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Abstract: To successfully apply evolutionary algorithms to the solution of increasingly complex problems we must de-
velop effective techniques for evolving solutions in the form of interacting coadapted subcomponents. In this
paper we present an architecture which involves cooperative coevolution of two subcomponents: a genetic pro-
gram and an evolution strategy. As main difference with work previously done, our genetic program evolves
straight line programs representing functional expressions, instead of tree structures. The evolution strategy
searches for good values for the numerical terminal symbols used by those expressions. Experimentation has
been performed over symbolic regression problem instances and the obtained results have been compared
with those obtained by means of Genetic Programming strategies without coevolution. The results show that
our coevolutionary architecture with straight line programs is capable to obtain better quality individuals than
traditional genetic programming using the same amount of computational effort.

1 INTRODUCTION is determined by a series of collaborations with other
individuals from other populations.

Coevolutionary strategies can be considered as anin- The standard approach of cooperative coevolution
teresting extension of the traditional evolutionary al- is based on the decomposition of the problem into
gorithms. Basically, coevolution involves two or more several partial components. The structure of each
evolutionary processes with interactive performance. componentis assigned to a different population. Then
Initial ideas on modelling coevolutionary processes the populations are evolved in isolation from one an-
were formulated in (Maynard, 1982), (Axelrod, 1984) other but in order to compute the fithess of an individ-
or (Hillis, 1991). A coevolutionary strategy consists ual from a population, a set of collaborators are se-
in the evolution of separate populations using their lected from the other populations. Finally a solution
own evolutionary parameters (i.e. genotype of the in- of the problem is constructed by means of the combi-
dividuals, recombination operators, ...) but with some nation of partial solutions obtained from the different
kind of interaction between these populations. Two populations. Some examples of application of coop-
basic classes of coevolutionary algorithms have beenerative coevolutionary strategies for solving problems
developed: competitive algorithms and cooperative can be found in (Wiegand et al., 2001) and (Casillas
algorithms. In the first class, the fitness of an indi- et al., 2006).

vidual is determined by a series of competitions with This paper focuses on the design and the study
other individuals. Competition takes place between of several coevolutionary strategies between Ge-
the partial evolutionary processes coevolving and the netic Programming (GP) and Evolutionary Algo-
success of one implies the failure of the other (see, rithms (EA). Although in the cooperative systems the
for example, (Rosin and Belew, 1996)). On the other coevolving populations usually are homogeneous (i.e.
hand, in the second class the fithess of an individual with similar genotype representations), in this case
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we deal with two heterogeneous populations: one study of the performance of our coevolutionary strate-
composed by elements of a structure narsgdight gies is done. Finally, section 6 draws some conclu-
line program(slp) that represents programs and the sions and addresses future research directions.
other one composed by vectors of real constants. The

coevolution between GP and EA was applied with
promising results in (Vanneschi et al., 2001). In that

case a population of trees and another one of l‘ixed2 GP WITH STRAIGHT LINE
length strings were used. PROGRAMS

We have applied the strategies to solve symbolic
regression problem instances. The problem of sym-|n the GP paradigm, the evolved computer programs
bolic regression consists in finding in symbolic form are usually represented by directed trees with or-
a function that fits a given finite sample set of data dered branches (Koza, 1992). We use in this paper
points. More formally, we consider an input space gz structure for representing programs caligight
X =IR" and an output spacé = IR. We are given  |ine program (slp). A slp consists of a finite se-
a set ofm pairs sample = (x;,Yi)1<i<m- The goalis  quence of computational assignments where each as-
to construct a functiorf : X — Y which predicts the  signment is obtained by applying some function to a
valuey € Y from a givenx € X. The empirical error  set of arguments that can be variables, constants or

of a functionf with respect tais: pre-computed results. The slp structure can describe
1 m complex computable functions using less amount of
&(f) == Z(f(xi) —yi)? (1) computational resources than GP-trees, as they can

mi< reuse previously computed results during the evalu-

ation process. Now follows the formal definition of
this structure.

Definition. LetF = {fq,..., f,} be a set of functions,
where eachf; has aritya;, 1 <i <n, and letT =
{t1,...,tm} be a set of terminals. A straight line pro-
gram &lp) overF andT is a finite sequence of com-
putational instructions = {l4,...,I; }, where for each
ke{l... .1} k= uc= fj(ag,...,0q, );with fj, €

which is known as the mean square error (MSE).

In our coevolutionary processes for finding the
function f, the GP will try to guess the shape of the
function whereas the EA will try to adjust the coeffi-
cients of the function. The motivation is to exploit the
following intuitive idea: once the shape of the sym-
bolic expression representing some optimal function
has been found, we try to determine the best values of ”
the coefficients appearing in the symbolic expression. F> @i € T foralliif k=1 andaj € TU{uy, ..., U1}
One simple way to exemplify this situation is the fol- for 1 <k<I.
lowing. Assume that we have to guess the equation The set of terminalsT' satisfiesT =V UC where
of a geometric figure. If somebody (for example aGP V = {X1,...,Xp} is a finite set of variables ard =
algorithm) tells us that this figure is a quartic func- {C1,-.-,Cq} is afinite set of constants. The number of
tion, it only remains for us to guess the appropriate instructiond is the length of".
coefficients. This point of view is not new and it con- Observe that a sl = {l3,...,Ii} is identified
stitutes the underlying idea of many successful meth- with the set of variablesi; that are introduced by
ods in Machine Learning that combine a space of hy- means of the instructioris Thus the sldg” can be de-
potheses with least square methods. Previous work innoted byl™ = {u,...,u }. Each of the non-terminal
which constants of a symbolic expression have beenvariablesu; represents an expression over the set of
effectively optimized has also dealt with memetic al- terminalsT constructed by a sequence of recursive
gorithms, in which classical local optimization tech- compositions from the set of functiofts
niques as gradient descent (Topchy and Punch, 2001), An output set of a sl = {us,...,u} is any
linear scaling (Keijzer, 2003) or other methods based set of non-terminal variables df, that isO(I") =
on diversity measures (Ryan and Keijzer, 2003) were {uj,,...,Uj }. Provided thaV = {x1,...,xp} C T is
used. the set of terminal variables, the function computed

The paper is organized as follows: section 2 pro- by, denoted bypr : 1P — O, is defined recursively
vides the definition of the structure that will represent in the natural way and satisfie®r(ay,...,ap) =
the programs and also includes the details of the de-(by,...,b), whereb; stands for the value of the ex-
signed GP algorithm. In section 3 we describe the pression oveY of the non-terminal variable;; when
EA for obtaining good values for the constants. Sec- we substitute the variablg by ax; 1 <k < p.
tion 4 presents the cooperative coevolutionary archi- Example. Let F be the set given by the three binary
tecture used for solving symbolic regression problem standard arithmetic operatios= {+,—, «} and let
instances. In section 5 an experimental comparativeT = {1,x3, X2} be the set of terminals. In this situation
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any slp over andT is a finite sequence of instruc-  slpl = {uy,...,u_1,4,...,ul _4,u }, whereu, =u
tions where each instruction represents a polynomial andu, fork e {I,...,L—1}, is any instruction. If we

in two variables with integer coefficients. If we con- consider the same output set foandl™’ is easy to see
sider the following slpg™ of length 5 with output set  that they represent the same function, @e.= ®r.
o) = {us}: Given a symbolic regression problem instance
with a sample set = (x,y) € R"x IR, 1<i<m,

31 i )ljl ;Lul and letl" be a specific slp ovef andT obtained by
_ 2 L 1= means of the specialization of the constant references
M= Uz :=Xo+Xo (2) his si . he fi .
Ug ‘= Up Us C= {C1,...,¢q}. Int lis situation, t .e itness df is
Us = Uy — Us defined by the following expression:
. . . 1 m
the function computed bly is the polynomial F(T) = e5(Pr) = = 21(¢r()q) _yi)z 3)

O = 2X2(X1+1)2—2X2 i=

Stra|ght line programs have a |arge history in the That iS, the fitness iS.the empirical error of the
field of Computational Algebra. A particular class function computed by, with respect to the sample
of straight line programs, known in the literature as Setof data points.
arithmetic circuits, constitutes the underling compu-  We will use the following recombination opera-
tation model in Algebraic Complexity Theory (Bur- tors for the sIp structure.
guisser et al., 1997). They have been used in lin- SIp-crossover. Let I = {ty,...,u} andl’ = {uj,
ear algebra problems (Berkowitz, 1984), in quantifier ---,U_ } be two slp’s ovelF andT. For the construc-
elimination (Heintz et al., 1990) and in algebraic ge- tion of an offspring, first a positiokin I" is randomly
ometry (Giusti et al., 1997). Recently, slp’s have been selected; KXk <L. LetS, ={uj,,..., Uj, } be the set
presented as a promising alternative to the trees in theof instructions off" involved in the evaluation ofi.
field of Genetic Programming, with a good perfor- Assume thaji <... < jm. Nextwe randomly selecta
mance in solving some regression problem instancesPositiont in I’ with m<t < L and we substitute if’
(Alonso et al., 2008). A sl = {uy,...,u} overF the subset of instructiongg_,,,,....u} by the in-
andT with output seO(I") = {u;} could also be con- ~ structions of” in §, suitably renamed. The renaming
sidered as a grammar withUF as the set of termi-  function R applied to the elements &, is defined
nals, {u,...,u} as the set of variablesy the start ~ asR(Uj;) = U_p,;, foralli € {1,...,m}. With this
variable and the instructions 6f as the rules. This  Process we obtain the first offspring of the crossover
grammar only generates one word that is the expres-operation. For the second offspring we analogously
sion represented by the slp Note that this is not ~ repeat this strategy, but now selecting first a position
exactly Grammar Evolution (GE). In GE there is a K'inT".
user specified grammar and the individuals are inte- ~ The underlying idea of the slp-crossover is to in-
ger strings which code for selecting rules from the terchange subexpressions betweeandr™’. The fol-
provided grammar. In our case each individual is a lowing example illustrates this fact.
context-free grammar generating a context-free lan- Example. Let us consider two slp’s:
guage of size one.

Hence we will work with slp’s over a sdt of 3; ; L(;{Jl 3; ; )L(l;)fy
functions and a séft of terminals. The elements @f F={ Us:=up*X M={ Us:= U +X
that are constants, i.€€ = {cy,...,Cq}, they are not Ug = Uz + Uy Ug 1= Uy % X
fixed numeric values but references to numeric values. Us ‘= Uz % Up Us ‘= U+ Ug

Hence, specializing eaahto a fixed value we obtain

a specific slp whose corresponding semantic function If k = 3 thenS,, = {u1,us} (in bold font).t must be

is a candidate solution for the problem instance. selected in{2,...,5}. Assumed that = 3, then the
For constructing each individu&l of the initial first offspring is:

population, we adopt the following process: for each

instruction ug € I' first an elementf € F is ran- Up = X*X
domly selected and then the function arguments of uz f:X+y
f are also randomly chosen huU {uy,... U1} if M=4q us = Uz % X
k>1andinT if k= 1. We will consider popula- Ug i= Uz %X
Us ‘= U1+ Ug

tions with individuals of equal length L, where L is
selected by the user. In this sense, note that given athat contains the subexpressionlofepresented by
slpl = {u,...,u} andL > |, we can construct the  ug, and the rest of its instructions are taked fréfm
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For the second offspring, if the selected positiofin  the slp’s is evaluated. Previous work in cooperative
is K = 4, thenS,, = {u1,up,us}. Now if t’ =5, the coevolutionary architectures suggests two basic meth-
second offspring is: ods for selecting the subset of collaborators (Wiegand
et al., 2001): The first one in our case consists in the

31 Z: ﬁt{l selection of the best slp of the current populatin
ro= uz '.: xl*x ! corresponding the GP process. The second one se-
2= 3 lects two individuals fronP: the best one and a ran-
Us-=Us+y dom slp.
Us = Ug * X

_ T _ Crossover.We will use arithmetic crossover (Schwe-
Mutation. When mutation is applied to a sIp the  fel, 1981). Thus, in our EA, the crossover of two indi-
first step consists in Selectlng an instructigre I at viduals¢; and¢c; € [a’ b]q produces two offspring_gl

random. Then a new random selection is made within andg, which are linear combinations of their parents.
the arguments of the functidne F that appearsin the

instructionu;. Finally the selected argumentis substi- C1 =A-Ti+(1-A)-T; T, =A-Ta+(1-A)-T1 (5)
tuted by another one i U {uy,...,ui_1} randomly
chosen.

As it is well known, the reproduction operation
applied to an individual returns an exact copy of the

In our implementation we randomly choose=
(0,1) for each crossover operation.
Mutation. A non-uniform mutation operator adapted
to our search spade, b9, which is convex, is used

Inc Qg (Michalewicz et al., 1994). The following expressions
define our mutation operator, wifh= 0.5.
3 THE EATO ADJUST THE Gt =T +At,b—g), with probabilityp . (6)
CONSTANTS and

In this section we describe an EA that provides gt = — At,T — @), with probability 1-p (7)
good values for the numeric terminal symbals= k=1,...,qandt is the current generation. The func-
{c1,...,cq} appearing in the populations of slp’s that o' 'is defined af\(t,y) = y-r - (1— L) wherer
evolve during the GP process. Assume a populationis 5 random number in [0,1] and regresents the
P={l'1,....n} constituted byN slp’s overF and 1 a5imum number of generations. Note that function
T=VUC. Let ["’_" b € IR b? th.e se'arch space for the A(t,y) returns a value ifD,y] such that the probability
constants;, 1 <i < g. In this situation, an individual obtaining a value oh\(t,y) close to zero increases
Cis represented by a vector of floating point numbers 45 increases. Hence the mutation operator searchs

in [a, b]%. . , the space uniformly initially (when is small), and
There are several ways of defining the fitness of \ gy |ocally at later stages.

a vector of constants, but in all of them the cur- In our EA we will useq-tournament as the selec-
rent populatiorP of slp’s that evolves in the GP pro- 4, procedure.

cess is needed. So, given a samplezset(x;,yi) €

R"x IR, 1 <i < m, that defines a symbolic regression

instance, and given a vector of values for the constants

T=(Cy,...,Cq), we could define the fitness ofwith 4 THE COEVOLUTIONARY

the following expression: ARCHITECTURE
EA ; C\. R

T2 (€)= min{F(M7); L <1< N} “) In our case the EA for tuning the constants is subor-
where 7(I'F) is computed by equation 3 and repre- dinated to the main GP process with the slp’s. Hence,
sents the fitness of the sl after the specialization  several collaborators are used during the computation
of the references i@ to the corresponding real values of the fithess of a vector of constamswvhereas only
of C. the best vector of constants is used to compute the fit-

Observe that when the fitnessmis computed by  ness of a population of slp’s.

means of the above formula, the GP fitness values of A basic cooperative coevolutionary strategy be-
a whole population of slp’s are also computed. This gins with the initialization of both populations. First
could be a lot of computational effort when the size the fitness of the individuals of the slp’s population
of both populations increases. In order to prevent the are computed considering a randomly selected vector
above situation new fitness functionstosan be con-  of constants as collaborator. Then alternative genera-
sidered, where only a subset of the populatfoof tions of both cooperative algorithms in a round-robin
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fashion are performed. This strategy can be general-100 generated polynomials and to the functidas
ized in a natural way by the execution of alternative and f,. The function sef is incremented with the
turns of both algorithms. We will considertarn as operationsin for the problem instance associated to
the isolated and uninterrupted evolution of one popu- fz and also with the operatiors In and exp for
lation for a fixed number of generations. Note that if the group of target slp’s.

a turn consists of only one generation we obtain the  Besides the variables, the terminal set also in-
basic strategy. We display below the algorithm de- cludes two references to constants for the polynomials
scribing this cooperative coevolutionary architecture: and only one reference to a constant for the rest of the

begi n target functions. The constants take values-f, 1].
Pop_slp : = initialize_GP-slp_popul ation _ The particular settings for the parameters of the
Pop_const := initialize EA-constants_popul ation

GP process are the following: population size: 200,

gszlshgf zl( ngk;?;l p_o;ﬁZ?(_)g(or?ng?;St) crossover rate: 0.9, mutation rate: O.QS, reproduc-
While (not termination condition) do tion rate: 0.05, 5-tournament as selection procedure

Pop_slp := turn_GP(Pop_sl p, Const _col | abor) and maximum length of the slp’s: 16. In the case of
Col I abor _slp := {best(Pop_slp), the EA that adjusts the constants, the population in-
randon( Pop_s! p) } cludes 100 vector of constants, crossover rate: 0.9,

popcons’ ;;Ot“ff—g’ggf?ga‘mzz;;?;' | abor sl p) mutation rate: 0.1 and 2-tournament as selection pro-
end i b= cedure. For all the coevolutionary strategies, the com-
putation of the fitness of an slp during the GP process

will use the best vector of constants as collaborator,

whereas in order to compute the fitness of a vector of

S EXPERIMENTATION constants in the EA process, we consider a collabo-
rator set containing the best slp of the population and
5.1 Experimental Settings another one randomly selected. Both processes are

elitist and a generational replacement between pop-
The experimentation consists in the execution of the ulations is used. But in the construction of the new
proposed cooperative coevolutionary strategies, con-population, the offsprings generated do not necessar-
sidering several types of target functions. Two exper- ily replace their parents. After a crossover we have
iments were performed. four individuals: two parents and two offsprings. We
For the first experiment two groups of tar- select the two best individuals with different fitness
get functions are considered: the first group in- values. Our motivation is to prevent premature con-
cludes 100 randomly generated univariate polyno- vergence and to maintain diversity in the population.
mials whose degrees are bounded by 5 and the We compare the standard GP-slp strategy with-
second group consists of 100 target functions rep- out coevolution with three coevolutionary strategies

resented by randomly generated slp’s ower= that follow the general architecture described in sec-
{+,—,*,/,sqrt,sin,cosIn,exp} andT = {X,c},c € tion 4. We have implemented and executed over the
[—1,1], with length 16. We will name this second same sets of problem instances, the well known GP-
group “target slp’s”. tree strategy with the standard recombination opera-

A second experiment is also performed solving tors. Thus the obtained results are included in the
symbolic regression problem instances associated tocomparative study.

the following three multivariate functions: The first coevolutionary strategy, named Basic
f1(X,y,2) = (X+y+ z)2+ 1 (8) GP-EA (BGPEA), consists in the alternative execu-
1 1 1 1 tion of one generation of each cooperative algorithm.
fo(XY,ZzW) = X+ =>y+=zZ+ =W (9) The second strategy, named Turns GP-EA (TGPEA),
2 ) 4 6 8 generalizes BGPEA by means of the execution of al-
fa(xy) =xy+sin((x=1)(y+1))  (10)  ternative turns of each algorithm. Finally, the third
For every execution the sample set is constituted strategy executes first a large turn of the GP algo-
by 30 points. In the case of the functions that belong rithm with the slp’s and then follows the execution
to the first experiment, the sample points are in the of the EA related with the constants until termination
range[—1,1]. For the functionsf; and f, the points condition was reached. This strategy is named Sep-
are in the rangé—100,10( for all variables. Finally = arated GP-EA (SGPEA). In the case of TGPEA we
function f3 varies in the rangg-3, 3] along each axis.  have considered a GP turn as the evolution of the pop-
The individuals are slp’s over F = ulation of slp’s during 25 generations. On the other
{+,—,%,/,sqrt} in the executions related to the hand, an EA turn consists of 5 generations in the evo-

45



ICEC 2010 - International Conference on Evolutionary Computation

lution of the population related to the constants. In Table 1: Spurious and success rates for each strategy and
SGPEA strategy we divide the computational effort group of target functions.

between the two algorithms: 90% for GP and 10% P ,

for EA. The computational effort (CE) is defined as ‘ 5 [X] ‘ Spurnous succesb
the total number of basic operations that have been SGPEA | 13% 100%
computed up to that moment. TGPEA 8% 99%

In the first experiment one execution for each BGPEA | 11% 100%
strategy has been performed over the 200 generated GP—slp | 12% 100%
target functions. On the other hand, in the second ex- GP—tree | 12% 100%
periment we have executed all strategies 100 times for SLRF,T) | spurious success
each of the three multivariate functiofis f, and fs. SGPEA 16% 98%
For all the executions the evolution finished aftef 10 TGPEA 13% 99%
basic operations have been computed. BGPEA 13% 98%

GP-—slp 14% 96%
5.2 Experimental Results GP—tree | 14% 99%

Frequently, when different Genetic Programming non-spurious executions as well as the values of the
strategies for solving symbolic regression instances mean, variance, median, worst and best execution in
are compared, the quality of the final selected model terms of the validation fithess. We also present sta-
is evaluated by means of its corresponding fitness tistical hypothesis tests in order to determine if some
value over the sample set. But with this quality mea- strategy is better than the others. We consider a val-
sure it is not possible to distinguish between good idation set:of 200 new and unseen points randomly
executions and overfiting executions. Then it makes generated.

sense to consider another new set of unseen points, .

called thevalidation set in order to give a more °-2-1 Experiment1

appropriate indicator of the quality of the selected .

model. So, letx;,Yi)1<i<ne @ Validation set for the ~ We shall denote the polynomial set 3§§[R] and the
target functiong(x) (i.e. y; = g(x)) and letf(x) be set of target slp’s oveF andT asSLRF,T). Table

the model estimated from the sample set. Then the 1 displays for each strategy the spurious and success
validation fitness v, is defined by the mean square rates of the executions. Note that the success rate

error (MSE) between the values bfand the true val-  is computed after removing the spurious executions.
ues of the target functiogover the validation set: Figure 1 presents the empirical distribution of the ex-
1 Mes eputions over theT two groups qf generated target f_unc-
Vi = — 3 (F(x) —yi)? (11) tions. This empirical dI.StI’Ibu"[IOI’] is displayed using
Ntest i; standard box plot notation with marks at best execu-

. . . ) tion, 25%, 50%, 75% and worst execution, consider-
An execution will be considered successful if the g the validation fitness of the selected model. Ta-

final selected modef has validation fitness less than e 5 specifies the values of the validation fitness for

10% 91‘_ the range of the sample et (X, Yi)1<i<3o- the worst, median and best execution. Finally Table 3
Thatis: shows the means an variances. Note that for these two
Vg < 0.1| max yi — min yi| (12) groups of functions one execution per target function
1<i<30”  1<i<30 was performed.

Analyzing the information given by the above ta-
bles and figure we could deduce the following facts:

1. All methods have a similar rate of spurious execu-
Vet > 1.5/Q3 — Qi (13) tions and also the success rate is almost equal for

WereQ; andQs represent, respectively, the first and all strategies.
third quartile of the empirical distribution of the exe- 2. The empirical distributions of the non-spurious
cutions in terms of the validation fitness. The spurious runs are again very similar for all the studied

On the other hand, an execution will be spurious
if the validation fitness of the selected model verifies:

executions will be removed from the experiment. strategies. Probably for the group of polynomials,
In what follows we shall present a complete statis- SGPEA is slightly better than the others. Observe
tical comparative study about the performance of the in figure 1 that this strategy has the corresponding
described coevolutionary strategies. For both experi-  box smaller and a little below than the other meth-
ments we will show the empirical distribution of the ods. SGPEA also has the best mean and variance
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Table 2: Minimal, median and maximal values of the vali-
dation fitness for each method and group of target functions.

\ P?[X] \ min med max
SGPEA [ 3.25-10% 3.33.10°¢ 0.17
TGPEA | 2.27-10% 4.58.102 0.2
BGPEA | 1.25-10% 3.58.102 0.23
GP—slp | 2.26:10°3 4.48.10°2 0.17
GP—tree | 4.64-103 4.42-10°2 0.19
SLRAF,T) min med max
SGPEA 0 16-103 0.12
TGPEA 0 166-10°° 7.69-10 2
BGPEA 0 2.84.10°3 0.13
GP—slp 0 161-103 9.32:10°2
GP—tree 0 4.29.10°3 0.1

Polynomials

0.10 0.15 0.20

0.05

0.00

SGPEA TGPEA BGPEA GP-slp GP-tree

slp

0.12

e

BGPEA

0.08

0.04

0.00

SGPEA TGPEA GP-slp GP-tree

Figure 1. Empirical distributions of the non-spurious exe-
cutions for both groups of functions and for each strategy.

values (table 3). Nevertheless for the group of tar-
get slp’s it seems that the best method is TGPEA.

. All strategies perform quite well over the tar-
get functions of this experiment, specially for the
group of target slp’s. Considering the values of
mean and variance and the fact that for each func-
tion only one execution was performed, probably
the BGPEA method is a little worse than the oth-
ers.

With the objective of justify the comparative quality

of the studied strategies we have made statistical hy-

REGRESSION PROBLEM

Table 3: Values of means and variances.

| PAX] | m o
SGPEA [ 439-10 2 3.83-102
TGPEA | 6.03-102 5.23.10°2
BGPEA | 5.49-102 5.22.102
GP—slp | 519102 3.82-102

GP—tree | 5.62-102 4.26-10°2
SLRAF,T) M o
SGPEA [ 1.62:10 2 2.79-102
TGPEA | 1.14-102 1.78-10°2
BGPEA | 1.96-102 3.-102
GP—slp | 1.49-102 233.102
GP—tree | 1.5-102 2.23.102

in table 4. Roughly speaking, the null-hypothesis in
each test with associated péisj) is that strategy is
not better than strategy Hence if values;j of the el-
ement(i, j) in table 4 is less than a significance value
o, we can reject the corresponding null-hypothesis.
From the results presented in table 4 and with sig-
nificance values ofi-between 0.05 and 0.1, we can
conclude that for the group of polynomials the best
strategy is SGPEA whereas there is no clear winner
strategy for the group of target slp’s.

5.2.2 Experiment 2

In this experiment, the multivariate functions de-
scribed by the expressions 8, 9 and 10 have been con-
sidered as target functions. We have performed 100
executions for each strategy and function. In the fol-
lowing tables and figures we present for the new func-
tions the same results as those presented for the target
functions of experiment 1.

In terms of success rates, the coevolutionary meth-
ods are of similar performance and they seem to be
better than the standard GP-slp strategy without co-
evolution. Nevertheless we can see that all the strate-
gies outperform the standard GP-tree procedure. This
factis more clear after observing in figure 2 the empir-
ical distributions of the non-spurious executions. For
the multivariate polynomial of degree twh,, the best
strategy is SGPEA whereas for the linear polynomial
fo with four variables, TGPEA seems to be better than
the other strategies. In the case of the trigonometric
function f3 it is not clear which is the best method.
But in any case, the standard GP-tree method is the
worst of the studied strategies.

In table 6 it can be seen that the validation fit-
ness has a big range, specially for functidasand
fo. Hence, the mean and variance, displayed in ta-
ble 7, have also big values for the above two target

pothesis tests between them, which results are showedunctions. Indeed the values are very big far al-
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Table 4: Results of the crossed statistical hypothesis &xiut the comparative quality of the studied strategies.

| PXX] [ SGPEA TGPEA BGPEA GPslp GP-tree

SGPEA 1 251.10°° 0.27 89-10° 6.1-10°
TGPEA 0.78 1 0.8 0.53 0.45
BGPEA 0.9 0.3 1 0.12 0.17
GP-—slp 0.99 0.28 0.59 1 0.4
GP—tree 1 0.61 0.77 0.75 1
SLAF,T) | SGPEA TGPEA BGPEA GPslp GP-tree
SGPEA 1 0.82 0.44 0.82 0.39
TGPEA 0.54 1 0.14 0.44 0.28
BGPEA 0.99 1 1 0.93 0.7
GP-—slp 0.74 0.93 0.49 1 0.39
GP—tree 0.82 0.99 0.49 0.9 1
fi(x.y, 2) Table 5: Spurious and success rates of the executions over

the multivariate functions.

| fi(xy.2) | spurious succesp
SGPEA 25% 4%
TGPEA 13% 69%

0.0e+00 5.0e+07 1.0e+08  1.5e+08

BGPEA 19% 66%
i BE _ GP—slp 11% 62%
: Bl m‘ : GP—tree 5% 12%

. % ‘ L ‘ - ‘ — fa(x, ¥,z w) | spurious succesp
SGPEA TGPEA BGPEA GP-slp  GP-tree SGPEA 7% 42%

TGPEA 7% 49%
BGPEA 6% 41%
| GP-—slp 7% 39%
— - | GP—tree 12% 14%
fa(X,y) spurious  succesp
| SGPEA 8% 100%

| ‘ ‘ g TGPEA | 14%  100%
| BGPEA 9%  100%

fa(x, ¥, 2, W)

800
1

600
1

400

200
1

GP—slp 9% 100%
GP—tree 20% 100%

0
1

SGPEA TGPEA BGPEA GP-slp GP-tree
fa(x,y)

range[—100 100 for all variables. Considering the

‘ results that appear in these two tables, we could say

1 ‘ that the coevolutionary strategies outperform the non-

coevolutionary ones.

04 05 06 07 08 09 1.0

1 — R Q Finally, as it was done in experiment 1, we have
1 1 Bl ; ‘ made for the three functions the crossed statistical
e L ‘ hypothesis tests between all pairs of the considered
= = = strategies and the results are showed in table 8. Con-
ot Toven  ooven  ohen  opves sidering a si_gnificant valuq = 0.05 it seems that
for the functionf; SGPEA is the best strategy but
Figure 2: Empirical distributions of the non-spurious exe- there is no clear winner coevolutionary strategy for
cutions. the functionsf; and fs. Nevertheless such results con-
firm that the coevolutionary methods are promising
though the best execution over this function has val- strategies for solving symbolic regression problem in-
idation fitness equal to zero for all methods. Note stances and that the slp structure is clearly better for
that for the above two functions the points are in the representing the models than the tree structure.
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Table 8: Results of the crossed statistical hypothesis.test

[ fulxy.2 [ SGPEA TGPEA BGPEA  GPslp  GP—tree |
SGPEA 1 339-10% 141-10°% 923.10° 453.10 1
TGPEA 1 1 1 0.44 713-10°19
BGPEA 0.97 0.12 1 $6-102 7.46-10 %
GP—slp 0.91 0.43 0.9 1 37-10°1°5
GP—tree 1 1 1 1 1
fa(x,y,zw) | SGPEA TGPEA BGPEA  GPslp GP—tree
SGPEA 1 0.84 0.14 0.16 46-10°
TGPEA 0.12 1 253.1072 3.07-102 4.29-10°12
BGPEA 0.82 0.91 1 0.67 37-10°°
GP—slp 0.76 0.84 0.87 1 B8-10°
GP—tree 1 1 0.99 1 1
fa(x,y) SGPEA TGPEA BGPEA  GPslp GP—tree
SGPEA 1 0.41 0.96 0.28 P6-10°7
TGPEA 0.32 1 0.84 0.37 23.103
BGPEA 0.35  465.10 2 1 284.-102 1.29-10 2
GP—slp 0.44 0.51 0.99 1 B6-10 2
GP—tree 0.93 0.42 0.88 0.34 1

Table 6: Minimal, median and maximal values of the vali-

Table 7: Values of means and variances.

dation fitness for each method and target function.

[ filxy2) ] min med max_ |
SGPEA 0 1 94412.42
TGPEA 0 1 47410
BGPEA 0 1 28-107
GP—slp 0 1 375-10°
GP—tree | 3.91-102% 3.38-10° 1.65-10°
f2(x,y,Z,w) min med max
SGPEA 10.53 156.64  710.84
TGPEA 17.3 148.17  484.58
BGPEA 21.76 193.92  621.22
GP—slp 2.4 184.95  723.69
GP—tree 18.73 359.32  859.69
f3(x,y) min med max
SGPEA 0.36 0.49 0.71
TGPEA 0.41 0.49 0.62
BGPEA 0.41 0.48 0.66
GP—slp 0.41 0.48 0.72
GP—tree 0.39 0.51 1.01

6 CONCLUSIONS

| fixy,2) | u o |
SGPEA | 134595 10899.09
TGPEA | 6.11-10° 1.37-10°
BGPEA | 1.98-10° 5.09.-1(°
GP—slp | 65-10°6 1.11-10°
GP—tree | 4.72-10° 4.107
f2(x,y,Z,w) M o
SGPEA | 211.05 150.71
TGPEA 175.2 116.59
BGPEA 221.29 133.87
GP—slp 229.7 157.18
GP—tree | 362.58 160.8
f3(x,y) M o
SGPEA 0.5 641-10 7
TGPEA 0.5 479-102
BGPEA 0.49 586-10 2
GP—slp 0.51 665-10 2
GP—tree 0.55 0.13

have compared the performance between the stud-
ied strategies. In all cases the computational ef-
fort is fixed to a maximum number of evaluations.

The quality of the selected model after the execution

We have designed several cooperative coevolution-was measured considering a validation set of unseen
ary strategies between a GP and an EA. The geneticpoints randomly generated, instead of the sample set
program evolves straight line programs that representused for the evolution process. A complete statistical

functional expressions whereas the evolutionary al- study of the experimental results has been done. It
gorithm optimizes the values of the constants used has been shown that the coevolutionary architectures
by those expressions. Experimentation has been per-are promising strategies that in many cases are better
formed on several groups of target functions and we than the traditional GP algorithms without coevolu-
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tion. We have also confirmed that the straight line Hillis, D. (1991). Co-evolving parasites improve simubhte
program structure clearly outperforms the traditional evolution as an optimization procedure. Antificial
tree structure used in GP to codify the individuals. Life 1l, SFI Studies in the Sciences Complexity 10
In future work we wish to study the behavior of pages 313-324.
our coevolutionary model without assuming previous Keijzer, M. (2003).  Improving symbolic regression with
knowledge of the length of the slp structure. To this mftgvalggtgg};enc and l;‘faégca"ng' Focceedings
end new recombination operators must be designed. ot =uro 3page§ e ]
On the other hand we could include some local searchK0Z& J- R. .(199$)C':Ge”ett'c Pﬁ’g';amm'”g:f Nont thel Sp“l"
procedure into the EA that adjusts_ 'Fhe constants. Also g(r)?jr'annﬁggMc:T P?QWSZI’J S;Smb);idg?rl]\i: atural selec-
the fitness function could be modified, including sev-
eral penalty terms to perform model regularization
such as complexity regularization using the length of

the sip structure. Finally we might optimize the con- Evolutionary operators for continuous convex param-

stgntg of our slp’s by means of 9|aSSical local O_pti' eter spaces. IRroceedings of the 3rd Annual Confer-
mization techniques such as gradient descent or linear ence on Evolutionary Programmingages 84-97.

scaling, as it was done for tree-based GP in (Keijzer, Rosin, C. and Belew, R. (1996). New methods for compete-

2003) and (T_opchy and Pqnch, 2001), and compare tive coevolution. InEvolutionary Computation 5 (1)
the results with those obtained by the computational pages 1-29.

model described in this paper. Ryan, C. and Keijzer, M. (2003). An analysis of diversity of
constants of genetic programming.Rrocceedings of
EuroGP 2003 pages 409-418.
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