
TOWARD SOFTWARE GOVERNANCE IN R&D PROJECT
Géant Case Study

Paweł Kędziora, Marek Lewandowski and Cezary Mazurek
IChB PAN, Poznań Supercomputing and Networking Center, Noskowskiego 12/14, 61, 704 Poznań, Poland

Keywords: Software Governance, Quality Assurance, R&D Project.

Abstract: This paper presents motivation of introducing Software Governance activity into large R&D project, that
has been already developed for several years. We present background of this activity, its structure and
communication model. We will also present impact of the new activity on the whole project and describe
expected results of this innovation. Introduction of the new activity has not been fully completed yet.

1 INTRODUCTION

Software governance is a crucial activity when
organisation is focused on the efficient development
and delivery of high quality IT products. Software
governance lies in the scope of interest of numerous
researches, groups of activists and large
corporations. Because of complexity of the issue,
and differences between organisation structures it is
difficult to propose a generic and comprehensive
model of software governance activity that would
provide a set of mechanisms appropriate for majority
of projects. Nevertheless, an attempt like this has
been made. The paper at hand describes the
approach of applying a customized software
governance model, which uses the existing, well-
known frameworks as a foundation.

1.1 Related Work

The standardisation efforts that were made over
recent years, effected in creation of several well-
known frameworks, like COBIT (Control Objectives
for Information and related Technologies)
(www.isaca.org/cobit) or ITIL (Information
Technology Infrastructure Library) (www.itil-
officialsite.com). Generality of these approaches is
their most significant advance, since they allow to
arrange and maintain the whole structure of the
organisation and all processes related to the
development and delivery of the software. However,
the generic approach entails a lack of low-level
procedures and best practices, that could be

introduced at the bottom of the organisation,
especially among developers.

Global corporations benefitting their experience
in development, deployment and maintenance of
large scale IT projects, provide their methodologies
and frameworks for software governance. These are
usually delivered in a form of extensive packages
containing not only knowledge ("best practices", or
"know-how" procedures), but also products that
enable to put it into practice. For example Oracle
publishes on its web pages a number of "best
practices" articles, e.g. "Continuous Integration with
Hudson” (Stegeman, 2010), and delivers products
(e.g., Oracle Enterprise Manager), that allow to fit
the structure of the enterprise, project and the
development process into selected methodology. It is
a common practice, that large corporations deliver
trainings and perform audits of enterprises and
developed products; e.g., HP periodically organizes
ITIL courses and exams
(http://www.hp.com/education/sections/itsm.html).

Enterprises, that cannot, or are not interested in
applying solutions delivered by external providers,
should elaborate these on their own. Before
developing own software governance policy or
framework, current governance maturity must be
defined. Craig Symons (Symons et al., 2005) refers
to Forrester’s Maturity Model and presents four
stages of maturity: ad hoc, fragmented, consistent,
best practices. Table 1 presents detailed descriptions
of these stages.

227
KÄŹdziora P., Lewandowski M. and Mazurek C. (2010).
TOWARD SOFTWARE GOVERNANCE IN R&D PROJECT - Géant Case Study.
In Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering, pages 227-232
DOI: 10.5220/0003036102270232
Copyright c© SciTePress

Table 1: Four stages of Forrester’s Maturity Model.

Ad hoc

There are no formal IT
governance processes,

procedures or mechanisms.
IT investments are made on a

completely ad hoc basis.

Fragmented

There has been some effort
to formalize IT governance
practices. These formalized
processes may exist in some
units and IT decisions within

those units may be
optimised, but there is no

global effort to coordinate it
within whole enterprise

Consistent

IT governance processes
have been consistently

applied across the enterprise.

Best practices

IT governance processes are
fully evolved and optimized

across the enterprise. A
strong IT portfolio

management process is in
place to ensure that all IT
investment decisions are
themselves optimized.
Executives are active

participants in the
governance process.

If an organisation wants to change its stage of
maturity, a detailed roadmap (tasks and schedule)
should be prepared. Anytime the maturity is
increased, the probability of successful, operational
deployment of the software augments (Michlmayr,
2005).

1.2 Motivation

Authors of this paper have been involved in the
Géant project (www.geant.net). In April 2009, Géant
moved from its second (GN2) to third (GN3) phase,
and thus faced a possibility of reorganization.
Project Office had taken a proactive effort and had
decided to change structures of involved teams, in
order to minimize the possibility of occurrence of
problems related to very individual activities of
involved teams. It had been noticed, that projects,
that finally would complement one another, are
radically different, when methodologies, used tools
and delivered quality are concerned. Project office
decided to establish new, independent, activity, that
was meant to provide development activities with
“best practices” papers, coherent software
infrastructure and support and audit mechanisms.
The aim of the brand new activity was to provide
uniform quality of products developed within a
single consortium and thus move from “fragmented”
towards “consistent” stage of maturity. According to
ITIL and COBIT recommendations (Wallhoff,

2004), the new activity possessed a full autonomy
and was completely separated from development
activities.

In the following section we provide detailed
information about software governance activity in
R&D project: its internal structure, lifecycle and
comparison of expected and achieved goals.

2 SOFTWARE GOVERNANCE IN
GÉANT PROJECT

Software governance activity, had been split into
three tasks:
• Best Practices,
• Development Infrastructure,
• Quality Assurance.

Division of the activity had taken into consideration
individual characteristics of work in particular tasks
(continuity versus single effort). The whole activity
was intended to last for four years and end together
with GN3 phase of the Géant project.

2.1 Best Practices

The first task, Best Practices, was supposed to
prepare a set of procedures that would standardize
development, deployment and maintenance of the
software products. It was decided to poll all involved
software development activities. The results of the
survey were to be an introduction to a discussion
about best practices that were to be delivered. After
the poll, when its results were analyzed, it had been
noticed, that projects, deployed within a single
consortium, differ significantly. These differences
could lead to incompatibility problems. The lack of
common approach effected in unequal quality of
delivered products. Results of the survey (Marović
et al., 2009) revealed that all teams declared to
software development use agile methodologies, but
most of them introduced them inconsequently or
selectively. Moreover, development infrastructure
was unnecessarily multiplied, what led to ineffective
usage of manpower, and inadequate dispersion of
software source codes and documentation. Software
governance leaders decided to prepare best practices
on the basis of agile methodologies
recommendations. Best practices were extended
with recommendations related to the usage of
coherent development infrastructure. Following
register presents the principals of the agile
methodologies (Beck et al., 2001):

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

228

• Individuals and interactions over processes and
tools,

• Working software over comprehensive
documentation,

• Customer collaboration over contract
negotiation,

• Responding to change over following a plan.

Agile methodologies focus on individual developers
(Abrahamsson et al., 2003), but when applied to
multi-projects structure (like in a large consortium),
have to be enclosed in specified frames. In case of
Géant, these frames were Best Practices, that
motivated developers and task leaders to follow a
"common path" of the development. Project Office
realized, that too much discipline would deprive
development teams of initiative and flexibility
(Nawrocki et al., 2005), so a common, but not
limiting solution was needed.

Since OpenUP was the most popular agile
methodology, it was selected to be the basis for best
practices document. Later on, best practices have
been extended with requirements suggested by basic
and intermediate levels of Open Maturity Model
(Petrinja et al., 2009).

Because of the range of the issues covered, best
practices were published in three separate
documents:
• "GN3 Software Developer Best Practice Guide"

(Marović et al., 2009),
• "GN3 Software Architecture Strategy Best

Practices Guide" (Marović et al., 2009),
• "GN3 Quality Assurance Best Practices Guide"

(Marović Marović et al., 2009).
The first paper (“Software Developer Best Practice
Guide”) introduced a common approach to
development and deployment and provided
principals for the most basic, source code level
integration, since coding and releasing a software
became a well-defined process. Developers were
provided with unified procedures of setting up the
development environment and exemplary project
structure was published. The first paper explained
how to use version control system in a secure and
effective way. Detailed description of effective and
“agile oriented” (with frequent releases and rapid
changes of requirements) procedures related to
building, integrating and releasing software were
also provided. “Software Developer Best Practice
Guide” put emphasis on providing meaningful and
cohesive documentation.

The second paper (“Software Architecture
Strategy Best Practices”) was intended for lead
developers and project managers. It rephrased agile

development principals, adjusting them to Géant
circumstances and placed emphasis on the issues
that were applied differently by individual project
leaders. This paper also described recommended
approach to software design and explained
complicated aspects of IPR policies and FOSS
licences. The document provided cohesion and
enabled integration between projects. The in depth
analysis of IPR issues revealed conflicts between
several licences assumptions and Géant principles.
As a result, a new activity (IPR Management) was
called into being.

The third paper (“Quality Assurance Best
Practices”) described in details issues related to
testing and code quality checking. This paper was
intended for developers and emphasised importance
of test-driven development. It described testing
approaches and tools required in successive
development phases (e.g. unit, integration,
functional tests). Properly defined, unified test
approaches provide a uniform, high quality of
delivered software. “Quality Assurance Best
Practices” provided detailed procedures of bugs
handling, requesting a new functionality and also
described a lifecycle of the request ticked. Best
practices, delivered in the third paper, provided
independent quality measures and allowed project
leaders to compare different projects.

Creation of aforementioned best practices
documents was consulted with Development
Infrastructure task. Best practices were intended to
be not only abstract recommendations, but also
guidelines to shared infrastructure, provided by the
other task. The delivered infrastructure is described
the in following section.

2.2 Development Infrastructure

The second task, “Development Infrastructure”
focused on providing shared infrastructure for
developed projects. Results of the survey, mentioned
in the previous section of this paper, indicated, that
numerous of development tools have been
multiplied. This approach was not efficient, because
effort of people responsible for providing and
maintaining the infrastructure was also multiplied.
The aim of this task was to provide a unified
development infrastructure, before the actual GN3
development begins. Because of clearly specified
requirements, relatively easy job (installation and
configuration) and due to experience of involved
employees, this task could deliver required solutions
in a very short time. Development Infrastructure task
delivered the following solutions:

TOWARD SOFTWARE GOVERNANCE IN R&D PROJECT - Géant Case Study

229

Table 2: Products delivered by Development Infrastructure
task (Żurowski and Kramer, 2009).

Version Control System SVN
Build Management

System
Maven

Continuous Integration
Server

Hudson

Bug Tracking System JIRA
Release Planning Tool JIRA

Developer Portal System TWiki
Wiki TWiki

Mailing List System Mailman

Centralized version control system provides a
reliable and extremely safe environment for storing
and maintaining the source code. SVN, the chosen
system, not only allows to track applied changes, but
also provides effective mechanisms for branching
and merging the code. A common repository
provides an easy access to all developed systems and
thus allows audits, since all releases and up-to-date
source code are available on demand.

Results of the survey indicated a lack of common
approach to software build management. Particular
projects built their software individually, what
effected in different structures of resulting packages.
Using a uniform build management system with
properly defined tasks speeds up the software release
process by automating the following routines:
• Building, testing and packaging.
• Releasing.
• Deployment of information pages.
• Software deployment.
• Dependencies resolving.
• Artefacts publishing.
For projects developed in Java, Maven has been
suggested. The introduction of this tool turned out to
be the most effective of all applied changes and
enforced a “quality assurance oriented” way of
management and development. OpenUP
methodology assumes, that a build management
system is tightly coupled with a continuous
integration server. The continuous integration
performs unit and integration tests when source code
repository is changed and reports detected failures to
particular developers. In case of GN3 development,
Hudson has been used as a continuous integration
server.

Finally, development infrastructure task focused
on improving communication level. Géant, as a large
scale project, developed by employees distributed
across several European countries was exposed to
vulnerabilities related to communication issues
(Elliott and Scacchi, 2004). Introducing JIRA, a

browser-based issue tracking system significantly
increased internal (among developers) and external
(between developers and customers) communication
level by providing well defined lifecycle of any
project related issues. JIRA also enforced consistent
approach to planning, since each project had to
define its roadmap and formal release plan.
Additionally, this tool provides advanced statistics,
which allow to monitor current development
progress and redefine release plan if needed.
Common requesting and planning system allows to
compare projects and estimate progress of the
development of all products. Suggested developer
portal, TWiki, provides a built-in versioning
mechanism, so each modification of existing page or
document, effects in a creation of a new version.

Infrastructure, delivered by Development
Infrastructure task, in conjunction with best practices
provided by the previous one, introduced new
standards and provided tools for high quality and
effective development. Results of these tasks efforts
have been received with interest by developers.
Although interest had been demonstrated, a
mechanism of control had to be provided. To
comply with this need, Quality Assurance task had
been launched. The following section provides
detailed information about the third task of Géant
Software Governance activity.

2.3 Quality Assurance

Quality Assurance, the third task of the Software
Governance activity, was supposed to verify if
projects developed in GN3 phase of Géant have
been migrated to the delivered infrastructure and
whether best practices, provided by a first task, have
been put into life. This task was launched when best
practices and development infrastructure were
already in place.

Quality Assurance performs periodical (every
four months) audits and, during this procedure, the
auditor completes a questionnaire, that is
homogenous for all projects. The form contains
questions that are to verify not only the fact of
following recommended best practices, but also the
rate of indicators, that can be measured (e.g. code
coverage - the percentage of source code verified by
unit tests). After the internal review, the results of
the audit are presented to lead developers and their
feedback is collected. Lead developers cannot affect
auditors and audit itself, but are to focus on issues
that have been, in their opinion, missed or
inadequately audited. Lead developers’ feedback is
presented to the auditors. If the auditor accepts it, the
particular audit is extended by lead developer’s

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

230

remarks. If the auditor does not agree, remarks are
rejected. At the end of the iteration the results of
audits are officially released. The released document
contains not only results of the audit procedures, but
also recommendations to eliminate weak points.
Next iteration of audit focuses on indicated weak
points and changes applied to the software.

GN3 phase of Géant began with the initial
iteration of auditing. This iteration was supposed to
provide primary status of the source code that was
delivered in the previous phase of the project.
Results of the initial audit have been delivered to
lead developers, but these have not been officially
published. Lead developers provided their feedback
with suggestions of improving communication and
audit itself.

Currently, the first iteration is in its final stage
and the audit document is being prepared to be
published. Quality Assurance task is going to
perform six official audits and to provide advices
and recommendations after each of them. After the
sixth audit, a final deliverable document is to be
published. In this document results of all audits will
be provided. Quality Assurance will summarize its
activity and describe changes that were applied to
the projects to increase their quality and
compatibility. We believe, that all tasks of Software
Governance activity will succeed, and approach
described in this paper will become a foundation in
other, large scale R&D projects.

3 CONCLUSIONS

In this paper we have described efforts that were
made in order to increase the level of quality and
compatibility between different software projects
developed in a distributed environment within a
large scale R&D consortium.

This paper described Géant case. The previous
phase of Géant, GN2, suffered from the lack of
common methodologies, best practices and
development infrastructure. The new Software
Governance activity focused on these issues. Its
internal structure reflects problems that it was meant
to solve. Best Practices task provided set of
documents with recommendations related to
software development, software architecture and
quality assurance. These best practices were tightly
coupled with infrastructure delivered by
Development Infrastructure task. To verify proper
application of best practices and development
infrastructure, another task, Quality Assurance, had
been launched. This task has focused on series of
audits, applied to all software projects that will

eventually be operationally deployed. The following
audits focuses on changes applied in order to fulfil
recommendations from the previous audit.

The described Software Governance activity has
been launched at the very beginning of the GN3
phase, whereas best practices and development
infrastructure have been provided in the first weeks
of activity. The first iteration of audits is in the final
stage, and recommendations are to be published
within upcoming weeks. Nevertheless, even at this
stage, compatibility and manageability of projects
have significantly increased.

ACKNOWLEDGEMENTS

The authors of this article are thankful to Mr. Anand
Patil, initiator and the first leader of described
Software Governance activity for his devotion and
valuable comments when reviewing this article.

REFERENCES

Abrahamsson P., Warsta J., Siponen M.T., Ronkainen J.,
2003. New Directions on Agile Methods: A
Comparative Analysis. International Conference on
Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

Beck K., Beedle M., van Bannekum A., Cockburn A.,
Cunningham W., Fowler M., Grenning J., Highsmith
J., Hunt A., Jeffries R., Kern J., Marick B., Martin R.,
Melleor S., Schwaber K., Sutherland J., Thomas D.,
2001. Manifesto for Agile Software Development.
Available at: http://agilemanifesto.org/
[Accessed 26 March 2010].

Elliott M. S., Scacchi W., 2004. Free Software
Development: Cooperation and Conflict in A Virtual
Organizational Culture. IDEA Publishing

Marović B., Kramer G., Wrzos M., Lewandowski M.,
Bobak A., Delvaux A., Żurowski W., Zuljevic T.,
2009. GN3 Software Architecture Strategy
Best Practice Guide 1.0 Available at:
http://www.geant.net/Media_Centre/
Media_Library/Media%20Library/GN3-09-
185v2_Software_Architecture_Strategy_Best_Practice
_Guide_1.0.pdf [Accessed 26 March 2010].

Marović B., Kramer G., Wrzos M., Lewandowski M.,
Bobak A., Krysztofiak T., Martinovic R., Kostov S.,
Kupiński S., 2009 GN3 Quality
Assurance Best Practice Guide 1.0
Available at: http://www.geant.net/Media_Centre/
Media_Library/Media%20Library/GN3-09-
184v2_Quality_Assurance_Best_Practice_Guide_1.0.
pdf [Accessed 26 March 2010].

Marović B., Kramer G., Wrzos M., Lewandowski M.,
Delvaux A., Zuljevic T., Rodriguez C., 2009. GN3

TOWARD SOFTWARE GOVERNANCE IN R&D PROJECT - Géant Case Study

231

Software Developer Best Practice Guide 1.0.
Available at:
http://www.geant.net/Media_Centre/Media_Library/M
edia%20Library/GN3-09-
186v2_Software_Developer_Best_Practices_Guide_1.
0.pdf [Accessed 26 March 2010].

Marović B., Mazurek C., Kramer G., 2009, SA4 Software
Developer Survey. Survey Specification v2.2.
Available
at:http://wiki.geant.net/pub/SA4/Admin/DocumentsM
ain/GN3-09-134-SA4-Software-Developer-Survey-
Specification.pdf [Accessed 26 March 2010]

Michlmayr M., 2005. Software Process Maturity and the
Success of Free Software Projects. Department of
Computer Science and Software Engineering,
University of Melbourne.

Nawrocki J., Olek Ł., Jasiński M., Paliświat B., Walter B.,
Pietrzak B., Godek P., 2005. Balancing Agility and
Discipline with XPrince. RISE 2005, Heraklion,
Greece.

Petrinja E., Nambakam R., Sitilini A., 2009. Introducing
the Open Maturity Model. 2nd Emerging Trends in
FLOSS Research and Development Workshop at
ICSE 2009.

Stegeman, J., 2010 Continuous integration with Hudson,
Oracle publication

Symons C., Cecere M., Oliver Young G., Lampert N.,
2005. IT Governance Framework Structures,
Processes, And Communication. Forrester Research

Wallhoff J., 2004. Combining ITIL with COBIT and
ISO/IEC 17799:2000. Scillani Information
Whitepaper.

Żurowski W., Kramer G., 2009. Deliverable DS4.3.1:
Specification of Software Development Infrastructure.
Available at:
http://www.geant.net/Media_Centre/Media_Library/M
edia%20Library/GN3-09-099-DS4-3
1_Specification_of_Software_Development_Infrastruc
ture.pdf [Accessed 26 March 2010].

ENASE 2010 - International Conference on Evaluation of Novel Approaches to Software Engineering

232

