
Metamodels Matching: Issue, Techniques and
Comparison

Lamine Lafi
1
, Wajih Alouini

2
, Slimane Hammoudi3 and

Mohamed Mohsen Gammoudi2

1
 ISSAT, Université de Sousse, Sousse, Tunisia

2
 FST, Faculté des Sciences de Tunis, Tunis, Tunisia

3
 ESEO, Ecole supérieure de l’Ouest Angers, France

Abstract. Research and practice for Model Driven Engineering (MDE) have
significantly progressed over the last decade for dealing with the increase of
complexity within systems during their development and maintenance
processes by raising the level of abstraction using models as information
storage. New significant approaches, mainly Model Driven Architecture
(MDA) defined at the OMG (Object Management Group), “Software Factories”
proposed by Microsoft and the Eclipse Modeling Framework (EMF) from IBM,
are born and have been experimented. As models grow in use for developing
systems, transformation between models grow in importance. University and
industry are seeking for effective and efficient ways to treat transformation as
first-class assets in MDE. In order to produce new and more powerful
transformations, we argue that the semi-automatic generation of transformation
rules is an important challenge in future MDE development to make it easier,
faster, and cost-reduced process. In this paper we propose to discuss
metamodels matching as a key technique for a semi-automatic transformation
process. We review, compare, and discuss the main approaches that have been
proposed in the state of the art for metamodels matching.

1 Introduction

The special interest behind model driven engineering (MDE) is on the promise of
tackling the increase of complexity within the software and its development process
by raising the level of abstraction using models as information storage. With the aim
of making models as the available internal information, academy and industry have
provided several MDE based approaches, among which the most well known are
MDA [1] by OMG , “Software factories” by Microsoft [2] and the Eclipse Modeling
Framework (EMF) from IBM [3]. MDE has transferred the focus of work from
programming to modeling by treating models as first class entities and consequently
the primary artifacts of development. As a consequence, models had to be handled
and therefore opened new axis of research on the model transformation even if
transformation existed in research fields prior to MDE [4]. In the literature, several
issues around MDE have been studied and subject of intensive research, e.g. modeling

Lafi L., Alouini W., Hammoudi S. and Mohsen Gammoudi M.
Metamodels Matching: Issue, Techniques and Comparison.
DOI: 10.5220/0003026300200034
In Proceedings of the 2nd International Workshop on Future Trends of Model-Driven Development (ICEIS 2010), page
ISBN: 978-989-8425-10-2
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

languages [4] [5], model transformation languages [6] [7], mapping between
metamodels [8] [9], Scalability and reuse of model transformations [10], Maintenance
and evolution of model transformations [11] and Model-driven development
methodologies, approaches, and languages with a focus on transformations [12]. Of
particular interest to transformation among these issues, are model transformation
languages that allow defining how a set of elements from a source model are analyzed
and transformed into a set of elements of a target model, the output of transformation
being a set of rules involving, and in the same time merging mapping and
transformation techniques between two metamodels. Now that the treated information
becomes available as models, the problem of a manual transformation still exists, and
is one of the main barriers to tackle avoiding making transformation fastidious and
error-prone task, and therefore an expensive process. The semi-automatic generation
of transformation rules is an important challenge in future MDE development to make
it easier, faster, and cost-reduced process with the decrease of errors that may occur.
Matching techniques between metamodels are the centerpieces for a semi-automatic
transformation process in MDE and particularly in MDA. In fact, metamodels
matching allows discovering mappings between two metamodels and the mappings
allow in turn generating transformation rules between two metamodels. However,
there has been little research in metamodel matching. In the database domain, the
corresponding term for metamodel matching is schema matching. In this paper, we
discuss the problem of schema matching that has been extensively studied in the
database area, and then we review the main different approaches that have been
proposed for metamodel matching in the context of MDA/MDE. We will start by
stressing the role of matching techniques in the semi-automatic process of model
transformation.

This paper is organized as follows: section 2 introduces the main concepts and
techniques for a semi-automatic transformation process, presents schema matching
techniques and situates it in the context of metamodel matching. Section 3, reviews
and compares five approaches that have been proposed for metamodel matching in
the context of MDA. Finally, section 4 concludes our work and presents some final
remarks and perspectives.

2 Metamodels Matching for Model Transformation

2.1 Metamodels Matching for Model Transformation: Overview

It is well recognized today that model transformation is one of the most important
operations in MDA [13]. The following definition of model transformation, largely
consensual, is proposed in [14]:
“A Transformation is the automatic generation of a target model from a source
model, according to a transformation definition. A transformation definition is a set
of transformation rules that together describe how a model in the source language
can be transformed into a model in the target language. A transformation rule is a
description of how one or more constructs in the source language can be transformed
into one or more constructs in the target language”.

21

However, we point out two main problems concerning the MDA transformation
process.

• The first problem concerns the manual creation of “transformation rules” between
metamodels. Generally, this task is tedious and error-prone, and therefore
expensive in terms of efficiency [15]. Moreover, writing the transformation rules
requires a good mastery of both the transformation language and the source and
target metamodels, in order to express the correspondence both from a structural
and a semantic point of view.

• The second problem concerns the specification of these “transformation rules”,
which merge together techniques of mapping and transformation without an
explicit distinction between them. That is to say, the specification of
correspondences between elements of two metamodels and the transformation
between them are grouped in the same component at the same level.

In the MDA context, and according to previous works [10, 16], the concepts of
mapping and transformation should be explicitly distinguished, and together could be
involved in the same process that we call transformation process. In fact, in the
transformation process, the mapping specification precedes the transformation
definition. A mapping specification is a definition of the correspondences between
metamodels (i.e. a metamodel for building a PIM (Platform Independent Model) and
another for building a PSM (Platform Specific Model)). This definition is largely
obtained by a matching process between two metamodels, and completed by an
expert. Transformation definitions contain an explicit description of how to transform
a model into another using a transformation language. Transformation definitions are
a set of rules that are obtained automatically from all the mappings between two
metamodels. Hence, in our approach the transformation process of a PIM into a PSM
can be structured in two stages: a mapping specification obtained by a matching
process and completed by an expert, and a transformation definition derived
automatically from the mappings.
The figure 1 illustrates the main concepts and techniques involved in a semi-
automatic transformation process. The matching operation is the process that
produces the potential mappings between two metamodels. Generally, this task
implies a search of equivalent or similar elements between two metamodels. Given
that no generic matching solution exists for different metamodels and application
domains, it is recommended to give the human expert the possibility to check the
obtained mappings, and, if necessary, update or adapt it. This is one of the steps in
the whole process, in which the expert intervenes to complete and validate the
obtained results. Finally, a transformation model (a program: a set of rules), is derived
automatically from a mapping model. A transformation model is basically represented
by a set of rules that states how elements from source metamodel are transformed into
elements of target metamodel. A transformation model (program) takes a source
model defined by designers or and produces an equivalent target model on a specific
platform.
Two important operations (dashed arrows) adaptation (1) and derivation (2) allow
linking and completing the two main operations (matching and transformation) in the
whole process of transformation. Adaptation is the responsibility of the expert user
who should accept, discard or modify the obtained mappings, furthermore, to specify
the correspondences which the matcher was unable to find. Loosely speaking, the

22

Fig. 1. Semi-automatic transformation process.

mapping and matching techniques (models) could be defined with the following
intuitive formula:

Mapping = Matching + Adaptation

The mapping model obtained in the previous step after adaptation by the expert user
should be completely defined allowing an automatic generation of transformation
model. This operation is called derivation and, in the same way as above,
transformation and mapping models can be defined with the following intuitive
formula:

Transformation = Mapping + Derivation

2.2 From Schema Matching to Metamodel Matching

Matching between metamodels are the centerpieces for a semi-automatic
transformation process in MDE, particularly in MDA. Matching techniques have been
studied in various research domains, including digital libraries, ontologies, agent
matchmaking, schema integration and evolution in databases [16] [17]. In the context
of MDE, we can find few works in the literature that address the problem of
metamodels matching. Schemas in the context of databases and metamodels in our
context of MDE are closely related, hence, we propose to review the different
approaches of schema matching, and after that we situate these approaches in our
context of metamodeling matching.

2.2.1 Classification of Schema Matching Approaches

In the literature, several schema matching approaches have been proposed [16] [17].
Each schema matching approach has its own characteristics that were grouped in a
taxonomy illustrated bellow in figure 2 [15] [18]. In addition, each approach has been

Source
Metamodel

Target
Metamodel

Matching Techniques

Mapping
Model

Transformation
Model

(program)

Source
model

Target
model

 (1)

(2)

23

Fig. 2. Classification of schema matching approaches.

evaluated through match quality measures discussed in the next section 2.2.2.

• Individual matcher approaches use only one matching criterion. They are
classified in:
– Schema-only based, when they consider only metamodels. They can be classified in:

 Element level, the mapping is realized for each individual element. It can be
classified in linguistic and constraint-based. Linguistic are based on name
similarity, description, global namespace, while constraint-based are based on
type similarity and key properties.

 Structure-level, the mapping is realized considering the combinations of
elements related in a structure. It is only classified in constraint-based that use
graph matching.

– Instance/contents-based, when they consider only instances (or models). It can also
be classified in element-level. This last can be classified in linguistic and
constraint-based. In this case, linguistic is based on word frequencies and key terms
present in the element instances, while constraint-based is based on value pattern
and ranges of the element instances.

• Combining matchers use multiple matching criteria. They can be classified in:
 – Hybrid, they combine multiple approaches to create only one matcher in order to

produce a result, i.e. the creation of mapping between elements.
 – Composite, they combine many results obtained from different approaches in

order to produce the mapping between elements. This combination of results can
be manual or automatic.

2.2.2 Matching Quality Measure

The interrelationships between metamodels can be organized in sets which can be
manually or automatically created. A set created manually can contain all needed
matches (i.e. matched elements); while a set created automatically can contain valid
and non valid matches. The first set is denominated real matches, and the later derived
matches (cf. Figure 3).

Schema Matching Approaches

Individual matcher
 approaches

Combining
matchers

Schema-only
based

Instance
contents-based

Hybrid
matchers

Composite
matchers

Element-
level

Structure-
level

Element-
level

Manually:iterative
user feedback

Structure-
level

24

Fig. 3. Comparing real matches and automatically derived matches.

In addition, other subsets are defined as follows [16] [18]:

- A (false negatives) are matches needed but not automatically identified.
- B (true positives) are matches which are needed and have also been correctly

matched by the automatic match operation.
- C (false positives) are matches falsely proposed by the automatic match operation.
- D (true negatives) are false matches which have also been correctly discarded by

the automatic match operation.

Based on the cardinalities of these sets, the following match quality measures are
provided as parameters for benchmarks:

Precision =
CB

B
+

 reflects the share of real correspondences among all found
ones.

Recall =
BA

B
+

 specifies the share of real correspondences that are found.

F-Measure = 2 *
Pr *Re
Pr Re

ecision call
ecision call+

Overall = Recall * (1 -
ecisionPr

1
)

All these measures were developed specifically in the schema matching context [15]
[18]. We can notice that F-Measure represents the harmonic mean of Precision and
Recall. The main underlying idea of Overall is to quantify the post-match effort
needed for adding missed matches and removing false ones.

2.2.3 Metamodel Matching versus Schema Matching

Our aim is not to compare schema matching approaches with those of metamodel
matching. The main reason is that the technological spaces of both approaches are not
the same. A technological space [19] is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities. It is often
associated to a given user community with shared know-how, educational support,

A B C
D

Real Matches Derived Matches

25

common literature and even workshop and conference regular meetings. Although it
is difficult to give a precise definition, some TSs can be easily identified, e.g. the
XML TS, the DBMS TS, the abstract syntax TS, the meta-model (OMG/MDA) TS,
etc. In one case, in schema matching efforts have been made mainly in the context of
databases and involve ER schemas. In the other case, metamodel matching focuses on
UML OMG standard which is structurally and semantically richer than ER schemas.
Moreover, the level of abstraction of metamodels and schemas is not the same.
However, techniques known and used to find semantic correspondences between the
elements of two schemas are to be applied to the metamodel matching problems since
the aim “finding semantic correspondences” is still the same. We can say that
metamodel matching techniques would probably subsume schema matching
techniques from the fact that a technological space of metamodels includes the
technological space of schemas in database area. Thus metamodel matching
techniques will probably become a generic solution to many problems of matching;
that we can call the X-matching.

3 Metamodel Matching: A Review and Comparison

In this section we will review and compare the different approaches of metamodels
matching presented respectively in [20], [21], [18], [17], [15], and [22] as well as their
evaluations. We have encountered a number of systems, which have not been
evaluated altogether, respectively SF, SAMT, ModelCVS, Delfabro, and Extended
SAMT4MDE.

3.1 A review for Metamodel Matching

3.1.1 Similarity Flooding SF

System Description. SF [20] converts schemas (SQL DDL, RDF, XML) into labeled
graphs and uses fix-point computation to determine correspondences of 1:1 local and
m: n global cardinality between corresponding nodes of the graphs. The algorithm has
been employed in a hybrid combination with a simple name matcher, which suggests
an initial element-level mapping to be fed to the structural SF matcher. Unlike other
schema-based match approaches, SF does not exploit terminological relationships in
external dictionary, but entirely relies on string similarity between element names. In
the last step, various filters can be specified to select relevant subsets of match results
produced by the structural matcher.

Similarity Flooding in [21] is a generic alignment algorithm that allows calculating
the correspondences between the nodes of two labeled graphs. This algorithm is based
on the following intuition: if two nodes stemming from two graphs have been
determined as similar, therefore, there would be strong opportunities for the
neighboring nodes to be similar, too. More precisely, SF applies five successive
phases on the labeled graphs which have been provided at the input phase. This
algorithm is applied after the transformation phase that consists in transforming the

26

MMsource and the MMtarget to the directed labeled graphs Gsource and Gtarget. Along this
phase a set of six strategies to encode the metamodel into such a graph has been used.
Each of these strategies has got its proper techniques to transform these two models
into a graph.

Evaluation. The SF evaluation in [20] used 9 match tasks defined from 18 schemas
(XML and SQL DDL) taken from different application domains. The schemas were
small with the number of elements ranging from 5 to 22, while showing a relatively
high similarity to each other (0.75 on average). Seven users were asked to perform the
manual match process in order to obtain subjective match results. For each match
tasks, the results returned by the system were compared against all subjective results
to estimate the automatic match quality, for which the Overall measure was used.

Fig. 4. Match quality of Similarity Flooding Algorithm [20].

Other experiments were also conducted to compare the effectiveness of different
filters and formulas for fix-point computation, and to measure the impact of
randomizing the similarities in the initial mapping on match accuracy. The best
configuration was identified and used in SF. Figure 4 shows the Overall values
achieved in the single match tasks according to the match results suggested by the
single users. The average Overall quality over all match tasks and all users is around
0.6.
Referring to the experiments [21] it is noticed that in each of the six mentioned
strategies, a set of match quality variable from one strategy to another is obtained.
The results show that the best configuration is generally saturated. On the other hand,
the Minimal configuration gives very bad results. Full and Standard configurations,
despite using more information from the metamodels, seem to produce slightly poorer
results than the Basic configuration. The metamodels used to match on Ecore vary in
size. Minjava has more or less the same size as Ecore, Kermeta is a little bigger, and
UML is very large. We can clearly see from the results that the alignment quality
decreases when the size difference between the two matched metamodels is
increasing. This is partly caused by the Selected Threshold filter that the alignment
produced by Similarity Flooding. Results on Ecore↔Minjava and Ecore↔Kermeta
show that good quality alignments can be produced by this approach as described by
the figures 11 and 12 in [21].

3.1.2 ModelCVS

System Description. In [18], the authors propose an approach said “lifting”, allowing

27

to transform the source and target metamodels into equivalent ontologies. This
approach proposes a framework of matching the metamodels thanks to a transition of
ModelWare into OntoWare while using transformations of the metamodels Ecore-
based into OWL-based ontologies. After having done this transition, one can reuse the
tools of ontologies matching that exploit the ontologies which really represent the
metamodels. Once the matching task is over, the transition of the ontology mapping
into a model of texture will be done. From this model of texture, the necessary
transformation rules to transform some models in conformity with a metamodel A to a
model in conformity with a metamodel B can be deduced.
In this work, they concentrate on evaluating schema-based matching tools, i.e., they
do not consider instance-based matching techniques. This is due to the fact that they
are using the data provided by metamodels (schema-level) and not data from models
(instance-level) to find equivalences between metamodel elements.

Evaluation. According to [18], in addition to the different modifications and
combinations of different matching techniques which produce higher precision values
but at the same time lower recall values, the Metamodels must fullfil some
requirements in order to prove that matching tools are worth using. The 10 integration
scenarios showed that the metamodels must have a common terminology and
taxonomy, which is the case when matching UML1.4, UML2.0 and Ecore. These
combinations lead to the best results despite their size which obviously lead to a
higher number of elements that have to be matched. Furthermore, good results are
achieved when matching WebML with EER. These two metamodels also have a
common terminology and both do not heavily use inheritance relationships. In
contrast, matching WebML or EER with UML1.4, UML2.0 or Ecore results in a very
low precision and in a very poor recall which is mostly below 0.10.These results lead
to the conclusion that Ontology matching tools are not always appropriate for
matching metamodels. Instead, the metamodels must fullfil some common properties
which of course are not always the case when matching real-world metamodels.
The evaluation of [18] produced the following best average match quality:
Precision=0.63, Recall=0.68, F-Measure=0.61. This last measure is used to study the
impact on match quality (>0.5 indicates positive benefit, <0.5 indicates negative
benefit)

3.1.3 SAMT4MDE

System Description. In [17], the authors have discussed some issues of schema
matching and provided some insights into metamodel matching. To reach this end,
they have used UML and the C# platform to illustrate their approach and to evaluate
their Mapping Tool for MDE (MT4MDE) and Semi-Automatic Matching Tool for
MDE (SAMT4MDE).
Their approach takes into account metamodel matching in the context of MDE. The
study of metamodel matching in MDE is a promising trend to improve the creation of
mapping specification and, consequently, the transformation definition. Tools for
metamodel matching are necessary to avoid error-prone factors linked to the manual
creation of the transformation definition and to evolve mapping specification when
metamodels change.
Metamodel matching results in a mapping model, which describes how two

28

metamodels are related to each other. According to model management algebra [23],
a mapping is generated using an operator called match which takes two models as
input and returns a mapping between them. This operator has been modified as
follows: given Ma, Mb and CMa→Mb / Mc, the operator match is formally defined as:
Match’(Ma,Mb)= CMa →Mb / Mc.

Evaluation. The evaluation of this approach [17] resulted in the following values

- Schema similarity SS =0.74
- Match quality measures: Precision =0.71, Recall =0.68, F-Measure =0.69, Overall

=0.40

In the ideal case, Precision=Recall=1.0, i.e. when the number of false negatives and
false positives are both zero. In this experimentation, Precision =0.71 demonstrates
that 71% of derived matches were correctly determined using our schema matching
algorithm. And Recall =0.68 demonstrates that 68% of real matches were
automatically found.

3.1.4 Heuristics for Transformation

System Description. In [15], authors suggest different heuristics for the realization of
matching between two metamodels. The Match operation takes two models Ma and
Mb as input and produces a weaving model Mw as output. Ma and Mb conform to MMa
and MMb; Mw conforms to MMw.

Mw: MMw= Match (Ma:MMa, Mb:MMb) (1)

These heuristics use matching transformations and weaving models to semi-automate
the development of transformations. As defined in [15], Matching transformations are
a special kind of transformation which implements heuristics and algorithms to create
weaving models. Their function is also to select a set of elements from a group of
input models and to produce links between these elements. Following the same line of
thought, weaving models are models that capture different kinds of relationships
between models. The solution suggested earlier enables to rapidly implement and
customize these heuristics. Different heuristics are combined and a new metamodel-
based heuristic is proposed to exploit metamodel data which automatically produce
weaving models and also to exploit the internal features of the set of input
metamodels in order to produce weaving models which are derived into model
integration transformations. This heuristic is executed together with a link rewriting
method that analyzes the weaving metamodel extensions to produce frequently used
transformation patterns.

Evaluation. The matching transformations in [15] are executed with two variations of
the motivation example. In the first example, MM1 and MM2 conform to KM3. In the
second example, MM1 conforms to KM3 and MM2 conforms to SQL-DDL. The
weaving models are translated into model transformations. The goal is to verify if the
transformations are generated correctly, and to verify if the matching transformations
can be easily adapted in both examples.

29

3.1.5 Extended SAMT4MDE

System Description. The contribution of [22] to this field of metamodel matching is
an algorithm that uses structural comparison between a class and its neighbouring
classes in order to select the equal or similar classes from source and target
metamodels. The proposed algorithm for metamodel matching is an extension and
enhancement of the algorithm presented in [24] and it is implemented in the Semi-
Automatic Matching Tool for MDE (SAMT4MDE) which is capable of semi-
automatically creating mapping specifications and making matching suggestions that
can be evaluated by users. This provides more reliability to the system because
mapping becomes less error-prone. The algorithm proposed can identify structural
similarities between metamodel-elements. However, sometimes elements are matched
by its structures but they do not share their meanings. The lack of analysis about
element meaning leads the tool to find false positives, i.e. derived correspondences
that are not real.

Evaluation. The evaluation of [22] uses a test case for creating mapping specification
between UML and Java metamodels in order to evaluate the algorithm developed in
this paper for metamodel matching. The SAMT4MDE produced the following results
for this study case: Schema similarity=0.68, Precision=0.84, Recall=0.90, F-
Measure=0.87 and Overall=73.
The similarity between UML and Java metamodels is 0.68. This means that 68% of
elements from both metamodels are involved in metamodel matching. A high
percentage of metamodel similarity means that semantic distance between these
metamodels is small, and low percentage means the opposite.
The measure of precision is 0.84. It is assumed from this information that 84% of
found correspondences are correct. The measure of recall is 0.90, meaning that 90%
of existing correspondences were found.

3.2 Comparison between Metamodel Matching Techniques

Table 1 gives a summary of the discussed evaluations. Unlike other approaches of
schema matching, the five studied approaches of metamodels matching do not exploit
terminological relationships in an external dictionary, but entirely rely on string
similarity between elements.
Comparing these approaches, we have found some similarities and differences
between them. SAMT4MDE [17], ModelCVS [18] and Extended SAMT4MDE[22]
use an object oriented model as schema type, while the other approaches/tools such as
SF and Delfabro [15] use an object oriented model and relational or XML as schema
type.
SF and SAMT4MDE [17] use small metamodels, while ModelCVS [18] and [15] rely
on large and even very large size schemas.

According to Table 1, SF allows only eighteen schemas per nine match task (18/9
schemas/task), and SAMT4MDE allow only two schemas per match task (2/1
schemas/task).

In SAMT4MDE [17] the schema similarity is the highest (equal to 0.79) compared
to the other approaches while in Extended SAMT4MDE [22] it is equal to 0.68.

30

SAMT4MDE [17] uses discrete values {-1, 0, 1} as match result representation
(i.e. different, similar or equal), while the other approaches (SF, ModelCVS,
Extended SAMT4MDE) use continuous values in the range [0, 1] to represent the
similarity degree. For Delfabro [15], the matches are not mentioned.

The metadata representation of SF and SAMT4MDE are nodes which represent a
metamodel, while Kappel (ModelCVS project) and Delfabro represent models or
metamodels data. In Extended SAMT4MDE [22] an UML diagram class has been
studied.

All approaches with the exception of Delfabro [15] provide a match local
cardinality of 1:1, and a match global cardinality of 1: n, while SAMT4MDE provides
a match cardinality of 1:n.
The employed quality measure in SF is overall, in ModelCVS [18] these measures are
Precision, Recall, and F-measure. SAMT4MDE and Extended SAMT4MDE use the
same measures (Precision, Recall, Overall, F-measure), while Delfabro[15] utilizes
Element similarity, link rewriting and link filtering.

SF in [20] has taken into consideration the subjectivity of the user’s perception vis-
à-vis the necessary correspondences (7 users), in [21] it has used 6 configurations.
The evaluation of ModelCVS [18] has used 10 scenarios and 13 settings tools,
SAMT4MDE [17] has used 02 fragments of UML and C-sharp metamodels, [15] has
utilized a set of input Metamodels. Finally, Extended SAMT4MDE [22] has utilized
one class and its neighboring classes.
All the approaches do not necessitate any pre-match effort. The exception is in SF,
where there is an intervention of the user in the choice of metamodels alignment and
the necessary tools in [20] [21].

To study the impact match quality, SF utilizes a fix-point (Filters), ModelCVS
utilizes F-measure (>0.5 positive benefit ;< 0.5 negative benefit), Extended
SAMT4MDE uses a threshold; while for SAMT4MDE and ModelCVS [15] it is not
mentioned.
Extended SAMT4MDE provides the Highest best average match quality,
(precision=0.84, Recall=0.90, F-measure=0.87, and overall=0.73) compared to
SAMT4MDE (precision=0.79, Recall=0.68, F-measure=0.73, and overall=0.49), and
ModelCVS (precision=0.63, Recall=0.58, F-measure=0.61). For SF [20] Overall is
almost equal to 0.6, while in [21] these measures vary from one configurations to
another.

The Application area for SF is the database and ontologies, while for ModelCVS
[18] it is the database and structural modeling languages. SAMT4MDE focuses on
model transformation, and for Delfabro [15] it is the Database and model
transformation. Finally, the Application area for Extended SAMT4MDE is the
database (Database integration, E-business and Data warehouse).
The manual work of the user is especially required in SF. It consists in choosing the
metamodels to align, evaluating the matching suggestions produced by the algorithm.
The latter task can equally be applied to Extended SAMT4MDE. In ModelCVS [18]
the user’s intervention consists in including ontology creation tools, query tools,
matching tools, and Reasoning tools.

31

Table 1. Summary of the evaluations.

 SF ModelCVS SAMT4MDE Extended
SAMT4MDE

References [20]&[21] [18] [17] [15] [22]
Test problems

Tested
Schema types

XML/SQL DDL
Relational/RDF/
UML/ Ecore

UML1.4/UML 2.0 Object-oriented
model: UML, Java,
and C-Sharp

SQL DDL
Relational/
UML

UML 2.0/
Ecore

Schema /
Schema tasks

18/9 - 2/1 - -

Min /Max /
Avg schema
size

5/22/12 Large schema Very large
schema

-

Min /Max /
Avg schema
similarity

0.46/0.94/0.75 - Schema
similarity=0.79

- Schema
similarity=0.68

Match result representation

Matches
Element-level correspondences between
similarity value in [0.1]

With discrete value
{0,1,-1}

Similarity
value in [0.1]

Element Repr Node Models/Metamodels Node
Models or
Metamodels
Data

Class

Local/Global
Cardinality

1:1/m:n 1:1/m:n 1 :n - 1:1/m:n

Quality of measure And test methodology

Employed
Quality
Measures

Overall
Precision, Recall, F-
measure

Precision, Recall,
Overall, F-measure

Element
similarity*,
Link filtering,
Link rewriting.

Precision,
Recall,
Overall,
F-measure

Subjectivity
7 user/ 6
configurations

10 scenarios and 13
tools settings

02 Fragments of
UML and C#
metamodels

A set of input
metamodels

1 class and its
neighbor
classes

Pre-match
effort

None None None None None

Studies Impact
on match
Quality

Filters, fix-point
formulas,
randomizing initial
similarity

F-Measure:
IF>0.5: positive
benefit
IF<0.5: negative
Benefit

 Threshold

Best average Match quality
Prec/ Recall **

0.63/0.58 0.79/0.68 - 0.84/0.90

F-measure 0.61 0.73 - 0.87
Overall ˜0.6 - 0.49 - 0.73

Evaluation high light

User subjectivity, no
pre-match effort

no pre-match effort

Representative
metamodels for
developing
information system

no pre-match
effort

no pre-match
effort

Application
Area

Database and
ontologies

Database and
Structural Modeling
languages

Model
transformation

Model
transformation

Model
Transformation

Manual work
of user

Choice of
metamodels to align,
Evaluate matching
suggestions produced
by algorithm.

Including ontology
creation tools, query
tools, matching
tools, and Reasoning
tools.

Evaluate
matching
suggestions
produced by
algorithm

Match
granularity

Element level
Mapping

Schema-level
Matching

Schema-level
Matching

- -

* Contains element to element similarity and structural similarity
** Change from configuration to another

SF has a granularity of matching at element level; otherwise ModelCVS [18] and
SAMT4MDE [17] have a granularity of matching at structure level.
The majority of these approaches have a combination of matches of type hybrid.

32

4 Conclusions

A semi-automation of the transformation process in MDE/MDA leads to a real
challenge allowing many advantages: it enhances significantly the development time
of transformation and decreases the errors that may occur in a manual definition of
transformations. Matching techniques between metamodels are the centerpieces for a
semi-automatic transformation process in MDE/MDA. The contribution of this work
is twofold: First, we present the main techniques and artifacts involved in the semi-
automatic transformation process. Second, we review five main approaches that have
been proposed in the literature for metamodel matching. In the future work, we will
concentrate on how to combine different approaches to enhance the matching process.
In addition, we will envisage studying the optimization of mapping models which
seems to be another important issue in MDE.

References

1. OMG, 2001. Model Driven Architecture (MDA)- document number ormsc/2001-07-01.
(2001).

2. Dominguez, K., Pérez, P., Mendoza, L., Grimán, A., 2006. Quality in Development Process
for Software Factories According to ISO 15504, In CLEI electronic journal,
[http://www.clei.cl, Vol. 9 Num. 1 Pap. 3: June 2006.

3. Budinsky, F., Steinberg, D., Merks, E. , Ellersick, R., Grose, T. J., 2003. Eclipse Modeling
Framework: A Developer’s Guide, Addison-Wesley Pub Co, 1st édition.

4. Bézivin, J., 2005. On the Unification Power of Models. In Software and Systems Modeling,
4(2):171-188.

5. Booch, G. Brown,A Iyengar, S Rumbaugh, J and Selic, B. An MDA Manifesto. MDA
Journal, May 2004.

6. Jouault, F., 2006. Contribution à l'étude des langages de transformation de modèles, Ph.D.
thesis (written in French), University of Nantes.

7. OMG, 2005. MOF QVT Final Adopted Specification, OMG/2005-11-01.
8. Hammoudi, S., Janvier, J., Jouault, F., Lopes, D., 2005. Mapping Versus Transformation in

MDA: Generating Transformation Definition from Mapping Specification, In VORTE
2005, 9th IEEE International Enterprise Distributed Object Computing Conference.

9. Hammoudi, S., Lopes, D., 2005. From Mapping Specification to Model Transformation in
MDA: Conceptualization and Prototyping. In MDEIS’2005, First International Workshop.

10. Cuadrado, J.S, Molin, J.S, Approaches for Model Transformation Reuse: Factorization
and Composition. ICMT’2008, Pages 168-182.

11. Roser, S., Bauer, B, Automatic Generation and Evolution of Model Transformations Using
Ontology Engineering Space, Journal on Data Semantics XI, 2008

12. Almeida, A.J.P., 2006. Model-driven design of distributed applications. PhD thesis,
University of Twente. ISBN 90-75176-422.

13. Sendall, S., Kozaczynski, W. 2003. Model Transformation – the Heart and Soul of Model
Driven Software Development. IEEE Software, Special Issue on Model Driven Software
Development, pp42-45, Sept /Oct 2003.

14. Kleppe, A., Warmer, J., Bast, W., 2003. MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley, 1st edition.

15. Feiyu, L. State of the Art: Automatic Ontology Matching, Research Report, School Of
Engineering, Jonkoping, Sweden, 2007.

33

16. Lopes, D., Hammoudi, S., De Souza, J., Bontempo, A., 2006. Metamodel matching:
Experiments and comparison. In ICSEA'06, Proceedings of the International Conference on
Software Engineering Advances.

17. Del Fabro, M. D., 2007. Semi-automatic Model Integration using matching transformation
and weaving models. In SAC’07, ACM.

18. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidel, M., Strommer, M., Wimmer,
M., 2007. Matching Metamodels with Semantic Systems – An Experience Report. In BTW
2007, Datenbanksysteme in Business, Technologie and Web.

19. Kurtev, J. Bézivin, and M. Aksit. Technological spaces: An initial appraisal. In Int.
Federated Conf. (DOA,ODBASE, CoopIS), Industrial track, Los Angeles, (2002)

20. Melnik, S. , Garcia-Molina, H. Rahm, E. Similarity Flooding: A Versatile Graph
Matching Algorithm and Its Application to Schema Matching. In Proceedings of the 18th
international Conference on Data Engineering (February 26-2002). ICDE. IEEE Computer
Society, Washington, Pages 117-128.

21. Falleri, J.R. , Huchard, M. Lafourcade, M. Nebut, C. Metamodel matching for automatic
model transformation generation. In: Proceedings of MoDELS ’08, (2008) 326–340.

22. Jose de Sousa Jr, Denivaldo lopes, Daniela Barreiro Claro, and Zair Abdelouahab. A Step
Forward in Semi-automatic Metamodel Matching: Algorithms and Tool.

23. Bernstein, P.A, 2003. Applying Model Management to Classical Meta Data Problems. In
CIDR’03, Proceedings of the Conference on Innovative Data Systems Research. CIDR.

24. Chukmol, U., Rifaiem, R., Benharkat, N.: EXSMAL: EDI/XML Semi-Automatic Schema
Matching ALgorithm, Proceedings of the Seventh IEEE International Conference on
ECommerce Technology, IEEE Computer Society, 422-425, (2005)

34

