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Abstract. Research and practice for Model Driven Engineering (MDE) have 
significantly progressed over the last decade for dealing with the increase of 
complexity within systems during their development and maintenance 
processes by raising the level of abstraction using models as information 
storage. New significant approaches, mainly Model Driven Architecture 
(MDA) defined at the OMG (Object Management Group), “Software Factories” 
proposed by Microsoft and the Eclipse Modeling Framework (EMF) from IBM, 
are born and have been experimented. As models grow in use for developing 
systems, transformation between models grow in importance. University and 
industry are seeking for effective and efficient ways to treat transformation as 
first-class assets in MDE. In order to produce new and more powerful 
transformations, we argue that the semi-automatic generation of transformation 
rules is an important challenge in future MDE development to make it easier, 
faster, and cost-reduced process. In this paper we propose to discuss 
metamodels matching as a key technique for a semi-automatic transformation 
process. We review, compare, and discuss the main approaches that have been 
proposed in the state of the art for metamodels matching. 

1 Introduction 

The special interest behind model driven engineering (MDE) is on the promise of 
tackling the increase of complexity within the software and its development process 
by raising the level of abstraction using models as information storage. With the aim 
of making models as the available internal information, academy and industry have 
provided several MDE based approaches, among which the most well known are 
MDA [1] by OMG , “Software factories” by Microsoft [2] and the Eclipse Modeling 
Framework (EMF) from IBM [3]. MDE has transferred the focus of work from 
programming to modeling by treating models as first class entities and consequently 
the primary artifacts of development. As a consequence, models had to be handled 
and therefore opened new axis of research on the model transformation even if 
transformation existed in research fields prior to MDE [4]. In the literature, several 
issues around MDE have been studied and subject of intensive research, e.g. modeling 
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languages [4] [5], model transformation languages [6] [7], mapping between 
metamodels [8] [9], Scalability and reuse of model transformations [10], Maintenance 
and evolution of model transformations [11] and Model-driven development 
methodologies, approaches, and languages with a focus on transformations [12]. Of 
particular interest to transformation among these issues, are model transformation 
languages that allow defining how a set of elements from a source model are analyzed 
and transformed into a set of elements of a target model, the output of transformation 
being a set of rules involving, and in the same time merging mapping and 
transformation techniques between two metamodels. Now that the treated information 
becomes available as models, the problem of a manual transformation still exists, and 
is one of the main barriers to tackle avoiding making transformation fastidious and 
error-prone task, and therefore an expensive process. The semi-automatic generation 
of transformation rules is an important challenge in future MDE development to make 
it easier, faster, and cost-reduced process with the decrease of errors that may occur. 
Matching techniques between metamodels are the centerpieces for a semi-automatic 
transformation process in MDE and particularly in MDA. In fact, metamodels 
matching allows discovering mappings between two metamodels and the mappings 
allow in turn generating transformation rules between two metamodels. However, 
there has been little research in metamodel matching. In the database domain, the 
corresponding term for metamodel matching is schema matching. In this paper, we 
discuss the problem of schema matching that has been extensively studied in the 
database area, and then we review the main different approaches that have been 
proposed for metamodel matching in the context of MDA/MDE. We will start by 
stressing the role of matching techniques in the semi-automatic process of model 
transformation.  

This paper is organized as follows: section 2 introduces the main concepts and 
techniques for a semi-automatic transformation process, presents schema matching 
techniques and situates it in the context of metamodel matching. Section 3, reviews 
and compares five approaches that have been proposed for metamodel matching in 
the context of MDA. Finally, section 4 concludes our work and presents some final 
remarks and perspectives. 

2 Metamodels Matching for Model Transformation 

2.1 Metamodels Matching for Model Transformation: Overview 

It is well recognized today that model transformation is one of the most important 
operations in MDA [13]. The following definition of model transformation, largely 
consensual, is proposed in [14]:  
“A Transformation is the automatic generation of a target model from a source 
model, according to a transformation definition. A transformation definition is a set 
of transformation rules that together describe how a model in the source language 
can be transformed into a model in the target language. A transformation rule is a 
description of how one or more constructs in the source language can be transformed 
into one or more constructs in the target language”. 
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However, we point out two main problems concerning the MDA transformation 
process. 

• The first problem concerns the manual creation of “transformation rules” between 
metamodels. Generally, this task is tedious and error-prone, and therefore 
expensive in terms of efficiency [15]. Moreover, writing the transformation rules 
requires a good mastery of both the transformation language and the source and 
target metamodels, in order to express the correspondence both from a structural 
and a semantic point of view. 

• The second problem concerns the specification of these “transformation rules”, 
which merge together techniques of mapping and transformation without an 
explicit distinction between them. That is to say, the specification of 
correspondences between elements of two metamodels and the transformation 
between them are grouped in the same component at the same level.  

In the MDA context, and according to previous works [10, 16], the concepts of 
mapping and transformation should be explicitly distinguished, and together could be 
involved in the same process that we call transformation process. In fact, in the 
transformation process, the mapping specification precedes the transformation 
definition. A mapping specification is a definition of the correspondences between 
metamodels (i.e. a metamodel for building a PIM (Platform Independent Model) and 
another for building a PSM (Platform Specific Model)). This definition is largely 
obtained by a matching process between two metamodels, and completed by an 
expert. Transformation definitions contain an explicit description of how to transform 
a model into another using a transformation language. Transformation definitions are 
a set of rules that are obtained automatically from all the mappings between two 
metamodels. Hence, in our approach the transformation process of a PIM into a PSM 
can be structured in two stages: a mapping specification obtained by a matching 
process and completed by an expert, and a transformation definition derived 
automatically from the mappings. 
The figure 1 illustrates the main concepts and techniques involved in a semi-
automatic transformation process. The matching operation is the process that 
produces the potential mappings between two metamodels. Generally, this task 
implies a search of equivalent or similar elements between two metamodels. Given 
that no generic matching solution exists for different metamodels and application 
domains, it is recommended to give the human expert the possibility to check the 
obtained mappings, and, if necessary, update or adapt it.  This is one of the steps in 
the whole process, in which the expert intervenes to complete and validate the 
obtained results. Finally, a transformation model (a program: a set of rules), is derived 
automatically from a mapping model. A transformation model is basically represented 
by a set of rules that states how elements from source metamodel are transformed into 
elements of target metamodel. A transformation model (program) takes a source 
model defined by designers or and produces an equivalent target model on a specific 
platform. 
Two important operations (dashed arrows) adaptation (1) and derivation (2) allow 
linking and completing the two main operations (matching and transformation) in the 
whole process of transformation. Adaptation is the responsibility of the expert user 
who should accept, discard or modify the obtained mappings, furthermore, to specify 
the  correspondences  which  the  matcher  was unable to find. Loosely  speaking, the 
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Fig. 1. Semi-automatic transformation process. 

mapping and matching techniques (models) could be defined with the following 
intuitive formula: 

Mapping = Matching + Adaptation              

The mapping model obtained in the previous step after adaptation by the expert user 
should be completely defined allowing an automatic generation of transformation 
model. This operation is called derivation and, in the same way as above, 
transformation and mapping models can be defined with the following intuitive 
formula: 

Transformation = Mapping + Derivation 

2.2 From Schema Matching to Metamodel Matching 

Matching between metamodels are the centerpieces for a semi-automatic 
transformation process in MDE, particularly in MDA. Matching techniques have been 
studied in various research domains, including digital libraries, ontologies, agent 
matchmaking, schema integration and evolution in databases [16] [17]. In the context 
of MDE, we can find few works in the literature that address the problem of 
metamodels matching. Schemas in the context of databases and metamodels in our 
context of MDE are closely related, hence, we propose to review the different 
approaches of schema matching, and after that we situate these approaches in our 
context of metamodeling matching. 

2.2.1 Classification of Schema Matching Approaches 

In the literature, several schema matching approaches have been proposed [16] [17]. 
Each schema matching approach has its own characteristics that were grouped in a 
taxonomy illustrated bellow in figure 2 [15] [18]. In addition, each  approach has been 
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Fig. 2. Classification of schema matching approaches. 

evaluated through match quality measures discussed in the next section 2.2.2.  

• Individual matcher approaches use only one matching criterion. They are 
classified in: 
– Schema-only based, when they consider only metamodels. They can be classified in: 

 Element level, the mapping is realized for each individual element. It can be 
classified in linguistic and constraint-based. Linguistic are based on name 
similarity, description, global namespace, while constraint-based are based on 
type similarity and key properties. 

  Structure-level, the mapping is realized considering the combinations of 
elements related in a structure. It is only classified in constraint-based that use 
graph matching. 

– Instance/contents-based, when they consider only instances (or models). It can also 
be classified in element-level. This last can be classified in linguistic and 
constraint-based. In this case, linguistic is based on word frequencies and key terms 
present in the element instances, while constraint-based is based on value pattern 
and ranges of the element instances. 

• Combining matchers use multiple matching criteria. They can be classified in: 
    – Hybrid, they combine multiple approaches to create only one matcher in order to 

produce a result, i.e. the creation of mapping between elements. 
   – Composite, they combine many results obtained from different approaches in 

order to produce the mapping between elements. This combination of results can 
be manual or automatic. 

2.2.2 Matching Quality Measure 

The interrelationships between metamodels can be organized in sets which can be 
manually or automatically created. A set created manually can contain all needed 
matches (i.e. matched elements); while a set created automatically can contain valid 
and non valid matches. The first set is denominated real matches, and the later derived 
matches (cf. Figure 3). 
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Fig. 3. Comparing real matches and automatically derived matches. 

In addition, other subsets are defined as follows [16] [18]: 

- A (false negatives) are matches needed but not automatically identified. 
- B (true positives) are matches which are needed and have also been correctly 

matched by the automatic match operation. 
- C (false positives) are matches falsely proposed by the automatic match operation. 
- D (true negatives) are false matches which have also been correctly discarded by 

the automatic match operation. 

Based on the cardinalities of these sets, the following match quality measures are 
provided as parameters for benchmarks: 

Precision =  
CB

B
+

 reflects the share of real correspondences among all found 
ones. 

Recall =  
BA

B
+

 specifies the share of real correspondences that are found. 

F-Measure = 2 *  
Pr *Re
Pr Re

ecision call
ecision call+

   

Overall = Recall * (1 - 
ecisionPr

1
)  

All these measures were developed specifically in the schema matching context [15] 
[18]. We can notice that F-Measure represents the harmonic mean of Precision and 
Recall. The main underlying idea of Overall is to quantify the post-match effort 
needed for adding missed matches and removing false ones.  

2.2.3 Metamodel Matching versus Schema Matching 

Our aim is not to compare schema matching approaches with those of metamodel 
matching. The main reason is that the technological spaces of both approaches are not 
the same. A technological space [19] is a working context with a set of associated 
concepts, body of knowledge, tools, required skills, and possibilities. It is often 
associated to a given user community with shared know-how, educational support, 
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D 
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common literature and even workshop and conference regular meetings. Although it 
is difficult to give a precise definition, some TSs can be easily identified, e.g. the 
XML TS, the DBMS TS, the abstract syntax TS, the meta-model (OMG/MDA) TS, 
etc. In one case, in schema matching efforts have been made mainly in the context of 
databases and involve ER schemas. In the other case, metamodel matching focuses on 
UML OMG standard which is structurally and semantically richer than ER schemas. 
Moreover, the level of abstraction of metamodels and schemas is not the same. 
However, techniques known and used to find semantic correspondences between the 
elements of two schemas are to be applied to the metamodel matching problems since 
the aim “finding semantic correspondences” is still the same. We can say that 
metamodel matching techniques would probably subsume schema matching 
techniques from the fact that a technological space of metamodels includes the 
technological space of schemas in database area. Thus metamodel matching 
techniques will probably become a generic solution to many problems of matching; 
that we can call the X-matching.  

3 Metamodel Matching: A Review and Comparison 

In this section we will review and compare the different approaches of metamodels 
matching presented respectively in [20], [21], [18], [17], [15], and [22] as well as their 
evaluations. We have encountered a number of systems, which have not been 
evaluated altogether, respectively SF, SAMT, ModelCVS, Delfabro, and Extended 
SAMT4MDE.  

3.1 A review for Metamodel Matching 

3.1.1 Similarity Flooding SF 

System Description. SF [20] converts schemas (SQL DDL, RDF, XML) into labeled 
graphs and uses fix-point computation to determine correspondences of 1:1 local and 
m: n global cardinality between corresponding nodes of the graphs. The algorithm has 
been employed in a hybrid combination with a simple name matcher, which suggests 
an initial element-level mapping to be fed to the structural SF matcher. Unlike other 
schema-based match approaches, SF does not exploit terminological relationships in 
external dictionary, but entirely relies on string similarity between element names. In 
the last step, various filters can be specified to select relevant subsets of match results 
produced by the structural matcher. 

Similarity Flooding in [21] is a generic alignment algorithm that allows calculating 
the correspondences between the nodes of two labeled graphs. This algorithm is based 
on the following intuition: if two nodes stemming from two graphs have been 
determined as similar, therefore, there would be strong opportunities for the 
neighboring nodes to be similar, too.  More precisely, SF applies five successive 
phases on the labeled graphs which have been provided at the input phase. This 
algorithm is applied after the transformation phase that consists in transforming the 
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MMsource and the MMtarget to the directed labeled graphs Gsource and Gtarget. Along this 
phase a set of six strategies to encode the metamodel into such a graph has been used. 
Each of these strategies has got its proper techniques to transform these two models 
into a graph. 

Evaluation. The SF evaluation in [20] used 9 match tasks defined from 18 schemas 
(XML and SQL DDL) taken from different application domains. The schemas were 
small with the number of elements ranging from 5 to 22, while showing a relatively 
high similarity to each other (0.75 on average). Seven users were asked to perform the 
manual match process in order to obtain subjective match results. For each match 
tasks, the results returned by the system were compared against all subjective results 
to estimate the automatic match quality, for which the Overall measure was used. 

 

Fig. 4. Match quality of Similarity Flooding Algorithm [20]. 

Other experiments were also conducted to compare the effectiveness of different 
filters and formulas for fix-point computation, and to measure the impact of 
randomizing the similarities in the initial mapping on match accuracy. The best 
configuration was identified and used in SF. Figure 4 shows the Overall values 
achieved in the single match tasks according to the match results suggested by the 
single users. The average Overall quality over all match tasks and all users is around 
0.6. 
Referring to the experiments [21] it is noticed that in each of the six mentioned 
strategies, a set of match quality variable from one strategy to another is obtained. 
The results show that the best configuration is generally saturated. On the other hand, 
the Minimal configuration gives very bad results. Full and Standard configurations, 
despite using more information from the metamodels, seem to produce slightly poorer 
results than the Basic configuration. The metamodels used to match on Ecore vary in 
size. Minjava has more or less the same size as Ecore, Kermeta is a little bigger, and 
UML is very large. We can clearly see from the results that the alignment quality 
decreases when the size difference between the two matched metamodels is 
increasing. This is partly caused by the Selected Threshold filter that the alignment 
produced by Similarity Flooding. Results on Ecore↔Minjava and Ecore↔Kermeta 
show that good quality alignments can be produced by this approach as described by 
the figures 11 and 12 in [21]. 

3.1.2 ModelCVS 

System Description. In [18], the authors propose an approach said “lifting”, allowing  
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to transform the source and target metamodels into equivalent ontologies. This 
approach proposes a framework of matching the metamodels thanks to a transition of 
ModelWare into OntoWare while using transformations of the metamodels Ecore-
based into OWL-based ontologies. After having done this transition, one can reuse the 
tools of ontologies matching that exploit the ontologies which really represent the 
metamodels. Once the matching task is over, the transition of the ontology mapping 
into a model of texture will be done. From this model of texture, the necessary 
transformation rules to transform some models in conformity with a metamodel A to a 
model in conformity with a metamodel B can be deduced.   
In this work, they concentrate on evaluating schema-based matching tools, i.e., they 
do not consider instance-based matching techniques. This is due to the fact that they 
are using the data provided by metamodels (schema-level) and not data from models 
(instance-level) to find equivalences between metamodel elements.  

Evaluation. According to [18], in addition to the different modifications and 
combinations of different matching techniques which produce higher precision values 
but at the same time lower recall values, the Metamodels must fullfil some 
requirements in order to prove that matching tools are worth using. The 10 integration 
scenarios showed that the metamodels must have a common terminology and 
taxonomy, which is the case when matching UML1.4, UML2.0 and Ecore. These 
combinations lead to the best results despite their size which obviously lead to a 
higher number of elements that have to be matched. Furthermore, good results are 
achieved when matching WebML with EER. These two metamodels also have a 
common terminology and both do not heavily use inheritance relationships. In 
contrast, matching WebML or EER with UML1.4, UML2.0 or Ecore results in a very 
low precision and in a very poor recall which is mostly below 0.10.These results lead 
to the conclusion that Ontology matching tools are not always appropriate for 
matching metamodels. Instead, the metamodels must fullfil some common properties 
which of course are not always the case when matching real-world metamodels. 
The evaluation of [18] produced the following best average match quality:  
Precision=0.63, Recall=0.68, F-Measure=0.61. This last measure is used to study the 
impact on match quality (>0.5 indicates positive benefit, <0.5 indicates negative 
benefit) 

3.1.3 SAMT4MDE 

System Description. In [17], the authors have discussed some issues of schema 
matching and provided some insights into metamodel matching. To reach this end, 
they have used UML and the C# platform to illustrate their approach and to evaluate 
their Mapping Tool for MDE (MT4MDE) and Semi-Automatic Matching Tool for 
MDE (SAMT4MDE).  
Their approach takes into account metamodel matching in the context of MDE. The 
study of metamodel matching in MDE is a promising trend to improve the creation of 
mapping specification and, consequently, the transformation definition. Tools for 
metamodel matching are necessary to avoid error-prone factors linked to the manual 
creation of the transformation definition and to evolve mapping specification when 
metamodels change.  
Metamodel matching results in a mapping model, which describes how two 
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metamodels are related to each other. According to model management algebra [23], 
a mapping is generated using an operator called match which takes two models as 
input and returns a mapping between them. This operator has been modified as 
follows: given Ma, Mb and CMa→Mb / Mc, the operator match is formally defined as: 
Match’(Ma,Mb)= CMa →Mb / Mc. 

Evaluation. The evaluation of this approach [17] resulted in the following values 

- Schema similarity SS =0.74 
- Match quality measures: Precision =0.71, Recall =0.68, F-Measure =0.69, Overall 

=0.40 

In the ideal case, Precision=Recall=1.0, i.e. when the number of false negatives and 
false positives are both zero. In this experimentation, Precision =0.71 demonstrates 
that 71% of derived matches were correctly determined using our schema matching 
algorithm. And Recall =0.68 demonstrates that 68% of real matches were 
automatically found. 

3.1.4 Heuristics for Transformation 

System Description. In [15], authors suggest different heuristics for the realization of 
matching between two metamodels.  The Match operation takes two models Ma and 
Mb as input and produces a weaving model Mw as output. Ma and Mb conform to MMa 
and MMb; Mw conforms to MMw. 

Mw: MMw= Match (Ma:MMa, Mb:MMb) (1) 

These heuristics use matching transformations and weaving models to semi-automate 
the development of transformations. As defined in [15], Matching transformations are 
a special kind of transformation which implements heuristics and algorithms to create 
weaving models. Their function is also to select a set of elements from a group of 
input models and to produce links between these elements. Following the same line of 
thought, weaving models are models that capture different kinds of relationships 
between models. The solution suggested earlier enables to rapidly implement and 
customize these heuristics. Different heuristics are combined and a new metamodel-
based heuristic is proposed to exploit metamodel data which automatically produce 
weaving models and also to exploit the internal features of the set of input 
metamodels in order to produce weaving models which are derived into model 
integration transformations. This heuristic is executed together with a link rewriting 
method that analyzes the weaving metamodel extensions to produce frequently used 
transformation patterns. 

Evaluation. The matching transformations in [15] are executed with two variations of 
the motivation example. In the first example, MM1 and MM2 conform to KM3. In the 
second example, MM1 conforms to KM3 and MM2 conforms to SQL-DDL. The 
weaving models are translated into model transformations. The goal is to verify if the 
transformations are generated correctly, and to verify if the matching transformations 
can be easily adapted in both examples.  
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3.1.5 Extended SAMT4MDE 

System Description. The contribution of [22] to this field of metamodel matching is 
an algorithm that uses structural comparison between a class and its neighbouring 
classes in order to select the equal or similar classes from source and target 
metamodels. The proposed algorithm for metamodel matching is an extension and 
enhancement of the algorithm presented in [24] and it is implemented in the Semi-
Automatic Matching Tool for MDE (SAMT4MDE) which is capable of semi-
automatically creating mapping specifications and making matching suggestions that 
can be evaluated by users. This provides more reliability to the system because 
mapping becomes less error-prone. The algorithm proposed can identify structural 
similarities between metamodel-elements. However, sometimes elements are matched 
by its structures but they do not share their meanings. The lack of analysis about 
element meaning leads the tool to find false positives, i.e. derived correspondences 
that are not real. 

Evaluation. The evaluation of [22] uses a test case for creating mapping specification 
between UML and Java metamodels in order to evaluate the algorithm developed in 
this paper for metamodel matching. The SAMT4MDE produced the following results 
for this study case: Schema similarity=0.68, Precision=0.84, Recall=0.90, F-
Measure=0.87 and Overall=73. 
The similarity between UML and Java metamodels is 0.68. This means that 68% of 
elements from both metamodels are involved in metamodel matching. A high 
percentage of metamodel similarity means that semantic distance between these 
metamodels is small, and low percentage means the opposite. 
The measure of precision is 0.84. It is assumed from this information that 84% of 
found correspondences are correct. The measure of recall is 0.90, meaning that 90% 
of existing correspondences were found. 

3.2 Comparison between Metamodel Matching Techniques 

Table 1 gives a summary of the discussed evaluations. Unlike other approaches of 
schema matching, the five studied approaches of metamodels matching do not exploit 
terminological relationships in an external dictionary, but entirely rely on string 
similarity between elements. 
Comparing these approaches, we have found some similarities and differences 
between them. SAMT4MDE [17], ModelCVS [18] and Extended SAMT4MDE[22] 
use an object oriented model as schema type, while the other approaches/tools such as 
SF and Delfabro [15] use an object oriented model and relational or XML as schema 
type.  
SF and SAMT4MDE [17] use small metamodels, while ModelCVS [18] and [15] rely 
on large and even very large size schemas.  

According to Table 1, SF allows only eighteen schemas per nine match task (18/9  
schemas/task), and SAMT4MDE allow only two schemas per match task (2/1 
schemas/task).  

In SAMT4MDE [17] the schema similarity is the highest (equal to 0.79) compared 
to the other approaches while in Extended SAMT4MDE [22] it is equal to 0.68. 
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SAMT4MDE [17] uses discrete values {-1, 0, 1} as match result representation 
(i.e. different, similar or equal), while the other approaches (SF, ModelCVS, 
Extended SAMT4MDE) use continuous values in the range [0, 1] to represent the 
similarity degree. For Delfabro [15], the matches are not mentioned. 

The metadata representation of SF and SAMT4MDE are nodes which represent a 
metamodel, while Kappel (ModelCVS project) and Delfabro represent models or 
metamodels data. In Extended SAMT4MDE [22] an UML diagram class has been 
studied. 

All approaches with the exception of Delfabro [15] provide a match local 
cardinality of 1:1, and a match global cardinality of 1: n, while SAMT4MDE provides 
a match cardinality of 1:n.  
The employed quality measure in SF is overall, in ModelCVS [18] these measures are 
Precision, Recall, and F-measure. SAMT4MDE and Extended SAMT4MDE use the 
same measures (Precision, Recall, Overall, F-measure), while Delfabro[15] utilizes 
Element similarity, link rewriting and link filtering. 

SF in [20] has taken into consideration the subjectivity of the user’s perception vis-
à-vis the necessary correspondences (7 users), in [21] it has used 6 configurations. 
The evaluation of ModelCVS [18] has used 10 scenarios and 13 settings tools, 
SAMT4MDE [17] has used 02 fragments of UML and C-sharp metamodels, [15] has 
utilized a set of input Metamodels. Finally, Extended SAMT4MDE [22] has utilized 
one class and its neighboring classes.  
All the approaches do not necessitate any pre-match effort. The exception is in SF, 
where there is an intervention of the user in the choice of metamodels alignment and 
the necessary tools in [20] [21]. 

To study the impact match quality, SF utilizes a fix-point (Filters), ModelCVS 
utilizes F-measure (>0.5 positive benefit ;< 0.5 negative benefit), Extended 
SAMT4MDE uses a threshold; while for SAMT4MDE and ModelCVS [15] it is not 
mentioned. 
Extended SAMT4MDE provides the Highest best average match quality, 
(precision=0.84, Recall=0.90, F-measure=0.87, and overall=0.73) compared to 
SAMT4MDE (precision=0.79, Recall=0.68, F-measure=0.73, and overall=0.49), and 
ModelCVS (precision=0.63, Recall=0.58, F-measure=0.61). For SF [20] Overall is 
almost equal to 0.6, while in [21] these measures vary from one configurations to 
another.  

The Application area for SF is the database and ontologies, while for ModelCVS 
[18] it is the database and structural modeling languages. SAMT4MDE focuses on 
model transformation, and for Delfabro [15] it is the Database and model 
transformation. Finally, the Application area for Extended SAMT4MDE is the 
database (Database integration, E-business and Data warehouse).  
The manual work of the user is especially required in SF. It consists in choosing the 
metamodels to align, evaluating the matching suggestions produced by the algorithm. 
The latter task can equally be applied to Extended SAMT4MDE. In ModelCVS [18] 
the  user’s  intervention  consists  in  including  ontology  creation  tools, query tools, 
matching tools, and Reasoning tools.  
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Table 1. Summary of the evaluations. 

 SF   ModelCVS SAMT4MDE  Extended 
SAMT4MDE  

References [20]&[21] [18] [17] [15] [22] 
Test problems 

Tested 
Schema types 

XML/SQL DDL 
Relational/RDF/ 
UML/ Ecore 

UML1.4/UML 2.0  Object-oriented 
model: UML, Java, 
and C-Sharp 

SQL DDL 
Relational/  
UML 

UML 2.0/ 
Ecore 

Schema / 
Schema tasks 

18/9 - 2/1 - - 

Min /Max / 
Avg schema 
size 

5/22/12 Large schema  Very large 
schema 

- 

Min /Max / 
Avg schema 
similarity 

0.46/0.94/0.75 - Schema 
similarity=0.79 

- Schema 
similarity=0.68 

Match result representation 

Matches 
Element-level correspondences between 
similarity value in [0.1] 

With discrete value 
{0,1,-1} 

 
Similarity 
value in [0.1] 

Element Repr Node Models/Metamodels Node 
Models or 
Metamodels 
Data 

Class 

Local/Global 
Cardinality 

1:1/m:n 1:1/m:n 1 :n - 1:1/m:n 

Quality of measure And test methodology 

Employed 
Quality 
Measures 

Overall 
Precision, Recall,  F-
measure 

Precision, Recall, 
Overall, F-measure 

Element 
similarity*, 
Link filtering, 
Link rewriting. 

Precision, 
Recall, 
Overall, 
F-measure 

Subjectivity 
7 user/ 6 
configurations 

10 scenarios and 13 
tools settings 

02 Fragments of 
UML and C#  
metamodels 

A set of input 
metamodels 

1 class and its 
neighbor 
classes 

Pre-match 
effort 

None None None None None 

Studies Impact 
on match 
Quality 

Filters, fix-point 
formulas, 
randomizing initial 
similarity 

F-Measure: 
IF>0.5: positive 
benefit 
IF<0.5: negative 
Benefit 

  Threshold 

Best average Match quality 
Prec/ Recall ** 

 
0.63/0.58 0.79/0.68 - 0.84/0.90 

F-measure 0.61 0.73 - 0.87 
Overall ˜0.6 - 0.49 -   0.73 

Evaluation high light 

 
User subjectivity, no 
pre-match effort 

no pre-match effort 

Representative 
metamodels for 
developing 
information system 

no pre-match 
effort 

no pre-match 
effort 

Application 
Area 

Database and 
ontologies 

Database and 
Structural Modeling 
languages 

Model 
transformation 

Model 
transformation 

Model 
Transformation 

Manual work 
of user 

Choice of 
metamodels to align, 
Evaluate matching 
suggestions produced 
by algorithm. 

Including ontology 
creation tools, query 
tools, matching 
tools, and Reasoning 
tools. 

  

Evaluate 
matching 
suggestions 
produced by 
algorithm 

Match 
granularity 

Element level 
Mapping 

Schema-level 
Matching 

Schema-level 
Matching 

- - 

*   Contains element to element similarity and structural similarity 
** Change from configuration to another 

SF has a granularity of matching at element level; otherwise ModelCVS [18] and 
SAMT4MDE [17] have a granularity of matching at structure level.  
The majority of these approaches have a combination of matches of type hybrid. 
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4 Conclusions 

A semi-automation of the transformation process in MDE/MDA leads to a real 
challenge allowing many advantages: it enhances significantly the development time 
of transformation and decreases the errors that may occur in a manual definition of 
transformations. Matching techniques between metamodels are the centerpieces for a 
semi-automatic transformation process in MDE/MDA. The contribution of this work 
is twofold: First, we present the main techniques and artifacts involved in the semi-
automatic transformation process. Second, we review five main approaches that have 
been proposed in the literature for metamodel matching. In the future work, we will 
concentrate on how to combine different approaches to enhance the matching process. 
In addition, we will envisage studying the optimization of mapping models which 
seems to be another important issue in MDE. 
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