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Abstract: A novel method is proposed for predicting protein secondary structure using data derived from knowledge 
based potentials and Neural Networks. Potential energies for amino acid sequences in proteins are 
calculated using protein structures. An Extreme Learning Machine classifier (ELM-PSO) is used to model 
and predict protein secondary structures. Classifier performance is maximized using the Particle Swarm 
Optimization algorithm. Preliminary results show  improved results. 

1 INTRODUCTION 

Large scale advances in genome sequencing and 
resultant availability of large numbers of proteins 
sequences has given protein secondary structure 
prediction increasing importance in computational 
biology. Improvements in secondary structure 
prediction can lead to progress in protein 
engineering and drug design. Existing 
crystallographic techniques are too expensive and 
time consuming for large-scale determination of 
protein three-dimensional structures. Prediction of 
secondary structures might be a useful intermediate 
step to speed up structure prediction (Lomize, 
Pogozheva and Mosberg, 1999 and Ortiz, Kolinski, 
Rotkiewicz, Ilkowski and J. Skolnick, 1999). 
Secondary structure prediction can assist in gene 
function and sequence annotation, as well as 
identification and classification of structures and 
functional motifs and in identifying malfunctioning 
structures which cause human diseases. 

Several computational methods have been 
successfully used in secondary structure prediction, 
of which empirical and machine learning methods 
have proved to be the most successful. Chou and 

Fasman (1974), Qian and Sejnowski (1988), Ward, 
McGuffin, Buxton, and Jones (2003) were followed 
by numerous others. The GOR method based on 
information theory was used by Garnier, 
Osguthorpe, and B. Robson, (1978) and later by 
Garnier, Gibrat, and Robson (1996). Kloczkowski, 
K.L. Ting, R.L. Jernigan, and J. Garnier (2002) used 
evolutionary information in GOR V for improved 
structure prediction. PredictProtein server (Rost, G. 
Yachdav, and J. Liu, 2004) uses multiple sequence 
alignment based neural networks. The PSIPRED 
algorithm developed by Jones (1999) uses PSI-
BLAST (Altschul, T.L. Madden, A.A. Schäffer, J. 
Zhang, Z. Zhang, W. Miller, and D.J. Lipman, 1997) 
and neural networks.  The Jpred prediction server 
(Cole, Barber, and  Barton, 2008), runs on the Jnet 
algorithm (Cuff and Barton, 2000). Montgomerie, 
Sundaraj, Gallin, and Wishart (2006) and Pollastri, 
Martin, Mooney and  Vullo, (2007) developed large 
scale secondary structure prediction methods using 
existing structural information  and computational 
methods to claim an accuracy of 90% for sequences 
with over 30% sequence homology. Kihara (2005) 
suggested that long-range interactions are an 
important factor to be considered in order to achieve 
higher classification accuracy. 
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We propose a novel strategy for secondary 
structure prediction using knowledge based potential 
profiles.  A two stage Extreme Learning Machine 
(ELM) (Huang, Q.Y. Zhu, and C.K. Siew, 2006) 
classifier called the ELM-PSO is used for 
classification of secondary structures. Performance 
is improved using Particle Swarm Optimization 
(PSO) (Clerc, J. kennedy, 2002).  

This paper is organized as follows: Section 2 
gives a brief description of the data. Section 3 
describes the two-stage ELM-PSO classification 
technique. Section 4 discusses the results and gives a 
comparative study followed by conclusions in 
Section 5. 

2 DATA GENERATION USING 
POTENTIAL ENERGY 

The dictionary of secondary structure assignment 
Database of Secondary Structure in Proteins (DSSP) 
(Kabsch and Sander, 1983) has 8 classes of protein 
secondary structures. We use only a reduced set of 
three secondary structures, namely, alpha-helix (H), 
beta-strand (E) and coil (C). Data is derived based 
on CABS force-fields (Kolinski, 2004 – algorithm 
for data generation has been submitted for 
publication), which includes information pertaining 
to long and short range interactions between amino 
acids in proteins.  A profile matrix was created using 
the 513 non-homologous (target) protein sequences 
from the CB513 data set (Cuff and Barton, 2000), 
where the sequence homology is less than 30%.  

3 METHODS 
AND OPTIMIZATION 

In a neural net framework, the input consists of a set 
of patterns (residues), each having a set of 27 
features (profile values), which are normalized to 
values between 0 and 1.  The output consists of three 
units which correspond to one of three secondary 
structure elements, represented as a 1 for the class of 
interest and a -1 for the other two classes. A given 
input is combined with a bias and a set of weights 
and is processed through an activation function at 
the hidden layer level. The output of the hidden 
layer is combined with another set of weights to 
yield three outputs. The predicted class is considered 
as the output which has the maximum value, which 
corresponds to choosing the output with the smallest 
mean-squared error.  

An Extreme Learning Machine (ELM) (Huang, 
Zhu, and Siew, 2006) classifier, which is a form of a 
Neural Network, is used for classification. PSO is 
used to tune the parameters of the ELM. The data 
was also evaluated using Support Vector Machine 
(SVM) and Naïve Bayes (NB) algorithms using the 
WEKA (Witten and Frank,2005) software tool for 
classification. 

The profile data consists of 27 features for each 
of N amino acids, where N is the number of residues 
in a single protein. Of the 27 features, the first 9 
features are the energy potentials related to alpha-
helices (H), the next 9 features are related to beta-
strands (E) and the last 9 features are related to coils 
(C) as seen in Fig. 1 and 2. This gives a particular 
advantage in getting better classification accuracy, 
since this information can be used during the 
training phase (although this information will not be 
available on a blind set or a new set of proteins). 
Based on this prior knowledge, class specific 
features of the target class can be given extra 
weights (importance) compared to the rest of the 
features that belong to the negative classes. Hence 
the class specific features of each class (9 columns 
per class) were scaled (values boosted) according to 
a predetermined factor prior to building a training 
model.  These factors (not unique) were obtained by 
brute force trial and error method, where selection 
was based on getting better classification results. It 
is noteworthy that the classification accuracy after 
this scaling depends on the scaling factors used, and 
ranges from 60% (for non-scaled data or data scaled 
with sub-optimal boosting values), to over 95%, 
when the optimal scaling factors are used. The first 9 
features of all samples belonging to the H class, 
were scaled by a factor of 5, while the second set of 
9 features were scaled by a factor of 3 and the last 
set of 9 features were scaled by a factor of 8. The 
scaling of data improves the classification accuracy 
considerably during the training phase. Samples 
which were scaled according to their classes were 
used for the 10-fold cross-validation in WEKA 
(Witten and Frank, 2005), which gave very high results for 
SVM and Naïve Bayes algorithms. Since it is not 
possible to perform class-specific feature scaling 
during testing (blind) phase for the ELM method, 
three sets of test samples were generated for each 
sample in the test set. The first set had the first 9 
features boosted in the same ratio as for the H class 
for all samples. The second set of test samples had 
the next set of 9 features boosted according to the 
factor used for the E class for all samples and the 
third set of test samples had the last set of 9 features 
scaled according to the factor used for the C class 
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for all samples. Each test set was sent in turn and the 
votes were collected for the classification. For 
robustness, ten sets of training models were used to 
get the classification results for the same test set. 
Each training model yielded a set of three votes for 
each sample. These votes were all gathered to 
determine the class which receives the maximum 
number of votes. The results for the classification 
accuracies with and without feature scaling (value 
boosting) are given in the results section. Blind 
testing with voting was not done for SVM and Naïve 
Bayes algorithms since it would require 
modification of WEKA code. 

 

 

Figure 1: Visualization of data without feature scaling. 
Energy potentials are represented along the x-axis, the first 
nine features belong to helix (H), the next 9 features are 
for strand (E) and the last set of features 19 - 27 for coil 
(C). The color intensity indicates the value of the potential 
energy, with a dark blue for a low value and a red 
indicates a high value. The residues (total: 4282) along the 
y-axis have been sorted according to the three classes, 
where residues 1 - 1487 belong to class H, 1488 - 2541 
belong to class E and 2542 - 4282 belong to class C. Note: 
there is not much horizontal differentiation among the 
three classes which becomes evident in Fig. 2, after data is 
subjected to feature specific scaling. Results for 
classification of this unscaled data is given in Table 1. 

3.1 Two Stage Extreme Learning 
Machine  

The ELM-PSO consists of the Extreme Learning 
Machine (ELM) classifier as the main algorithm, 
which uses a set of training samples to build a 
model. During the training phase, PSO is called 
upon to optimize the parameters, such as weights, 
number of hidden neurons and bias of  the ELM, 
which results in improved classification accuracy. 
These parameters are stored and used during the 
testing phase. ELM is an improved version of a 
feed-forward neural network consisting of a single 
hidden layer.  The initial set of input weights are 
chosen randomly, but they are tuned later by the 

PSO. The output weights from the hidden layer to 
the output layer are analytically calculated, using a 
pseudo inverse. A sigmoidal activation function is 
used for the hidden layer and a linear activation 
function is used for the output neurons. Huang, Zhu 
and Siew (2006) give a comprehensive discussion of 
ELM. The ELM algorithm consists of the following 
steps: 

1. Select the number of hidden neurons (H) and a 
suitable activation function for a given problem. 

2. Randomly choose the input weight (W) and bias 
(b). 

3. Analytically calculate the output weight using a 
pseudo inverse which speeds up the traditional 
neural network algorithm tremendously. 

4. Store the calculated weights (W, b) and hidden 
neurons (H) which yield the best training results.  

5. Use these stored values for estimating the class 
label during testing phase. 
 

The estimated class label Ci is calculated using 

equation (1) where k
iy  is the neural network output 

for each class k, for sample i. 
 

k
i

Ck
i yc

,..,2,1
maxargˆ


  (1)

 

An improved version of the ELM algorithm 
proposed by Saraswathi and Suresh et al., (2010), 
shows that a random selection of initial parameters 
(W, b, H) affects the performance of the ELM 
classifier significantly. Tuning of input parameters 
using PSO, improves classifier performance 
considerably, by minimizing the error (Eq. 2), which 
is the distance between the neural network output 
(Y) and the target classes (T). 

 

   TYminargb,W,H
b,V,H

***   
(2)

3.2 Particle Swarm Optimization 

A stochastic optimization technique called Particle 
Swarm Optimization (PSO) was developed by Clerc 
and Kennedy (2002). This method mimics the 
intelligent social behavior of flocks of birds or 
schools of fish, represented as particles in a 
population. These particles work together to find a 
simple and optimal solution to a problem in the 
shortest possible time. The PSO algorithm is 
initialized with a set of random solutions called 
particles. The algorithm iteratively searches a multi-
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dimensional space for the best possible solution, 
determined by a fitness criterion. PSO will find the 
best combination of hidden neurons, input weights, 
and bias values and return the (training) validation 
efficiency obtained by the ELM algorithm along 
with the best ELM parameters to obtain better 
generalization performance. The best parameters 
are stored and used during the testing phase. 

4 RESULTS AND DISCUSSION 

Several training models were built using ELM and 
two other algorithms, namely SVM and Naïve Bayes 
(NB) from the WEKA (Witten and E. Frank, 2005) suit 
of software for data classification. A 10-fold cross 
validation was performed for SVM and NB, where 
90% of the proteins were used to build the training 
model while the remaining 10% were retained for 
testing the model, but all input information was 
scaled according to previously described values.  A 
blind test was conducted using ELM with 4797 
proteins for training and 4835 for testing. These 
residues were selected from a random selection of 
30 proteins for the training set out of 400 proteins, 
while the test samples came from a separate set of 
41 proteins retained for testing. Preliminary studies 
for the ELM-PSO classifier, SVM and NB show 
high accuracies of around 99% for the scaled  
training  as seen in Table 2, while the results for the 
unscaled version of the data, as seen in Table 1, is 
much lower at only ~60% or less. The unscaled 
version of the data uses only row specific feature 
information while the scaled data also uses column 
specific class information which increases the 
accuracy considerably.  

The lower testing accuracy  of 94.4 % for the 
ELM (blind) tested 4835 samples might be due to 
the smaller number of residues tested as compared to 
the other two models built from SVM and NB with 
the full data set.  The ELM classifier trains on sets of 
2000 to 3000 samples at a time  and builds several of 
these models by selecting samples at random from 
the pool of available training samples (from the 400 
training proteins), a very computationally intensive 
process. The parameters for every ELM model are 
optimized by calling PSO and a single pattern from 
the test set is repeatedly tested by each model, 
giving a consensus classification for the type of the 
test sample. The class that occurs with the highest 
frequency in these classifications is taken to be the 
predicted class for this test sample. Preliminary 
results for a set of 4835 test samples are given in 
Table1 and Table 2 for scaled and unscaled data.  

On the other hand the high accuracies for SVM 
and NB can be attributed to the technique of cross 
validation where the input data is uniformly scaled 
according to previous criteria, using feature specific 
class information, which results in higher accuracy. 
There is no blind test of data. So, unless the 
algorithm can discern this feature specific pattern 
automatically without involving the computationally 
intensive ELM-PSO method that was used here, it is 
not very practical. Future work will aim to improve 
the ELM-PSO algorithm to learn this information 
automatically. 

Table 3 shows that the ELM-PSO methods 
perform very well compared to other studies in the 
literature for scaled data. The accuracy on the 
unscaled data is lower for all models and is 
comparatively low for the blind test, indicating that 
the learning algorithm needs further tuning to 
discern the column-wise information during (blind) 
testing phase. The column-wise class information is 
a unique feature of our data that separates the three 
classes linearly and hence gives high results. Table1 
and Table 2 also give the F-measure  and area under 
the curve (AUC) values for SVM and Naïve Bayes 
classifications. These terms help us to gauge the 
quality of the predictions.  

 
Figure 2: Visualization of the same sample data shown in 
Figure 1, given here with feature scaling. Descriptions of 
the X,Y axes and colors are the same as given in Figure 1.  
Compared to Figure 1, it can be seen that class-specific 
feature scaling provides for a distinct separation of the 
classes, which results in higher accuracy during 
classification, using ELM, SVM-SMO and Naïve Bayes 
algorithms, with results shown in Table 2. 

The performance of classifications can be 
evaluated in terms of the true positives (TP-correct) 
and false positive (FP-error) terms. Similar 
definition holds for true negatives (TN) and false 
negatives (FN). The output of a classification might 
provide estimated probabilities which determine the 
predicted class according to a pre-set threshold. TP 
rate and FP rate can be graphed as coordinate pairs 
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which form the receiver operating characteristic 
curve (ROC curve).  

The area under this ROC curve (AUC or 
AUROC) helps to aggregate the performance of all 
the testing results, where a higher value closer to 
1.00 denotes perfect performance. F-measure gives 
the test’s accuracy. It uses precision p and recall r of 
the test, where p is the ratio of correct results divided 
by all returned results (TP/(TP+FP)) and r is the 
number of correct results divided by the number of 
expected results (TP/(TP+FN)). F-measure is 
calculated as given in equation (3), where the best 
score for F-measure can be as high as 1 and the 
worst score can be as low as 0. 

 

recallprecision

)recall*precision(*2
measure_F




 
(3)

Table 1: Confusion matrix and accuracies for the three 
classes of secondary structures, for data without feature 
scaling, using ELM-PSO, SVM and Naïve Bayes.  

Confusion Matrix – ELM-PSO – without feature scaling

 H E C % correct  
H 1147 116 457 66.7 QH 
E 300 329 474 27.1 QE 
C 604 175 1195 30.6 QC 
   Total 4797  
    55.7 Q3 

Confusion Matrix – SVM – without  feature scaling  

 H E C % correct  
H 3153 533 1672 58.8 QH 
E 817 1353 1411 22.8 QE 
C 1446 595 5083 20.5 QC 
   Total 16063  
    59.7 Q3 
  F-Measure 58.5  
  AUC 70.0  

Confusion Matrix – Naïve Bayes – No  feature scaling 

 H E C % correct  

H 3244 1217 897 60 QH 
E 705 2168 708 60 QE 
C 2028 2168 708 47.6 QC 
   Total 16063  
    54.8 Q3 
  F-Measure 55.1  
  AUC 73.5  

Table 2: Confusion matrix for the three classes of 
secondary structures, for data with feature scaling, using 
ELM-PSO, SVM and Naïve Bayes. 

Confusion Matrix – ELM-PSO – with  feature scaling 

 H E C % correct  
H 1814 0 0 100 QH 
E 56 942  94.3 QE 
C 224 0 1799 89.9 QC 
   Total 4835  
    94.4 Q3 

Confusion Matrix – SVM - with feature scaling 

 H E C % correct  
H 24854 67 8 99.7 QH 
E 0 16879 4 100 QE 
C 0 0 31096 100 QC 
   Total 72908  
    99.9 Q3 
  F- Measure 99.8  
  AUC 99.9  

Confusion Matrix – Naïve Bayes - with feature scaling 

 H E C % correct  
H 24896 33 0 99.9 QH 
E 256 16627 0 98.5 QE 
C 0 19 31077 99.9 QC 
   Total 72908  
    99.6 Q3 
  F- Measure 99.6  
  AUC 100  

Table 3: Comparison of results for secondary structure 
prediction using ELM-PSO - feature scaled data, with 
other studies in literature.  

Method 
Q3 

( %) 
QH 
(%) 

QE 
(%) 

QC 
(%) 

PHD (Rost and 
Sander, 1999) 

70.8 72.2 66.0 72.0 

JNet server (Cuff and 
Barton, 2000) 

76.4 78.4 63.9 80.6 

SVMpsi (Kim and 
Park, 2003) 

76.6 78.1 65.6 81.1 

SPINE server (Dor 
and Zhou, 2007) 

80.0 84.44 72.23 80.46 

ELM-PSO with 
feature scaling 94.4 100 94.3 89.9 

5 CONCLUSIONS 

A two stage approach for secondary structure 
prediction was presented where an Extreme 
Learning Machine (neural network) was used along 
with Particle Swarm Optimization (ELM-PSO) for 
classifying a reduced set of three secondary 
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structures, namely, alpha-helix, beta-strand and coil.   
The data was generated using CABS potential 
energy. ELM-PSO needs improvement to achieve 
better accuracies on blind tests so that comparative 
results can be achieved on new proteins.  
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