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Abstract: Call centre technology requires the assignment of a large volume of incoming calls to agents with the 
required skills to process them. In order to determine the right assignment among incoming calls and agents 
for a real production environment, a comparative study of meta-heuristics has been carried out. The aim of 
this study is to implement and empirically compare various representative meta-heuristics, which represent 
distinct search strategies to reach accurate, feasible solutions, for two different instances of the workforce 
distribution problem. This study points out how memetic algorithms can outperform other acknowledged 
meta-heuristics for two different problem instances from a real multi-skill call centre from one of the 
world's largest telecommunications companies. 

1 INTRODUCTION 

A Multi-Skill Call Centre (MSCC) is a centralised 
office where there are groups of agents who may 
have a variable number of skills to handle large 
volumes of heterogeneous incoming telephone calls. 
Even though MSCCs have been widely studied, 
there are still some lacks on optimisation which may 
imply huge losses of money every year and client 
dissatisfaction due to everlasting delays.  

A key feature of an MSCC is the Automatic Call 
Distributor (ACD). The ACD is a system which 
models incoming calls and automatically distributes 
them over different queues from which certain 
agents can pull work. The routing strategy is a rule-
based set of operations that guides the ACD to 
process a given incoming call within the system. 
Typically, once the call has been classified and 
assigned to a Call Group (CG) in relation to its 
nature; a second algorithm either selects the best 
available agent to reply to a given incoming call or 
reconfigures the assignments call group-agent.  

The  basic  variant  of  the workforce distribution 

problem in MSCCs requires the assignment of 
incoming calls to the agents who have the required 
skills to handle them over time, satisfying a given 
set of additional constraints and respecting 
dependencies among individual incoming calls and 
differences in the execution skills of the agents. In 
our case, these constraints are associated to 
incoming calls, agents, timings and 
desired/undesired actions. 

Workload distribution in MSCCs has been 
generally faced by a Skill-Based Routing algorithm 
(SBR). Garnett (2000) defines SBR as a call-
assignment protocol used in CCs to assign an 
incoming (customer) call to the most appropriate 
agent, instead of merely opting for the next existing 
agent. The major handicap of this approach is that 
online (ad-hoc) routing heuristics cannot be very 
complex in view of the fact that a very short 
response time is required. These fast, unplanned 
decisions may imply suboptimal task assignments to 
existing agents. 

Nevertheless, Millán-Ruiz (2010) has recently 
demonstrated that Memetic Algorithms (MAs) can 
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outperform other classical call centre techniques 
(including SBR) when combining middle-term 
predictions with optimisation. But, given this 
formulation of the problem, other AI-style 
techniques could be also applied to this 
environment. The present paper investigates whether 
MAs can also outperform, for two different real-
world instances of the problem of workforce 
distribution in MSCCs, other Meta-Heuristics (MHs) 
such as Iterated Local Search (ILS), Simulated 
Annealing (SA) or Variable Neighbourhood Search 
(VNS). These acknowledged techniques have been 
carefully chosen because they provide different 
search strategies to obtain feasible solutions.  

The rest of this document is organised as 
follows: Section 2 describes the problem definition. 
Section 3 presents the encoding and the target 
function for the workforce distribution problem. 
Section 4 describes the MHs to be compared and 
their tuning. Section 5 conducts an analysis of the 
results. Finally, Section 6 concludes our work with a 
summary of major contributions and points out 
prospects for future work. 

2 PROBLEM DESCRIPTION 

In an MSCC, there are n customer calls queued in k 
CGs and m agents that may have up to l different 
skills si (l ≤ k) to process these types of calls. Note 
that si represents the skill to process incoming calls 
from CGi (si~CGi). In an MSCC, each agent can 
process calls from different CGs and, given a CG, it 
may be answered by several agents who have the 
required skill. Obviously, this scenario can be 
simpler in some special CCs with only one CG in 
which agents have a single skill. These CCs can be 
modelled with q single queues working in parallel 
(all of them for the same CG). In other cases, every 
agent has all possible skills; hence all customer calls 
are queued in a single queue so that every agent can 
take and process any customer call. The system is 
noticeably easier to analyse in these two extreme 
cases. With all agents having all skills, the system is 
also more efficient (shorter waiting times, fewer 
abandonment rates) when the service time 
distribution for a given call type does not depend on 
the agent’s skill set. However, this assumption turns 
out to be wrong in practice: agents are usually faster 
when they handle a smaller set of call types (even if 
their training gives them more skills). Agents with 
more skills are also more high-priced as their 
salaries depend on their skill sets. Thus, for large 
volumes of call types, it makes sense to dedicate 

various single-skill agents (specialists) to handle 
most of the load. A small number of agents, 
proportional to the calls of each type, with two or 
more skills can cover potential fluctuations in the 
arriving load. 

To address the abovementioned fluctuations, the 
skills are grouped in skill profiles Pi. A skill profile 
Pi can be any subset of agent skills, containing up to 
l skills (Pi={sj(1), sj(2),...,sj(l)}) so that we can assign 
an agent to specific types of calls during a given 
period of time, despite this agent may have 
additional skills to process other type of calls. Figure 
1 illustrates the relationship among clients’ calls, 
queues and agents and Figure 2 shows an example of 
a feasible assignment. Millan-Ruiz (2010) provides 
further details of the problem of workforce 
distribution within MSCCs. 

The solution to the problem of the workforce 
distribution in MSCCs is defined as the right 
assignment for every agent ai to the most suitable 
skill profile Pj from his/her real skill profiles for 
each v seconds, where v is the size of the time-frame 
considered (in the CC studied, this must be done 
each 300 seconds). To determine whether (or not) a 
given solution is suitable, we need to define a 
quality metric to evaluate the rightness of each 
feasible solution. There are very significant metrics 
to measure the quality of a CC such as the 
abandonment and service rates. These metrics 
somehow hinge on the (customer) service level 
(Koole, 2006) which is defined as the percentage of 
customer calls that have to queue shorter than a 
specified amount of time. Our work has been 
conducted by applying this metric. 

 

 

Figure 1: Inbound scheme in MSCCs with 5 agents, 9 
incoming calls and 4 CGs. 

The complexity of this problem is huge because 
we are not only dealing with an NP-hard problem 
like in the job assignment problem (Chauvet, 2000), 
but also considering high dynamism, massive 
incoming customer calls and large number of agents 
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having multiple skills. Besides, since customer calls 
are not planned, this makes the call assignment a 
truly laborious task. 

3 ENCODING AND TARGET 
FUNCTION 

In order to present a fair comparison among the 
analysed MHs (ILS, SA, VNS and MAs), this 
section provides a common problem representation 
and a target function to evaluate the rightness of the 
candidate solutions for every MH. 

3.1 Encoding 

The first stage when designing an MH is to define a 
problem representation to encode candidate 
solutions to the problem in a form that every 
computer can interpret. There are multiple forms to 
encode candidate solutions which range from binary 
strings, arrays of integers or arrays of decimal 
numbers to strings of letters. Specifically, our 
solution consists of an integer representation. We 
just need an array of integers whose indexes 
represent the available agents at a given instant and 
the array contents refer to the profile, Pj, assigned to 
each agent ai. Then, incoming calls are “routed” to 
the agents, according to the profiles assigned. Of 
course, we can also encode the solution as an array 
of integers whose indexes symbolise the task types 
and its respective contents represent the number of 
agents assigned to each task type. This option is 
recommended whether there are too many agents 
and hardware capacity is very limited (with respect 
the total number of available agents). In contrast, we 
are missing the capability of working at agent’s 
profile level. As we have not this capacity 
constraint, we will employ the first codification 
proposed. 

Figure 2 shows a fictitious example (related to 
Figure 1) of encoding for 9 customer calls (c1-c9) 
queued in 4 different CGs (cg1-cg4) depending on 
the nature of the calls, 5 agents (a1-a5) and 7 profiles 
(P1-P7), where P1={s1}, P2={s1, s2}, P3={s2}, P4={s2, 
s3}, P5={s1, s3}, P6={s3} and P7={s4}. Now, suppose 
that the agents have the following potential skill 
profiles: a1~{P1,P2}, a2~{P1,P3,P7}, a3~{P4,P5}, 
a4~{P6} and a5~{P2,P3,P7}. We have seen the 
potential profiles for every agent but only one 
profile can be assigned to each agent at a given 
instant t; therefore, a feasible solution would be 
Figure 2. Note that more than one agent can have 
assigned the same profile (e.g. a1 and a5). 

Index (agents)       1 2 3 4  5 

Content (profiles)  2 7 4 6 2 

Figure 2: Example of the problem encoding. 

3.2 Target Function 

The target function is an evaluating mechanism 
which is defined over the encoding to measure the 
quality of a given candidate solution. This function 
often guides the search and decides which solutions 
must be selected for the next iteration. The target 
function is inherently linked to the problem. 
Frequently, the hardest action when defining an MH 
is to identify the right target function. Sporadically, 
it is hard (sometimes impossible) to characterise the 
target expression. In other cases, long evaluating 
times imply that an approximate function is needed. 
The target function that we will use is the one 
provided by Millán-Ruiz (2010). 

4 DEFINITION 
OF META-HEURISTICS 
AND TUNING 

In this section, we briefly explain some of the 
previously hinted MHs and their configuration for 
our problem. For all of them, we start from a 
feasible randomly generated solution. 

4.1 Simulated Annealing 

SA is an MH of variable environment, which 
generalises Monte Carlo’s method (Kirkpatrick, 
1983). SA proposes that the current state of a 
thermodynamic system is equivalent to the candidate 
solution in optimisation, the energy equation for a 
thermodynamic system is analogous to a target 
function, and ground state corresponds to the global 
minimum. This technique has the ability to hinder 
getting trapped in local optima since the algorithm 
allows for changes that decrease the values returned 
by the target function with a given probability 
(temperature). The main complexity is to determine 
the right value for the temperature.  

Concretely, we consider Cauchy’s scheme to 
cool  off  the  temperature  because  it  is  faster  than 
the Bolzmann’s  criterion  and  we only  have  300 
seconds  to  provide the  system  with  a  new 
solution.  In  Cauchy’s  scheme,  the  temperature  is 
defined  as  it) + (1/ T = T 0it

,  where  it  is the 

iteration  number   and   the   initial   temperature   is 
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f(S*)*))( log-/( = T0   where f(S*) is the cost of 

the initial solution, Φ is the probability of accepting 
a “μ” worse solution than the current one (in our 
experiments, Φ= μ =0.3). Finally, the maximum of 
neighbour solutions generated each time is L(T)=30 
and the probability of accepting a worse solution is 
exp(-δ/Tit) given that δ=f(Neighbour_Solution)-
f(Current_Solution) and Tit is the temperature at 
iteration it. 

4.2 Iterated Local Search 

The basic idea of ILS (Stützle, 2006) is to 
concentrate the search on a smaller subspace defined 
by the solutions which are locally optimal to the 
current one. ILS consists of the iterative application 
of a more or less simple LS method. To avoid 
getting trapped in local optima, a perturbation is 
applied before executing each LS.  

In our case, the complete process is repeated 
during 300 seconds as this is the size of the time-
frame imposed by the MSCC which is being 
analysed. The perturbation applied after each LS 
affects to the 3% of agents (the higher this 
perturbation is, the more random the search gets). 
Finally, we present the pseudo-code of an LS based 
on the best neighbour scheme: 
 
Local_Search (candidate_solution) 
{ 
best_solution  candidate_solution; 
neighbour  candidate_solution; 
For(i=0;i<size(candidate_solution);i++) 
{ 
  Agent a = neighbour.getAgent(i); 
  For(j=0;j<a.number_profiles();j++) 
  { 
    neighbour.change_profile(i,j); 

if(neighbour.fitness()>best_solutio
n.fitness()) 

      best_solution = neighbour; 
  } 
  neighbour = best_solution; 
} 
candidate_solution = best_solution;} 

4.3 Variable Neighbourhood Search 

VNS is an MH whose fundamental idea is to cause 
systematic changes in the neighbourhood of an LS 
procedure (Mladenovic, 1997). VNS escapes from 
local optima by changing of environment e, 
increasing the size of the neighbourhood nhe until a 
local minimum better than the current one is 
reached.  
We consider three different environments emax=3: 

nnn  332211 nhe;5.0nhe;3.0nhe  

Similarly to the previously described techniques, 
these steps are repeated during 300 seconds 
(stopping condition). 

4.4 Memetic Algorithms 

MAs represent a growing research area in 
evolutionary computation. MAs are a variety of 
population-based techniques for heuristic search in 
optimization problems. This technique is much 
faster than traditional Evolutionary Algorithms 
(EAs) for many problem domains. Fundamentally, 
these combine EAs’ operators with Local Search 
(LS) heuristics to refine candidate solutions. To 
design our MA, we have considered a steady-state 
genetic algorithm combined with the basic local 
search described for the ILS in Section 4.2. 

Now, we briefly comment the final configuration 
of the evolutionary operators of our MA as the 
reasoning of this choice is a very significant topic 
and deserves to be presented in a separate study.  
The configuration of the evolutionary operators is 
the following one: 

Population: The population contains 20 different 
individuals. 

Selection: Since the population needs to be bred 
each successive generation, we have chosen a binary 
tournament selection (Prügel-Bennett, 2000). 

Crossover: The following step is to produce a new 
generation from selected individuals. Concretely, we 
consider that children will inherit the common points 
in their parents and randomly receive the rest of 
genes from them. 

Mutation: This operator causes tiny changes in the 
genes of the chromosome to explicitly maintain 
diversity (actually there are much more 
mechanisms). In this study, we apply a perturbation 
of a 3% over the chromosome. 

Replacement policy: Finally, we decide which 
individuals are incorporated (or maybe reinserted) 
into the population. In this study, we consider 
elitism (Chakraborty, 2003) with a probability of 
0.93 to replace the worst individuals of the 
population for next generation. And, with a 
probability of 0.07, a worse individual may be 
captured. 

Subpopulation for LS: The LS is applied over the 
best 25% of individuals. 

LS frequency: The LS is applied over the selected 
individuals each 10 generations. 

Stopping condition: All steps are carried out until 
our 300-second termination criterion is met. 
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5 EVALUATION OF RESULTS 

In this section, we analyse the results achieved by all 
the MHs for two different problem instances 
(medium and high difficulty, respectively). These 
two instances are real data taken from our MSCC’s 
production environment during two different days at 
the same hour (from 12:40 to 12:45, 300 seconds): a 
one-day campaign and a normal day. The size of the 
time-frame to execute all the MHs is 300 seconds (5 
minutes) because we need to provide the system 
with a solution each 300 seconds (continuous re-
planning of the ACD). We have selected this time 
interval because this hour (between 12:30 and 
13:00) is very representative as this is precisely the 
most critical hour of the day (highest load of the 
day: n/m). Note that around 800 incoming calls (n) 
simultaneously arrive during a normal day in such a 
time interval, whereas up to 2450 simultaneous 
incoming calls may arrive during this interval during 
a commercial campaign. The number of agents (m), 
for each time interval, oscillates between 700 and 
2100, having 16 different skills for each agent on 
average (minimum=1 and maximum=108), grouped 
in profiles of 7 skills on average. The total number 
of CGs considered for this study is 167. Therefore, 
when the workload (n/m) is really high, finding the 
right assignment among agents and incoming calls 
becomes fundamental. In this way, we have run 
every MH under two double-core processors of a 
Sun Fire E4900 server (one processor for the 
interfaces and data pre-processing, and the other one 
for each MH).  

Once the magnitude of our MSCC has been 
presented, each MH is compared alongside the 
others. Table 1 summarises the results obtained by 
each MH in 50 executions, starting from 50 different 
randomly generated initial solutions. 

In our comparative study, we present dissimilar 
MHs which cover diverse strategies. Theoretically, 
due to the local character of the basic LS, it is 
complicated to reach a high-quality solution because 
the algorithm usually gets trapped in a 
neighbourhood when a local minimum is found. 
This occurs because the engine is always looking for 
better solutions which probably do not actually exist 
in the neighbourhood. For this reason, sometimes, it 
is more appropriate to allow deterioration 
movements in order to switch to other regions of the 
search space. This is precisely the shrewd policy of 
SA whose temperature allows for many oscillations 
(the probability of accepting a worse solution 
decreases according to the time) at the beginning of 
the process and only few ones at the end (fewer 
chances to select a worse solution as the algorithm is 

supposed to be refining the solution at this point). 
Specifically, we have chosen Cauchy’s criterion 
because the convergence is faster than Boltzmann’s 
and we only have 300 seconds to run the complete 
process. Besides, this scheme avoids decreasing the 
distance between two solutions when the process 
converges (jumps in the neighbourhood). Therefore, 
the temperature must be high enough at the 
beginning to better explore the search space (its 
neighbourhood) and low enough at the end to 
intensify the search as well (exploitation of 
promising areas). The value for speed is, therefore, 
the stopping condition which must agree with the 
number of neighbours generated.  

Table 1 gathers the results obtained by each MH 
in 50 different executions for two different problem 
instances with the purpose of providing a fair 
comparison. The first three columns are the best, 
worst and mean fitness values, respectively. Then, 
we have the standard deviation and the effectiveness 
(best fitted solution represents the 100%). 

We perceive from Table 1 that SA worse 
behaves than the other MHs except for the easiest 
instance of the problem. This may occur because we 
are not plenty of time in our environment and the 
power of SA relies on a progressive cooling. If we 
cool off the temperature too fast, we are missing the 
effectiveness of accepting worse solutions in some 
cases. Instead, if we cool off the temperature too 
slowly, we may be accepting worse solutions 
systematically without converging. We have applied 
a trade-off between exploration and exploitation but 
the time seems to be limited to apply SA to our 
environment (perhaps, things might change when 
having more time). 

Another option to increase the diversity in the 
solutions is to enlarge the environment, as VNS 
does. This philosophy consists of making a 
systematic change upon the environment when the 
LS is used, increasing the environment when the 
process becomes stagnated. In the VNS, the search 
is not restricted to only one environment as in the 
basic LS; instead, the neighbourhood changes as the 
algorithm progresses. Albeit we only consider three 
distinct neighbourhoods, the improvement of the 
VNS compared to basic LS is noteworthy. 
Consequently, the remarkable factor becomes the 
change in the number of neighbourhoods and their 
sizes as well as to consider how the algorithm reacts 
in response.  

Table 1 also shows how VNS only slightly 
outperforms SA for the hardest instance of the 
problem. 

Another strategy is to start from different initial 
solutions as ILS accomplishes. ILS generates a 
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random initial solution and afterwards applies a 
basic LS. Subsequently, this solution is 
systematically mutated and thus refined. ILS obtains 
solutions which vaguely improve those given by SA 
and VNS for the hardest problem instance, although 
it performs worse for the simplest problem instance 
as Table 1 corroborates. 

Another way to find a solution involves using 
methods based on populations, such as MAs. If the 
diversity of the solution is low, then the MA 
converges to the closest neighbour. Nevertheless, 
when the selective pressure is high, individuals may 
be alike or even identical. To speed-up the 
convergence, MAs apply an LS upon a set of 
chromosomes (candidate solutions) that are refined 
every certain number of generations. Incorporating a 
hybridisation mechanism to the GA is valuable as 
the algorithm is improved in all respects. This fact is 
pointed up in Table 1 as the MA not only 
outperforms all the strategies for both instances but 
also remains more unwavering (less differences 
among best, worst and mean fitness values).  

Finally, it is important to remark that differences 
among techniques are not huge after reaching a 
fitness of 0.8 since the complexity increases 
exponentially in our environment. Therefore, minor 
improvements on the fitness value after that point 
are hard to obtain but very valuable to accomplish a 
fair workforce distribution. 

6 CONCLUSIONS AND FUTURE 
WORK 

We have seen the difficulty of assigning incoming 
calls to the right agents within a real-world MSCC. 
We have then presented several MHs to carry out 
this task and how MAs can outperform them in such 
an environment. Afterwards, we have done an 
exhaustive comparative study of MHs to empirically 
evaluate diverse strategies to reach accurate, feasible 

solutions, capturing real data from an MSCC within 
a large multinational telephone operator during a 
peak of load (12:40-12:45). This study has 
illustrated how these MHs perform for two different 
problem instances. We can conclude that MAs not 
only outperform all the strategies but also remain 
more unwavering as systematically provide better 
results than the rest of techniques. As future work, 
we propose to do a similar study considering parallel 
MHs and different time-frame sizes. 
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Table 1: Results obtained by the MHs in 50 executions starting from random initial solutions for two problem instances: 
medium and hard (larger number of incoming calls and high variability). Values refer to the fitness obtained by all MHs. 

Algorithm 
Best solution Worst Solution Average Standard deviation Effectiveness 

Medium Hard Medium Hard Medium Hard Medium Hard Medium Hard 
MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 100 100 
ILS 0.768 0.728 0.755 0.722 0.763 0.725 0.002 0.003 95.85 96.15 
VNS 0.790 0.727 0.766 0.723 0.775 0.724 0.005 0.001 97.36 96.02 
SA 0.782 0.721 0.773 0.709 0.779 0.716 0.001 0.003 97.86 94.96 
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