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Abstract. Text classification is an important tool for many applications, in su-
pervised, semi-supervised, and unsupervised scenarios. In order to be processed
by machine learning methods, a text (document) is usually representduags a
of-words (BoW). A BoW is a large vector of features (usually stored as floating
point values), which represent the relative frequency of occurrence of a given
word/term in each document. Typically, we have a large number of features, many
of which may be non-informative for classification tasks and thus the need for
feature transformation, reduction, and selection arises. In this paper, we propose
two efficient algorithms for feature transformation and reduction for BoW-like
representations. The proposed algorithms rely on simple statistical analysis of
the input pattern, exploiting the BowW and its binary version. The algorithms are
evaluated with support vector machine (SVM) and AdaBoost classifiers on stan-
dard benchmark datasets. The experimental results show the adequacy of the re-
duced/transformed binary features for text classification problems as well as the
improvement on the test set error rate, using the proposed methods.

1 Introduction

In text classification tasks, each document is typically representedbbayg-af-words

(BoW) or similar representation. A BoW is a high-dimensional vector with the rela-
tive frequencies of a set of terms in each document. A collection of documents is usu-
ally represented by theerm-document (TD) [13] matrix whose columns hold the Bow
representation for each document whereas its rows correspond to the terms in the col-
lection. An alternative representation for a collection of documents is provided by the
(binary)term-document incidence (TDI) matrix [13]; this matrix holds the information,

for each document, if a given term (word) is present or absent.

For both the TD or TDI matrix, we usually have a large number of terms (features),
many of which are irrelevant (or even harmful) for the classification task of interest.
On the other hand, this excessive number of features carries the problem of memory
usage in order to represent a large collection of documents and to allow efficient queries
on a database of documents. This clearly shows the need for feature transformation,
reduction, and selection, to both improve the classification accuracy and the memory
requirements. We are thus lead to a central problem in machine learning: choosing the
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most adequate set of features for a given problem. There amg faeature selection and
reduction techniques in the literature; a comprehensitiag of these techniquesis too
extensive to be presented here (see for instance [4, 8, 9]).

For text classification tasks, several techniques have pemosed forfeature re-
duction (FR) andfeature selection (FS) [6, 10, 14, 16]. The majority of these techniques
is applied directly on BoW representations (TD matrix).

1.1 Our Contribution

In this paper, we propose two methods for FS in text classificgoroblems using
the TD and the TDI matrices. These methods do not tied to the tf classifier to
be used; one of the methods does not use the class label, éings équally suited
for supervised, semi-supervised, and unsupervised legarAs shown experimentally,
the proposed methods significantly reduce the dimensioheBbW datasets, while
improving classification accuracy, as compared to the ifiasstrained on the original
features.

The remaining text is organized as follows. Section 2 brieflsiews the basic con-
cepts regarding BoW representations, SVM, and AdaBoossiflers. Section 3 de-
scribes the proposed methods and Section 4 presents egpésimesults on standard
benchmark datasets. Finally, Section 5 ends the paper witle €oncluding remarks.

2 Background

Text classification and categorization arises in many mgtdion retrieval (IR) appli-
cations [13]. As the size of the datasets on which IR is peréat rapidly increases, it
becomes necessary to use strategies to reduce the cornpataffort .e. time) to per-
form the necessary searches. In many applications, theseptation of text documents
typically demands large amounts of memory. As detailed énftilowing subsections,
some classification tools (hamely SVM and AdaBoost) have Ipeeven effective for
text classification with BoW representations, whereas rotbehniques that perform
well in other types of problems show more modest results wisenl for text classifi-
cation.

2.1 Bag-of-Words (BoW) and Support Vector Machines (SVM)

A BoW representation consists in a high-dimensional vembotaining some measure,
such as theerm-frequency (TF) or the term-frequency inverse-document-frequency
(TF-IDF) of a term (or word) [11] in a given document. Each doent is represented
by a single vector, which is usually sparse, since many déatures are zero [11]. The
support vector machine (SVM) [17] classifier works in a discriminative approach, by
finding the hyperplane that separates the training datamétximal margin. The SVM
has been found very effective for BowW-based text classiing3, 6,11, 16]. In this
paper, we apply SVM classifiers on original and reduced BopYagentations in order
to evaluate the performance of the proposed FS methods.
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2.2 The AdaBoost Algorithm

The AdaBoost algorithm [7, 9] learns a combination of thepotiof M (weak) classi-
fiersG,, (x) to produce the binary classification -1, +1}) of patternx, as

M
G(x) = sign (Z ame(x)> , (1)

whereq,,, is the weight (which can be understood as a degree of conjlefi@ach
classifier. The weak classifiers are trained sequentiait, anweight distribution over
the training set patterns being updated in each iterationrding to the accuracy of
classification of the previous classifiers. The weight ofrtfisclassified patterns is in-
creased for the next iteration, whereas the weight of theecty classified patterns is
decreased. The next classifier is trained with a re-weigdlitegdbution. The AdaBoost
algorithm (and other variants of boosting) has been sufidgsapplied to several prob-
lems, but regarding text classification there is no evidefiperformance similar to the
one obtained with SVM [3, 15].

3 Proposed Methods

In this section, we describe the proposed methods for FSusdxin text classification.
Let D = {(x1,¢1),..., (Xn,cn)} be a labeled dataset with training and test subsets,
wherex; € R? denotes thé-th (BoW-like) feature vector and;, € {—1,+1} is the
corresponding class label. L&t be thep x n TD matrix corresponding td, i.e, the
i-th column ofX containsx;, whereas each row corresponds to a tezm. (vord).

Let X}, be the corresponding (binaryk n TDI matrix, obtained fronX according

to
%0 = {1 Xt 70 @

fort € {1,...,p}andd € {1,...,n}.

The proposed methods for FS rely on a simple sparsity asabfjshe TD or TDI
matrix of the training set, using th® norm (the number of non-zero entries); these
methods compute thig norm of each featura.€., each row ofX or X3,).

3.1 Method 1 for Feature Selection

Given anp x n TD matrixX or a TDI matrixXy and a pre-specified maximum number
of featuresn (< p), the first method proceeds as follows.

1. Computeﬁ(”, fori € {1,...,p}, which is the/y norm of each feature, i.e., thg
norm of each of the rows of the TD or TDI matrix.

2. Remove non-informative features,, with Egi) =0 orﬂgi) = n on the training set.
If the number of remaining features is less or equal tharthen stop, otherwise
proceed to step 3.

3. Keep only then features with largesty norm.
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This method keeps up ta features, with the largegt norm. Since the class labels
are not used, the method is also suited to unsupervised amesapervised problems.
Notice also, that although we have formulated the problenthie binary classification

case, this method can be used for any number of classes.

3.2 Method 2 for Feature Selection

The second method addresses binary classification andlasedabel information; the
key idea is that a given (binary) feature is as much inforvesds the difference between
its £y norms of each of the classes. l[té%_l) andééi’+1) be thely norm of feature;,
for patterns of class-1 and+1, respectively.

It is expectable that, for relevant features, there is anifiignt difference between

(57 ande( Y. We thus define the rank of featuras
ro= eV - ). 3)
An alternative measure of the relevance of a feature is thative binary entropy

[(’L'.,—l) g(i’_l) E(’Lv""l) 6(7"4_1)
hi = 2 logy | 25— | + o | 5 |- (4)
¢ s IS IS

0

However, we have verified experimentally tiiat doesn’t lead to better results thapn
so we haven't further considered it in this paper.

The features that have non-zefopnorm concentrated in one of the classes tend
to have higher;, thus being the considered more relevant. Fig. 1 shows albeofp
these quantities, for 20 randomly chosen features of thenplell dataset, with 2000
training patterns (as described in Subsection 4.1); wesdlsw their ranking value;,
given by (3). For instance, notice that feature 15 is muchenmdormative than feature
6; for feature 6 we havé(" ™" = 661 and¢"™ = 998, while for feature 15 these

quantities aré((f”l) =183 andf((f’“) = 548. Although, feature 6 has Iargé%’) (thus
it would be considered as more relevant by Method 1), therioit (3) consideres it as
less informative than feature 15, because it is less asyrimbettween classes.

Given a pre-specified maximum number of featureé< p), the FS method based
on criterion (3) proceeds as follows.

1. Compute thé, norm of each featuré“), forie {1,...,p}.

2. Remove non-informative features (wiﬁﬁ) =0 orﬁff) = n) on the training set.
If the number of remaining features is less or equal tharthen stop, otherwise
proceed to step 3.

3. Compute the rank; of each feature as defined by (3).

4. Keep only then features with largest ranks.

This second method uses class label information, thus tseiibed only for supervised
classification problems. As in Method 1, we begin by remowimg non-informative

alwaysabsent (with éff) = 0) andalways present (with éff) = n) features; these features
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Fig. 1. The (" ~" and¢{"*" values for 20 randomly chosen features of the Example1 elatas
(described in Subsection 4.1), and their rank= |£{" " — ¢§- 1],

do not contribute to discriminate between classes in thiritig set. In the case of a
linear SVM, the classifier is defined as a linear combinatiothe input patterns [17].
The same does not happen with the AdaBoost algorithm, bedadepends on the type
of weak classifier(s) that is used.

The criterion (3) was defined for binary problems and in thgeginents reported
below we only consider binary problems. There are severssipte ways to obtain
related relevance measures for tReclass casei.e, whenc; € {1,2,...,K}. The
naturalK -class generalization of the negative entropy criterigng4

K £Gi) ¢GiH)
hi = Z ol log, o) (5)
k=1 to 0

with éé““) denoting the/y norm of feature, for classk. A possible generalization of

criterion (3) is
K K
il i,k
EED DI e el (6)
=1 k=1
Experiments with thes& -class criteria are the topic of future work.



77

4 Experimental Results

In this Section, we present experimental results of theuatin of our methods. In
Subsection 4.1, we describe the standard BoW datasetsmugeel €xperiments; Sub-
section 4.2 describes other feature selection and redutgichniques that we use as
benchmarks. Finally, Subsection 4.3 shows the averagséestror rate of SVM and
AdaBoost classifiers on those standard datasets.

4.1 Datasets

The experimental evaluation of the proposed techniquesriducted on the following
three (publicly available) Bow dataset§pam® (where the goal is to classify email
messages as spam or non-spam), Examphaid Dextet (in Examplel and Dexter,
the task is learn to classify Reuters articles as being dloouporate acquisitions” or
not). These datasets have undergone the standard presgiragéstop-word removal,
stemming) [11]. Table 1 shows the main characteristics ede¢ftatasets.

Table 1. The main characteristics of datasets Spam, Example_l, axD&he three columns
on the rightmost side show the average value&sf £ =), and¢{" ™, for each subset.

Dataset | p Subset| Patterns | +1 | -1 | £ |57t | g
Spam 54 — 4601| 1813|2788| 841.2| 411.8| 429.4
Examplel| 9947 Train 2000| 1000| 1000 9.5 4.5 5.0
Test 600 300| 300 2.4 11 1.3

Dexter 20000| Train 300( 150| 150 1.4 0.7 0.7
Test 2000| 1000 1000 9.6 = =
Valid. 300| 150| 150 1.4 0.7 0.7

In the Spam dataset, we have used the first 54 features, wbiddtitite a Bow
representation. We have randomly selected 1000 patterrigafaing (500 per class)
and 1000 (500 per class) for testing. In the case of Exampkdh pattern is a 9947-
dimensional BoW vector. The classifier is trained on a randobset of 1000 patterns
(500 per class) and tested on 600 patterns (300 per class)D&kter dataset has the
same data as Examplel with 10053 additional distractoufeatwith no predictive
power (independent of the class), at random locations, axlareated for the NIPS
2003 feature selection challerfg®Ve train with a random subset of 200 patterns (100
per class) and evaluate on the validation set, since thdsldtethe test set are not
publicly available; the results on the validation set clateewell with the results on the
test set [8].

We use the implementations of the linear SVM and Modest AdsB[d 8] available
in the ENTOOL toolbox. The weak classifiers used by the Modest AdaB6ostx)

! http://archive.ics.uci.edu/ml/datasets/spambase
2 http://kodiak.cs.cornell.edu/sufight/examples/

% http://archive.ics.uci.edu/ml/datasets/dexter

4 http:/lwww.nipsfsc.ecs.soton.ac.uk

5 http://zti.if.uj.edu.plimerkwirth/entool.htm
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are tree nodes and we usé =15 (see (1)). The reported results are averages over 10
replications of different training/testing partitions.

4.2 Other Feature Selection/Reduction Methods

To serve as benchmark, we use two other two methods on the Tixpend three
different methods on the TDI matrix, as briefly describedhis subsection. The first
one is based on the well-knoviisher ratio (FiR) of each feature, which is defined as

nt - /%(‘H)‘

var ™ + varl ™Y
wherey;

N ) and vaE , are the mean and variance of featiri®r the patterns of each
classes. The FiR measures how well each feature separategticlasses. To perform
feature selection based on the FiR, we simply usertlfeatures with the largest values
of FiR, wherem is the desired number of features.

The second method considered is unsupervised being baseddom projections
(RP) [1,2,12] of the TD matrix. Letting\ be anm x p matrix, withm < p, we obtain
areduced/compressed training dataseDa = {(y1,¢1), ..., (¥p, ¢p)}, Where

FIR, = @)

(+1 +1)

fori =1, ...,n. Each new feature ig; is a linear combination of the original features in
x;. Different techniques anprobability mass functions (PMF) have been proposed to
obtain adequate RP matrices [1, 2, 12]; in this paper, wehesPMF{1/6, 2/3, 1/6}
over{—+/3/m,0, 1/3/m}, as proposed in [1].

The third method considered is the (superviseahditional mutual information
maximization (CMIM) method for binary features [5]. CMIM is a very fast F&ch-
nique based on conditional mutual information; the methimttgpfeatures that max-
imize themutual information (MI) with the class label, conditioned on the features
already picked. Thenutual information maximization (MIM) method is a simpler ver-
sion of CMIM that uses only the MI between the features andthgs label. We apply
these methods on the TDI matrix.

4.3 Test Set Error Rate

Figure 2 displays the test set error rate, as a function,dr the Spam dataset, using
linear SVM and Modest AdaBoost classifiers based on: the TDixnéhe TDI matrix
with the original number of features; the reduced TD with FSvethod 1, Method
2, FiR, and RP with Achlioptas distribution; the reduced Wath MIM and CMIM.
Each point is obtained by averaging over 10 replicationsefttaining and test set.
The horizontal dashed lines show the test set error rathéof D and TDI matrices
without FS or FR. For both classifiers, we have a small diffeeebetween the use of
TD and TDI. The SVM classifier obtains a faster descend ondsiteset error rate than
AdaBoost. The use of RP is not adequate for the AdaBoostifitas3 he proposed
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Fig. 2. Test Set Error Rate for linear SVM and AdaBoost on Spam dagasb4) with10 < m <
54, using TD matrix and its reduced versions by Method 1, MethpHI, and RP (Achlioptas
distribution), TDI matrix and its reduced versions by MIMd&a@MIM.
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Fig. 3. Test Set Error Rate for linear SVM and AdaBoost on Examplahsad f=9947) with

500 < m < 2250, using TD matrix and its reduced versions by Method 1, Methdel, and RP

(Achlioptas distribution), TDI matrix and its reduced vierss by MIM and CMIM.

Method 2 usually performs better than Method 1, for bothgifaess. Form > 30, our
unsupervised Method 1 attains about the same test erroasatee supervised Fisher
ratio. Method 1 also attains better results than RP.

Fig. 3 displays the test set error rate as a functiompfor the Examplel dataset,
with linear SVM and AdaBoost. The proposed methods attampetitive results with
Fishers ratio, being better than RP. With these degreeslattion, the AdaBoost clas-
sifier is not able to reduce the test set error rate.

Fig. 4 displays the test results of the linear SVM on the TD &Dtirepresentations
of Dexter dataset. In this case, we apply our methods to bbtaid TDI matrices.

On both datasets and both classifiers, the TDI matrix obtilesjuate results, as
compared to the TD matrix. On the TD matrix, the RP method isatde to achieve
comparable results to the other techniques, due to the leigted of reduction imposed
on these tests; for larger valuesraf we get better results. Our methods obtain similar
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Fig. 4. Validation Set Error Rate for linear SVM on Dexter dataget20000) with500 < m <
2200, using TD matrix and its reduced versions by Method 1, Methdel, and RP (Achlioptas
distribution), TDI matrix and its reduced versions by Mattig Method 2, MIM, and CMIM.

results to the MIM and CMIM methods on the TDI matrix of Dextiataset. This

seems to indicate that for this type of data, the informatiworetic FS methods are
not a good choice. The good results of Method 1 on Example1Dender datasets,
leads us to believe that this method can be successfullyesiol semi-supervised and
unsupervised problems on sparse high-dimensional dataset

5 Conclusions

In this paper, we have proposed two methods for featuretsahdor text classification
problems, using the term-document or the term-documeitténce matrices. The first
method works in an unsupervised fashion, without makingofiiee class label of each
pattern. The second method uses the class label arfg timerm to identify the features
with larger significance regarding class separability.

The proposed methods, based on non-zero occurrence apumiive cheaper im-
plementations than the Fisher ratio, random projectiond,the information-theoretic
methods based on mutual information. The experimentaltssisave shown that these
methods: significantly reduce the dimension of standard Ba¥&sets, improving clas-
sification accuracy, with respect to the classifiers traimethe original features; yield
similar results to the Fisher ratio and are better than ranglimjections.

The use of term-document incidence matrices (without reédioicis also adequate,
with both SVM and AdaBoost classifiers. We can thus efficiergpresent and classify
large collections of documents with the information of prese/absence of a term/word.
Our methods also attained good results on the term-docunm@dénce matrices.

As future work, we will apply Method 1 to semi-supervisedriéag and we will
modify Method 2 in order to take into account the (in)deperyebetween features.
We will also explore the use of these methods for multi-ctdassification problems.
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