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The goal of this paper is to develop a Fuzzy Calculator, making it possible to calculate functions of fuzzy
intervals, as prescribed by the extension principle of Zadeh. The extension principle can be reversed, result-
ing in fixed a-levels for which the minimum and the maximum of the function has to be determined. This
optimization problem can be tackled by different algorithms: Gradient Descent, SIMPSA, Particle Swarm
Optimization and Particle Swarm optimization in combination with Gradient Descent. Two approaches are
used to determine the numberaflevels: it is either fixed to a predetermined value, or it is initially chosen
very small and subsequently expanded according to a suitable criterion. Both a non-parallel and a parallel im-
plementation of the Fuzzy Calculator are designed. In the parallel version, communication is used to optimize
the internal workings of PSO. The Fuzzy Calculator is applied to a number of test functions. The different
combinations of optimization algorithms are evaluated, both by the final result and by the number of required
model evaluations. The results indicate that the parallel implementation of the Fuzzy Calculator starting with
a small number ofi-levels and using PSO with Gradient Descent leads to the most accurate membership

function.

1 INTRODUCTION

The concept of fuzzy information plays a central role
in many engineering applications. This type of uncer-
tainty can be captured by fuzzy intervals. Calculat-
ing with fuzzy intervals is in general a complex pro-

needed to determine the minimum and maximum of
the function at each value of (Maskey et al., 2004;
Shrestha et al., 2007).

The objective of this paper is to develop a compu-
tationally efficient Fuzzy Calculator to construct the
membership function of a fuzzy output interval that

cess, described by the extension principle of Zadeh.depends on non-interactive fuzzy intervals, through a
It is possible to reverse the extension principle, and general continuous function. In this paper four dif-

to find, for each membership degreec]0,1], the
corresponding interval of the membership function
(Nguyen, 1978).

Several practical implementations of the exten-
sion principle based on the-level concept are avail-
able for (locally) monotone continuous functions of
non-interactive fuzzy intervals. The vertex method
is developed for computing with monotone functions
of non-interactive fuzzy intervals. This method can

ferent optimisation algorithms are compared to de-
termine the minimum and maximum value of the
function at the differenti-levels: (1) Gradient De-
scent based on Sequential Programming (GD) (Eaton,
2002; Nocedal and Wright, 1999), (2) the Simplex-
Simulated Annealing approach (SIMPSA) (Cardoso
et al., 1996), (3) Particle Swarm Optimisation (PSO)
(Kennedy and Eberhart, 1995) and (4) Particle Swarm
Optimisation in combination with Gradient Descent

be extended to non-monotone functions by doing an (PSQGD). The first step is to determine the number
extreme value analysis (Dong and Shah, 1987; Otto of a-levels. In this paper, two approaches are used.

et al.,, 1993). However, this is not always possible,
for example when dealing with complex functions.
Another approach for (locally) monotone continuous
functions is working with gradual numbers (Fortin

et al., 2008; Dubois and Prade, 2008). However, for

general functions, an optimisation algorithm is
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Either we fix the number afi-levels at the beginning
and kept constant throughout the algorithm or, alter-
natively, we start with only 3i-levels and gradually
increase this number as required by a criterion based
on linear interpolation. The next step is to implement
the Fuzzy Calculator. Both a non-parallel and a par-
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allel version are implemented. The latter application only use convex membership functiqngx):

is only important when PSO is employed, such that 2

several swarms simultaneously search at diffecent V(x1,x2) € R, Va €]0,1] : )
levels and moreover communicate with each other as  px (01 + (1 — 01)X2) > min(px (X1), ix (X2))

to locate the minimum and maximum of the function
more accurately.

This paper is organised as follows. Section 2 re-
minds the reader of the extension principle applied
to construct the membership function of a continuous
function of fuzzy intervals. Section 3 describes the
different optimisation algorithms used by the Fuzzy
Calculator. In Section 4, the implementation of the
Fuzzy Calculator and the different optimisation algo-
rithms are outlined in full detail. The test functions
used to validate the Fuzzy Calculator are presented in
Section 4. Section 5 describes the results and com-
pares them in great detail. Finally, Section 6 contains
our conclusion.

Fuzzy quantities whose membership functions
satisfy the above described conditions of upper-semi
continuity and convexity and have a compact support
are henceforth called fuzzy intervals.

For functions without internal minima or maxima
for a certaina-level, the minimung, and maximum
Zy Will be found on the boundary of the corresponding
a-cut of the input fuzzy intervals. For general func-
tions, however, the minimum, and maximunzy can
either be located on the boundary or in the interior of
the corresponding-cut of the input fuzzy intervals,
and optimisation algorithms will be necessary to try
to locate these points efficiently (Maskey et al., 2004;
Shrestha et al., 2007).

2 EXTENSION PRIGICIPLE 3 OPTIMISATION ALGORITHMS
The extension principle of Zadeh provides a general
method to transfer uncertainty described by fuzzy in-
tervals through a function. Concretely, the extension
principle of Zadeh determines the membership func-
tion pz of a fuzzy output quantityZ that depends
onn fuzzy quantities{y, . .., X, with known member-
ship functiongly,, . .., ix, through a general function
Z=f(Xg,..., %) (Zadeh, 1975):

As outlined in Section 2, the construction of the mem-
bership function of the fuzzy output interval of a gen-

eral function of non-interactive fuzzy input intervals

can be converted into a number of optimisation prob-
lems. Four different optimisation algorithms are ap-
plied to this problem: Gradient Descent based on
Sequential Quadratic Programming (GD), Simplex-
Simulated Annealing (SIMPSA), Particle Swarm Op-
timisation (PSO), and Particle Swarm Optimisation
Hz(Z) = sup  min(px, (X1),...,Hx,(Xn)) (1) based on Gradient Descent (P8D).

z=1(X1,....Xn)

In the case of a continuous functidnand up- 3.1 Gradient Descent based on

per semi-continuous membership functions, all Sequential Quadratic Programming
a-cuts are closedva €]0,1], [k ]a is closed, with

a compact suppo@xj, i.e. a bounded support, we Gradient Descent based on Sequential Quadratic Pro-
can reverse the extension principle. Instead of deter-gramming (Eaton, 2002; Nocedal and Wright, 1999),
mining the membership degree= 117(2) of a certain a local optimisation algorithm, is an extension of the
valuez= f(xq,...,Xy), itis then possible to determine Quasi Newton method in order to handle constraints.
the interval of valueg € [z,,Z] which have a mem-  Lagrange multipliers are used to incorporate (non-
bership degregz(z) > o (Nguyen, 1978). Thus, by linear and linear) equality constraints. In addition, in-
determiningz, andz, for certain values of(, hence- equality constraints are allowed. At the starting point,
forth calleda-levels, it is possible to reconstruct the the objective function is approximated by a quadratic
membership functiomz(z). As the interval ati = 0 function, obtained through a Taylor expansion. The
is not closed, we choose the firstlevel at a small  algorithm exactly determines the minimum or max-
valuea = & > 0. The range of membership degrees imum of that quadratic function, which is the new

5,1] will be subdivided inm intervals of length 1m, starting point and the procedure is repeated until a
with them+ 1 a-levelsaj = j/m, j =8,1,...,m, as convergence criterion is fulfilled. A possible conver-
endpoints. gence criterion is that the gradient is approximately

To simplify the search problem to determine the zero, which is the mathematical condition for a local
membership function of the fuzzy output quantity, we €xtremum (Eaton, 2002; Nocedal and Wright, 1999).
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3.2 Simplex-simulated Annealing [z

The Simplex-Simulated Annealing (SIMPSA) algo- @
rithm (Cardoso et al., 1996) is an optimisation al-
gorithm based on a combination of the non-linear
Simplex algorithm (Nelder and Mead, 1965) and the
Simulated Annealing algorithm (Kirkpatrick et al.,

Q2 interpolated
as

22

1983). The non-linear Simplex algorithm starts with 0 = 3
a randomly chosen starting poXit= (xg,...,X%n), for _ ) _ )

n-dimensional vertices, is created. In a next step, the =~ = .
function values at the vertices of the simplex are com- Ptimisation algorithms, the performance of the algo-

pared. The objective is to move away from the worst rithm largely depends on the choice of the parameter

point. However, in order to be able to find global op- Values.

tima, wrong-way movements must sometimes be al-

lowed. This is regulated by combining the non-linear

simplex algorithm with the Simulated Annealing a- 4 = METHODOLOGY
gorithm. Simulated Annealing is a global optimisa-

tion algorithm based on the physical thermal process 4 1 g bdivision in a-levels
of annealing (Kirkpatrick et al., 1983). New config-

urations are accepted by the Simulated Annealing al- the construction of the membership function of the
gorithm with a certain probabilitp, dependingonthe ' =50t variable of a continuous function of non-
fitness of the solution and the current system temper-j,iaractive fuzzy variables described by fuzzy inter-

atufeh- In cr(])mbinat_il;)ln withthe non-linealgrpPlex al- 4Vals can be handled through the application of the ex-
gorithm, the possible configurations are represented;qqjon principle and the subdivisiondnlevels. The

by the vertices of the simplex. As for all heuris- ", her ofa-levels that have to be determined is im-
tic optlmlsatlor_1 algorithms, the performance o_f the portant, as for a finite number af+ 1 a-levels, only
SIMPSA algorithm largely depends on the choice of 5, 5n5roximation for the true membership function
the parameter values inherent to the algorithm (Car- Lz(2) will be obtained. Increasing the numberaf

doso etal., 1996). levels will improve the approximation.
To determine the number ai-levels, two ap-
3.3 Particle Swarm Optimisation proaches are followed. Firstly, the numbepelevels
is set to a fixed numben+ 1, determined at the be-

Particle Swarm Optimisation (PSO) (Kennedy and 9inning of the algorithm. The correspondiagevels
Eberhart, 1995), a population-based global optimisa- are equidistantly distributed at valueg = j/m for
tion algorithm, starts with the initialisation of a pop- | =9,...,m. Secondly, we start witm+1 = 3 and
ulation of N particles, numbereid= 1,...,N, having gradually increase the number oflevels according
randomly chosen position vectotsand velocity vec- 0 a criterion based on linear interpolation. More
torsv;. The position of each particle corresponds to Specifically, we compare with a valued that is cal-

a candidate solution of the optimisation problem. In culated by linear interpolation. We choose to compare
each iteration, the particle’s position vector is trans- ® With its linear interpolatiori based ore,, instead
ported over its velocity. The velocity vector is redi- Of the other way around, sineeis always in the in-
rected toward the particle’s personal best position and terval ]0,1] and it is thus possible to work with an
local best position. The contributions of the particle’s absolute tolerance levelindependent of the problem
personal and local best position are weighted throughat hand. This is illustrated in Figure 1.

the stochastic variablesr; andc,r,. The positive Since the membership functiqey(z) should be
constants; andc; are the cognitive and social pa- UPPer semi-continuous and convex, it is impossible
rameters, the factony andr are random numbers ~thatz, , >z, or thatZ, , <Z;. Therefore, itis
between 0 and 1, and are regenerated in each iteratiomot possible to determine the differemiievels inde-
step. When a patrticle is positioned outside the searchpendently and we have to correct the endpoints of the
space, it is repositioned on the boundary it crossed a-levels when this situations occurs. There are two
and its velocity in that direction is set to zero. An in- ways to correct for these inconsistencies. If for ex-
ertia weightw is used to decelerate the particle’s ve- amplez]j+l > 2, Zq; CAN be reset ta, ,,. Another
locity if a suitable solution is found. As with the other possibility is to discard the old resultatlevelaj and
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recalculatezy, . If the optimisation algorithm accepts when the convergence criterion of the linear interpo-
a starting point, then providing the locatigg, , will lation is fulfilled for all a-levels.
ensure that the inconsistency is solved.

4.3 Optimisation Algorithms

4.2 Non-parallel versusParallel

Implementation Gradient Descent based on Sequential Quadratic Pro-

gramming (GD) is a standard function of Octave,
namelysgp (Eaton, 2002). This function has no extra
The Fuzzy Calculator is implemented in the program- parameters that have to be determined and can thus be
ming environment Octave (Eaton, 2002) and acceptsapplied directly to our optimisation problem.

a generah-ary function as input. Both a non-parallel, The implementation of the Simplex-Simulated
and a parallel version were designed using the Mes- Annealing (SIMPSA) algorithm was taken from
sage Passing Interface (MPI) of Octave. (Donckels, 2009; Donckels et al., 2009) with the au-

thor’'s permission. As mentioned in Section 3.2, the
maximal number of iterations, the cooling ratio, the
freezing temperature and the tolerance of the conver-
gence criterion have to be determined. After some test
, X X 9 > simulations we decided to set the maximal number of
with searching the optima (the minimum and maxi- jterations for each simulated annealing cycle to 2500,

mum) of the functionf at the levelom =1. Asthis . he cooling ratio to 07 and the freezing temperature
is the smallest interval, chances are higher to find the ;5 1 The tolerance level for convergence was set to
correct optima,  andz,,. The algorithm then con- _ 14-6

tinues with the determination of the optima for the
othera-levels, for decreasing values af When al-
lowed by the optimisation algorithm, the optima of
the function at the previous-level can be provided
as starting point. With this approach, the inconsis-
tency mentioned in the last paragraph of Section 4.1
cannot occur.

Non-parallel. As mentioned above, in the-level
approach the number af-levels is fixed tom—+ 1.
The non-parallel version of the algorithm then starts

The implementation of Particle Swarm Optimi-
sation (PSO) was taken from previous work of the
present authors (Scheerlinck et al., 2009) and appro-
priately modified. This algorithm requires the deter-
mination of a number of parameters inherent to the
algorithm. After some test simulations, we decided to
work with fixed parameter values = 1,c, = 1.5 and
w = 0.7, while different population sizes &f = 10,

N = 15 andN = 20 were used. The convergence cri-
dterion used requires that half of the population has
the same position (with tolerance level ). Ex-
plicitly, the algorithm stops if the mean distance be-
tween the particles of the best half of the population
is smaller than 10%. The parallel Fuzzy Calcula-
tor using PSO can be interpreted as several swarms
that search on different-levels at the same time and
are thus able to communicate about candidate solu-
tions. We have modified the PSO algorithm such that
o ; i . each swarm broadcasts its current global best position
tencies _|f needed. In this part, the first correction ap- to the other running PSO processes. When a swarm
proach is applied. receives a global best position located in its search

In the seconda-level approach, we start from  gh30e and which is better than its own global best po-
m+ 1= 3 a-levels and expand this number through gjtion, the swarm will change its global best position.
linear interpolation when necessary. This algorithm \yhen communication occurs, the remaining particles
starts with searching the optima of the function at 4e reinitialised. This is necessary to prevent slow
the a-levels 1, 0.5 and. The obtained values are  .,nyergence, for example when the current swarm is
compared and corrected if inconsistencies should 0C-ajready close to converging to a local optimum (far)
cur. Next, a linear !nterpolatiqn is app!igd to examine away from the newly obtained optimum. In this way,
whether an even finer sampling (additionalevels) a new parameter is introduced, namely the frequency
is required. Each time the master receives new re- o -ommunication. We varied this parameter by run-

sults, it checks for possible inconsistencies and SUb'ning instances in which the swarms communicate at
sequently examines whether it has to request the Ca"every 2 5 or 10 iterations.

culation of additionabi-levels. The algorithm stops

Parallel. The parallel version of the implementation
is based on a master-slave configuration. For the fixe
number ofm+ 1 a-levels, we usedra+ 3 processes:
one master and(gn+ 1) slaves for the determination
of the left (right) sideguj (Za;), forj=29,....m. The
master sends the input intervals belonging tothiel
o-levels to the slaves and the slaves optimise the func-
tion for these intervals and send these optima back to
the master. When the master receives the optima for
all a-levels, these values are corrected for inconsis-
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As it is not certain that PSO will converge to a lo- maximum found by any of the optimisation algorithm
cal/global optimum (Engelbrecht, 2006), it may be can be used as reference. We can thus use the area un-
recommended to combine PSO with a local optimi- der the membership function as a global quality mea-
sation algorithm such as GD. We performed GD at sure. The Fuzzy Calculators are also compared on
several positions in the algorithm, in order to have a the level of number of function evaluations. To allow
final best solution which is assured to be a local op- for a statistical comparison between the Fuzzy Calcu-
timum. First, we performed GD on the initial parti- lators using different optimisation algorithms or be-
cles. As after this, all the particles will be positioned tween the non-parallel and parallel implementation,
in a local optimum, we only kept the particle with the each algorithm is repeated 50 times. To compare the
best position in the population. The other particles of different Fuzzy Calculators, a mixed ANOVA model
the population are repositioned at their original posi- with the test functions as random effect and a Satterth-
tion received during the initialisation of the algorithm. waite correction for unequal variances is used (Neter
Then, we performed GD each time the swarm changeset al., 2004).
its global best position through communication. Af-
ter convergence takes place, we perform GD on the5.1 Fixed Number of a-levels
global best position of the swarm one last time.

_ In this section, the number af-levels is fixed at a
4.4 Test Functions value ofm+1=11.

In order to compare the different optimisation algo- 5.1.1 Non-parallel Implementation

rithms, we made use of 9 different test functions, such

as the cosine function in one dimension, an arbitrary This paragraph examines the capability of GD,
function in 2 dimensions with multiple minima and SIMPSA, PSO with a population of 10, 15 and 20 par-
maxima, the alpine function in 2 dimensions for dif- ticles and PSG5D with a population of 10, 15 and 20
ferent intervals and the alpine function in 3, 4 and 5 patrticles to construct the membership functions of the

dimensions. fuzzy outputintervals of the 9 test functions. Firstly, a
The membership functions of the non-interactive mixed ANOVA model with the different test functions
fuzzy input intervals are chosen to be normia, as random effect is applied on the data of the area un-

Ix € R such thatux (x) = 1, and have a trapezoidal der the membership function composed by the Fuzzy
shape. The intervdk; 5,%; 5] ata = 3, corresponds  Calculator using these optimisation algorithms. This
to the intervals of the test functions. At= 1, this test indicates that the application of the Fuzzy Calcu-

interval is reduced tfx; ;,%; 1] with lator using the algorithms PSGD with a population
' size of 15 and 20 particles and SIMPSA are signif-
Xist¥Xs 1 _ icantly better in constructing the membership func-
1=~ %5 1o (%i5—Xi35) tions than the Fuzzy Calculator using the other opti-
- Xis+¥%s 1, misation algorithms.
Xi1= T +1—O(Xi,5*>_<i,5)- The number of function evaluations needed to

construct the membership function is a measure for
the computational cost. The number of function eval-
uations of the Fuzzy Calculator using PS3ID with

a population size of 15 particles (28551) and 20 parti-
cles (37662) and SIMPSA (72390) are significantly
different. As the Fuzzy Calculator using SIMPSA
needs a very high mean number of function evalua-
tions, we can conclude that this algorithm is computa-
tionally inefficient. Therefore, the SIMPSA algorithm
will not be used in the parallel Fuzzy Calculator.

In general, our implementation can deal with any
upper semi-continuous membership functions. When
the fuzzy interval; are interactivei.e. a joint mem-
bership function can be specified, however, using the
Fuzzy Calculator for such type of membership func-
tion will be harder, as the search region at eadbvel
is no longer hyper-rectangular.

5 RESULTS

5.1.2 Parallel Implementation
The membership functions of the fuzzy output in-
tervals of the test functions are constructed with the For the parallel Fuzzy Calculator, we restrict to the
Fuzzy Calculator using the optimisation algorithms optimisation algorithms PSO and PS&D.
discussed above. As for eaaHevel, the error on the Again, a mixed ANOVA model with the test func-
determination ofz, andz, will depend on the opti- tions as random effect is performed. Since the factors
misation algorithm, the lowest minimum and highest population and communication are available in our
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two optimisation algorithms, we can put them in this rallel Fuzzy Calculator using the fixed number of 11
model as nested factors. This leads to a more correcta-levels. The difference between the mean area un-
estimate of thep-values in our model. The results of der the membership function for the Fuzzy Calculator
the mixed ANOVA model indicate that in all possible starting with 3a-levels and the Fuzzy Calculator us-
combinations of population size and communication ing 11a-levels is significant, which leads to the con-
strategy, PSGGD is significantly better than PSO. clusion that the Fuzzy Calculator starting witho3
Furthermore, communication at every 5 iterations and levels and expanding this number through linear inter-
a population size of 20 particles is significantly better polation gives a more accurate membership function
than the other parameter combinations. This leads tothan the Fuzzy Calculator using &itlevels.

the conclusion that for the parallel Fuzzy Calculator The number of function evaluations is signifi-
using PSQGD with a population size of 20 particles cantly higher for the Fuzzy Calculator starting with
and communication at every 5 iterations is the best 3 a-levels (145074 versus 45119). An explanation is
algorithm to construct the membership functions of that much more-levels are optimised when starting
the test functions. For the number of function evalu- with 3 a-levels and expanding this number through
ations, more frequent communication or a larger pop- linear interpolation (Table 1).

ulation size needs significantly more function evalua-

tions. . . Table 1: Mean number ai-levels needed to construct the
The last step is the comparison of the parallel |ef (4, levels) and right (Bmaxlevels) side of the mem-

results with the non-parallel results. We compared pership function of the fuzzy output interval for the diiet
the results of the non-parallel Fuzzy Calculator using test functions with the Fuzzy Calculator starting witlu3-
PSQGD with a population size of 15 and 20 particles levels.

andthe paralle_l Fuzzy Calcu_lator using PSD W!th \ Testfunction] & Oy Ievels i levels
a population size of 20 particles and communication 1 51 3
at every 5 iterations. The mean area obtained with the > 6.2 37.6
parallel Fuzzy Calculator using PSGD with a pop- . .
X . ; A . 3 33.6 40.72
ulation size of 20 particles is significantly higher than 4 31.16 19 88
the mean areas obtained with the non-parallel Fuzzy 5 21'12 43.56
Calculator using PS@D with a population size of ' '
2 . ) 6 40.28 46.24
15 and 20 particles, which leads to the conclusion 7 44.32 62.6
that our parallel implementation gives the best results. 8 45' 3 64 '16
However, the number of function evaluations of the 9 49 '64 72’ 4
parallel Fuzzy Calculator using PSGD with com- . .
munication at every 5 iterations is significantly higher _ _ _
than the non-parallel Fuzzy Calculator using PSO As mentioned in Section 4.2, there are two ways
with a population size of 15 and 20 particles. to correct for inconsistencies between thndevels.
In the previous results, the optima of allevels are
5.2 Starting from 3 a-levels compared and replaced by the optima of a higier

level if necessary. The other approach is to recalcu-

A disadvantage of working with a fixed number of late the optima of the inconsistentlevels with as
a-levels is that this number has to be determined in Starting point the location of the optima of the above
advance. Consequently, it is possible that too many Ying a-level. We used this last approach in combi-

a-levels are used to determine the membership func-nation with the Fuzzy calculator starting fromo3
tion of the fuzzy output interval of a simple func- levels and expanding this number through linear inter-

tion whereas too feva-levels are used for more dif-  Polation when necessary. We compared these results
ficult functions. A solution to this problem is starting © those of the Fuzzy Calculator starting witha3
with 3 a-levels and expanding this number through levels, using the first approach to correct for inconsis-
linear interpolation when necessary. For this linear [€NCiés between the-levels. The difference between
interpolation, a convergence criterion has to be de- th® mean area under the possibility distribution, ob-
termined. As convergence criterion, we decided to t@ined with the two approaches, is very small and not
set a tolerance of.01 betweeru and the guess di significant p-value> 0.05). _
calculated through linear interpolation. With the use 1 ne difference between the number of function
of the mixed ANOVA model with the different test €valuations, however, is significarg-yalue < 0.05).
functions as random effect, we compared the parallel 1h€ sécond approach for dealing with inconsistent

Fuzzy Calculator starting with 8-levels with the pa- a-levels needs significantly less function evaluations
(102101 versus 145074). This is caused by the fact
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that in general lessi-levels are needed when using

the second approach for dealing with inconsistencies

betweern-levels (Table 2).

Table 2: Mean number dai-levels needed to constructing
the left (#amin levels) and right (&max levels) side of the
membership function of the fuzzy output interval for the
different test functions with the Fuzzy Calculator stagtin
with an expanding number af-levels with recalculating
incorrectly found optima.

Test function| # amin levels  #imaxlevels

1 21 3

2 4.9 34.76
3 26.26 38.38
4 19.54 19.22
5 10.24 45.56
6 51.92 54.78
7 25.58 42.82
8 23.4 43.36
9 22.28 46.64

6 CONCLUSIONS

The results indicate that the parallel Fuzzy Calcula-
tor is the best way to construct the membership func-
tion of the fuzzy output interval of a continuous func-
tion of non-interactive fuzzy intervals. The best ap-
proach is an expanding numberadevels, with Par-
ticle Swarm Optimisation in combination with Gradi-
ent Descent as optimisation algorithm, using a popu-
lation size of 20 particles and communication at ev-
ery 5 iterations, and by recalculating inconsistent
levels. The number of function evaluations, however,
can be quite high, depending on the numbemef
levels that will be constructed. This can be regulated
by the tolerance level in the criterion that determines
the insertion of additionat-levels. In addition, as the

REFERENCES

Cardoso, M., Salcedo, R., and de Azevedo, S. F. (1996).
The simplex-simulated annealing approach to contin-
uous non-linear optimizatiorComputers and Chemi-
cal Engineering 20:1065-1080.

Donckels, B. (2009).Optimal experimental design to dis-
criminate among rival dynamic mathematical models
PhD thesis, Ghent University.

Donckels, B., De Pauw, D., Vanrolleghem, P., and De Baets,
B. (2009). A kernel-based method to determine opti-
mal sampling times for the simultaneous estimation
of the parameters of the rival mathematical models.
Journal of Computational Chemistrg0:2064—2077.

Dong, W. and Shah, H. (1987). Vertex method for com-
puting functions of fuzzy variablesFuzzy Sets and
Systems24:65—78.

Dubois, D. and Prade, H. (2008). Gradual elements in a
fuzzy set.Soft Computing12:165-175.

Eaton, J. W. (2002) GNU Octave ManualNetwork Theory
Limited.

Engelbrecht, A. (2006).Fundamentals of Computational
Swarm IntelligenceJohn Wiley & Sons Ltd.

Fortin, J., Dubois, D., and Fargier, H. (2008). Gradual num-
bers and their application to fuzzy interval analysis.
IEEE Transactions on Fuzzy Systerhs:388-402.

Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. INIEEE International Conference on Artifi-
cial Neural Networkspages 1942-1948, Piscataway,
NJ.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Opti-
mization by Simulated Annealingscience220:671—
680.

Maskey, S., Guinot, V., and Price, R. (2004). Treatment of
precipitation uncertainty in rainfall-runoff modelling:

a fuzzy set approachAdvances in Water Resources
27:889-898.

Nelder, J. and Mead, R. (1965). A simplex method for func-
tion minimization. Computer Journal7:308-313.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasser-
man, W. (2004). Applied Linear Statistical Models
McGraw-Hill/Irwin.

Nguyen, H. (1978). A note on the extension principle for
fuzzy sets.Mathematical Analysis and Applications
64:369-380.

implementation is parallel and several processors Canyocedal, J. and Wright, S. (1999Yumerical Optimization

be used, an elevated number of function evaluations

will not pose a major problem for most applications if
a high performance facility is available.

ACKNOWLEDGEMENTS

This work was supported by the Special Research

Fund of Ghent University and the Belgian Science
Policy (STEREO-project SR/00/100).

20

Springer Verlag.

Otto, K., Lewis, A., and Antonsson, E. (1993). Approxi-
matinga-cuts with the vertex methodtuzzy Sets and
Systems55:43-50.

Scheerlinck, K., Pauwels, V., Vernieuwe, H., and De Baets,
B. (2009). Calibration of a water and energy balance
model: Recursive parameter estimation versus particle
swarm optimization.Water Resources Reseayeb,
W10422.

Shrestha, R. R., Brdosst, A., and Nestmann, F. (2007).
Analysis and propagation of uncertainties due to the
stage-discharge relationship: a fuzzy set approach.
Hydrological Science$2:595-610.

Zadeh, L. (1975). The concept of a linguistic variable and
its application to approximate reasonirigformation
Sciences8:199-249.



