vith this approach the
evolutionary algorithm is not used as a universal problelvesdhat creates complex
networks from scratch. Instead evolution is used merely @®hbto help the experi-
menter to confirm his specific solution approaches, that swally still too complex to
be constructed by hand.

In the next chapter we define the terpenstrained modularizatigmeuron group
andneuro-modul@s they are used here. Then, in chapter 3, we describe howanodu
ization of large neural networks can reduce the search spabtehy resulting solutions
of modular neuro-evolution often are easier to understgirdt indications of the us-
ability of this approach, based on the implementation of thethod, are discussed in
chapter 4 and 5, followed by a conclusion in the final chapter.

2 Constrained Modularization of Neural Networks

2.1 Constrained Modularization

The decomposition of a recurrent neural network into smdtlierarchically and spa-
tially organized sub-networks is here calleddularization A network hereby is, based
on domain knowledge and user experience, manually spgitiomnected neuron groups
by the experimenter (Fig. 1 shows an example). To each negraupfunctional con-
straintscan be added, that force the compliance of user defined tioritor structural
restrictions. These constraint functions can implemewtrastriction and manipulate
the neural network directly, so that violations of constsaie.g. originating from muta-
tion operators, can be counteracted immediately.

With this constrained modularizatiotihe user tries to restrict the network develop-
ment in such a way, that only a certain, promising type of oétvgtructures is possi-
ble. Hereby the user constructs a kind of constraint maskhi®mneural network, that
specifically limits the network topology and thus leads tonablier search space for the
evolutionary algorithm.

Neurons can be grouped in two different ways: (1) by simpleroe groups, or
(2) by more restrictive neuro-modules. Neuron groups angtaienodules both allow
a detailed topological, hierarchical and functional pinti of the network to exclude
unwanted areas of the search space. Both types of grougrdgéined in the next two
sections.

2.2 Neuron Groups

The simplest way to group neurons is the creatiomefiron groupsThese groups
may contain any number of neurons sharing topological, tfanal or other proper-
ties. Hereby neuron groups can arbitrarily overlap. Thuiche®euron can be part of
many neuron groups at the same time. Neuron groups can le ¢digpnstraint func-

tions These functions force the compliance of certain, user défoonstraints, rules



and heuristics for their member neurons. This may includegkample, limiting the
number of member neurons or synapses, forcing specific kihsignaptic connection
patterns, allowing synaptic plasticity for its members esalving dependencies be-
tween neurons and synapses. The constraint functiongthedefine the purpose of a
group and contribute significantly to a search space réstnic

2.3 Neuro-modules

A stronger grouping of neurons is represented by so callado-modulesNeuro-
modules are similar to neuron groups, but do not intersedigllg; i.e., neurons can
only be part of a single neuro-module at the same time. Howeegiro-modules can
be members of other neuro-modules and therefore can sesubasodules

Neurons in a neuro-module are encapsulated by the modulbs.thiese neurons are
only visible to the neurons of the same neuro-module. To eohthe module with
external neurons, it can provide a neural interface. This lma achieved by mark-
ing selected neurons of the moduleiagut or outputneurons (compare Fig. 1 where
these neurons are marked withand O). During evolution synaptic connections are
inserted only between members of the same neuro-moduledntktface neurons of
sub-modules. Neuro-modules thus can be regarded as efatapsindependent neural
building-blocks with well defined interfaces. Their spépiarpose is to group strongly
related neurons together (e.g. the sensors and motorsiot @jdhe neurons of a func-
tional structure) and to control the way these neurons canext to neurons outside of
the module.

3 How Constrained Modularization Foster s Successful Evolutions

Modularizing and constraining a neural network accordimgidomain knowledge of
a behavioral problem can restrict the search space for reugloition significantly.
For comparison, an unconstrained minimal neuro-contrfdlewalking of a humanoid
robot with 42 motor and 37 sensor neurons already allows28@0 synapses, while the
same, but constrained modular network in Fig. 1 only allo8@ihdependent synapses.
In this figure it can also be seen, that the modularized nétiganuch more structured
than an unconstrained one. It shows, that the constraineebriealready biases the
possible network structures, here to get a symmetric né&tfmrwalking based on
internal oscillators or on an acceleration sensor (at thetodule). This also shows that
the initial networks for a neuro-evolution have to be spealfy modularized regarding
the given problem to be solved. Therefore, even for the saoidem, different kinds of
modularization promote different approaches to soluti@gperimenters can use this
to bias the networks towards desired solution approaches.

Constrained modularization reduces the search space Isyraoming the structure,
function and evolution process of the networks, as is desdrin the next sections.

3.1 StructureConstraints

Neuro-modules, with their ability to hierarchically stture a network and to shield
their members from disruptive connections from arbitrasyrses, bias the network



Symmetry with Left Side

Fig. 1. Left: Constrained modularization of the control network of a hooid robot. The 37
sensor and 42 motor neurons are separated into modulesiexcti their locations on the robot
(head, arms, middle body, legs). A symmetry constraint leanithe neural structure of the right
side. The upper left module was extended by an evolvableatertmodule and a filter module.
Clones of these module€(and F’) have been added to each used motor neuron and acceleration
sensor. Additional functional modules have been adtied\( M, L) that can be exchanged during
crossover by modules of the same type. These modules aretedp® implement the actual
behavior controller. During evolution neurons are only edido these functional modules. In
(A) and (M) oscillator modules have been added that might bdified and incorporated into
the control networkRight: This network is the result of executing the constraints Fer left
network. To additionally restrict the search space, syoagatthways Black Dotted Lineshave
been added.

topologies towards local processing units, rather thamtds/networks with high con-
nectivity. This excludes many — in principle also potemyiaiuccessful — topologies.
But as a heuristic, large, highly connected networks terfgetanable to evolve com-
plex local processing sub-networks, because synapsesaftuitrary sources influence
most neuron clusters in a disturbing way. This problem iases as the number of neu-
rons in the network gets larger, because the probabilitafsynapse to be unrelated,
and therefore potentially disruptive, increases with gveuron. Therefore we expect
highly connected networks to have a lower probability tojme interesting, non-trivial
solutions [1]. Therefore neuro-modules can be used to premlausible connections
based on domain knowledge, such as grouping motors andrsesfsthe same joint
together. Neuro-modules also allow the definitiorsphaptic pathways.e. to prevent
or permit connections between modules explicitly.

A powerful constraint on the structure of neuron groups ésdéfinition ofsymme-
tries andrepetitive structuresDepending, of course, on the targeted behavior problem,
many evolutions can be greatly restricted when the desiedgark is assumed to be
symmetric. Examples are walking or squatting of a humanolmbt or the repetitive
structure of a multi-legged walking machine. Symmetrienaee large parts of the



search space, because the parameters of all symmetrizeztheeund synapses are not
part of the search space any more (e.g. the entire rightisifigyi 1).

An additional positive effect on the structure using modaktion is the better read-
ability of the resulting networks (see Fig. 1). Functionleheents can be isolated more
easily and signal paths can be better traced, because nmmagis®s are locally con-
nected and have less dependencies to other parts of therketwo

3.2 Functional Constraints

Neuro-modules bias evolution to evolve local processiritsuthat are often related to
local functions. Although, admittedly, it can not be gudesd that the evolved structure
of a module implements a single, well defined function, threléncy still is towards
functions distributed over only a few, local modules. Thill simplifies the isolation
of such functions when an evolved network is analyzed.

Neuro-modules can also be used to represent predefineddinalatnits, that may
origin from previous evolutions or analytic reasoning. ®adunctional processing unit
is found by evolution, it can be reused in future evolutioasaural building block.
Forcing evolution to reinvent already known processingaiini each evolution from
scratch only blows up the search space without any gain fr@wsdientific perspective.
With an additionaheuro-module insertiomutation operator that can insert predefined
neural building blocks from a library, larger, functionathore complex networks can
evolve in shorter time.

Neural building-blocks can also be constrained with v&pgcificconstraint func-
tions. Because building blocks can be constructed by hartheumh often based on
evolved structures — specialized constraint functionsimaadded. Such functions can
be used to ensure, for instance, that the function or congilexcture of a module is
preserved independently of the mutations taking placey Taa also be used to de-
sign complex modules, such as neural fields [3], memory (ib§} oscillators [12],
structures with adaptive synapses and the like.

Constraints can also be useddimne a mutable neuro-module and to reuse the
same network structure in multiple places of the networkhia way the function of
this module can still evolve, while it is used with all modé#tons in several places,
profiting from enhancements immediately. A common usaghisfi$ the definition of
sensor filters or motor controllers (as in Fig. 1), where #rae structure is required for
any sensor or motor of the same type. If the sensor or motdesagdmilar in all places,
then the controller has not to be optimized multiple times.

3.3 Evolutionary Constraints

Neuro-modules are a suitable target for modification opesaduring evolution. Be-
cause neuro-modules are well structured, providing a Bpdnterface to their sur-
rounding network parts, they can be exchanged and replaiteamly little impact on

the rest of the network. This enables the usagaadular crossoverCrossover in most
neural network implementations is highly destructive duthe potentially large struc-
tural differences between parents. Crossover between wuehated networks most
probably produces networks that are less fit than both of geeients, so that most of



these networks usually do not survive. Modular crossovkss affected by this prob-
lem, because crossover takes place only at well defined nefweots, namely at the
module level. Modules are only replaced by compatible meslulvhich means that
their interfaces match and the module types are similar.

In addition to module exchange between parents, modulesatsaybe exchanged
by compatible modules from alibrary of predefined builditacis or by neuro-modules
co-evolving with the behavior controllers in their own ptations.

A particular benefit of constrained modularization for exan is that the approach
to solve a given behavior problem can be biased to a larga@xteadvance. This way
the experimenter does not only specify the problem to beesblbut also influences to
a high degree, how the problem is going to be solved. Alsoit#nation of evolutions
becomes much easier: The behavior problem may be solvedfirapplying sharp
restrictions on the evolving networks. Then, iterativéihg network can be opened for
new solution approaches to stepwise enhance the behavior.

4  Application

The modularization approach with the described featureskan implemented in the
ICONE (Interactively Constrained Neuro-Evolution) medh@urrently the implemen-
tation supports structure evolution based on neuron, $gapd neuro-module inser-
tions. Explicit specifications of neural pathways betweenrn-modules are consid-
ered, as well as connection restrictions induced by thatdbical interfaces of neuro-
modules. Neuron groups and neuro-modules can be restidtedrbitrary, user de-
fined constraint functions, such as symmetry, cloning asttiotions of neuron and
synapse structures. A library of neuro-modules as basidihgiblocks is under con-
tinuous construction, including neuro-modules for défierkinds of oscillations, mem-
ory, joint controllers, sensor filters, event detectiomms)text switches and behavior in-
terpolation. During evolution all aspects of the evolutionalgorithm can be modified
on-line to guide evolution through the search space.

Manually modularizing large networks is not trivial. Théne a graphical neural
network editor was implemented that supports the visualipudettion of all mentioned
aspects of the neural networks. Without such an editor, taoidation is difficult to

apply.

5 Examples

The modularization technique has been applied to develaporeontrollers for sev-
eral complex robots. These robots include for instanceithiegged walking machine
Octaviowith 24 sensor and 18 motor neurons, and Ak8erieshumanoid robot with
37 sensor and 42 motor neurons. The developed behaviotsl?nel among others —
different kinds of walking, squatting and stabilized stisugd

Some examples are shown in Fig. 2 and Fig. 3. Due to spacaliaris, details on
the evolved behaviors will be presented in upcoming pubiboa. But it can be said,
that with pure structure evolution solutions for these kafdproblems could not be
found at all.
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Fig. 2. Network and time-series of an evolved neuro-controllerviatking with the A-Series
humanoid, based on a constrained initial network similditp 1. The initial network was con-
strained to search for solutions based on the acceleratiwsoss of the shouldeM(d of Upper
Right Modulé. Substantially different networks can be produced stgriith internal pattern
generators as in Fig. 1. [Evolution: 400 generations with 150 individuals].

Fig. 3. Network and time-series of an evolved neuro-controllerviatking with the 6-legged
walking machineOctavia Here only one leg controlleldpper Lef) is evolved, all other legs
clone this prototype controller. In addition the networlstearight / left symmetry. The focus
of this experiment is to find a universal leg controller for altinlegged walking machine and
appropriate interconnection patterns. With minor adjestts of the constraints the focus of the
experiment can be changed, e.g. to find specialized legattars for front, mid and hind legs.
[Evolution: = 300 generations with 100 individuals].



6 Discussion

Modularizing a network by applying domain knowledge and esg@erience obviously
restricts the search space for neuro-evolution algoritittiempts to restrict the search
space have been conducted by many authors, because witstridtions the evolution
of large network topologies of non-trivial robots becom#gsasible.

A common approach is the use of specific genome represamattwat imply for
instance a fully symmetric network [7], [13]. This approaemn be compared to mod-
ularization with symmetry constraints. But because thersginy is embedded directly
in the genome representation or in the genotype-phenotgppimg, a new genome
type has to be created for each new experimental scenaso.cdimplex, stacked sym-
metries are difficult to set up. During evolution such gensraee rigid and can not
be extended if needed. Using, as proposed here, constuaictidns to influence the
relations of network parts, symmetry can be implementedsasiple extension of the
network genome and can easily be removed or changed withanging the genome
type. Furthermore constraints are not restricted to symyyiait can enforce any kind
of structural dependency, like complex spatial connestesused in neural fields [3].

Another approach to reduce the search space is to focus nslyexific parts of the
target robot. For instance, walking may be evolved with dhly legs of a humanoid
robot, replacing the entire upper body by a simple block ofparable mass [13]. This,
indeed, reduces the search space, because all motors aodssefthe simplified body
parts have been removed. Though, extending such a contmttee full robot becomes
difficult, because the evolved controllers will ignore th8uence of the other moving
body parts. Also, for each new approach, a new simulated fasoto be designed, that
focuses on the desired motor and sensor aspects, and tieeabfo iterative evolution
in small steps becomes more difficult. With the proposed resthation technique,
the complex target robot can be used right from the begintimgvanted sensors and
motors can be excluded in the beginning by synaptic pathestyictions and can be re-
enabled at any time during the evolution. Therefore theldian can start with a min-
imal subset of the robot’s actuators and sensors, but damstude the non-essential
robot parts to further optimize the controllers.

A third popular search space restriction approach is strageuse. In most cases
structure reuse is implemented within developmental gimisystems, like Cellular
Encoding [5], where the genotype is mapped to a phenotypeplyiag a sequence
of construction rules. These algorithms have been showeugerstructures in multiple
places while evolving thetructure blue-print®nly once. A disadvantage of such de-
velopmental approaches is, that the resulting modulactsires are difficult to isolate
for later usage. Furthermore, it is difficult to translateoaplex starting network with
this kind of modularity into its genotype representationgd & monitor and manipu-
late these modular structures during evolution. Neuro-umexias building blocks on
the other hand do not require a complex mapping from gendtypkenotype and thus
can be reused as entire structure with little effort. Otleehhiques [2], such as Mod-
ular NEAT [14], try to automatically define neuro-modulesbadding-blocks without
a complex genotype-phenotype mapping. But also here,ifimadtmodules have to be
reinvented in every evolution, because predefined modalesot be used. Further-
more, the reused sub-networks are arbitrarily aligned ¢artput and output neurons



without domain knowledge, so that — especially in large eks — proper use of the
modules becomes unlikely again.

Constrained modularization allows the utilization of alemtioned search space
restriction methods in a uniform, extensible frameworktW\appropriate libraries of
functional neuro-modules new types of larger control neksa@an be developed, that
might give deeper and even new insights into neural orgtioizaf behavior. Con-
strained modularization as a general principle does ndlynesstrict experimenters in
their approaches, because new approaches can be simpgniempied by introducing
new constraint functions.

7 Conclusions

In this contribution it was discussed hawnstrained modularizatioof large neural
networks for robot control can significantly reduce the skapace for neuro-evolution
processes. Large neural networks can be spatially andalbgipartitioned byneu-
ron groupsandneuro-modulesBoth types of grouping can be the targetcohstraint
functions that force the compliance of — partly very specific — coristsasuch as net-
work symmetries, dependencies, module cloning and coiitgdtructures between
or within modules. The modularization is done manually tplgglomain knowledge
and to bias the search towards desired solution approdohbs way the search space
is restricted by the user to a well defined potential soluspace, which increases the
chance to find appropriate solutions. For modular neuralords new types of evo-
lution operators are definedhodular crossoveandneuro-module insertiond/odular
crossover allows the exchange of sub-networks in a minyntibtructive way. Inser-
tions of functional neuro-modules as mutation allow theepgion of a network with
already working functional sub-networks, which easesttiestfer of findings from pre-
vious evolutions and relieves evolution from reinventitrgady known structures. The
described approach has been used to develop differentibehfar several robots with
many sensors and actuators, including a multi-legged walkiachine and humanoid
robots. Detailed results are described in upcoming putidics.
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