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Abstract: We test the effectiveness of an evolutionary algorithm that relies completely on species selection for 
evolution and on interactions among species to determine fitness.  Under Resource-defined Fitness Sharing 
(RFS), all individuals have the same objective fitness, but they act to reduce their shared fitness through 
competition for resources.  In previous studies, RFS has been used to evolve populations of mutually non-
competing (i.e., non-overlapping) shapes on shape nesting problems.  In this paper we test the effectiveness 
of a modified version of RFS, which we call PCSN, against three commercial software packages for shape 
nesting.  PCSN uses species proportions to represent a population, thereby simulating an infinitely large 
population.   With no discovery operators, such as mutation or recombination, evolution consists of 
selection only, with all species present in the initial population.  We show that on some shape nesting 
problems this approach can outperform some commercial packages.  In particular, PCSN nests more circles 
on a fixed, polygonal substrate than do most of the commercial packages.  This might be considered a 
surprising result, since the algorithm is radically different from any shape nesting algorithms deployed to 
date.   While conventional methods place one shape at a time, the co-evolution approach attempts to place 
all shapes simultaneously. 

1 INTRODUCTION 

Recent work (Horn, 2002, 2005) on a co-
evolutionary approach to the shape nesting problem 
has yielded intriguing results on various types of 
shapes.  The nestings “look good”.  But to date the 
resource-defined fitness sharing1 (RFS) method has 
not been directly compared to other algorithms.  In 
this paper we document the first such experiments, 
in which a modified version of RFS is directly 
compared to existing algorithms in the form of 
commercial software packages.  The results indicate 
that this new approach is competitive with all three 
packages, even outperforming two of them. 

Our modifications to RFS attempt to bring out 
the essential co-evolutionary aspects of the 
algorithm, which we believe perform subset 
selection on the set of species (i.e., unique 
individuals) present in the initial population, seeking 
the “optimal” subset.  To focus on these aspects of 
co-evolution, we remove all discovery operators 

                                                                 
1 US Patent No. 7181702. 

(e.g., mutation and recombination), relying solely on 
selection.  We remove individuals from the 
population representation, and replace them with 
species proportions, implying an infinitely large 
population.  We call this Pure Co-evolutionary 
Shape Nesting, or PCSN. 

2 BACKGROUND 

We discuss the shape nesting problem domain and 
the application of the RFS approach to it. 

2.1 The Shape Nesting Problem 

The general problem at hand involves “nesting” 
(that is, placing) shaped pieces on a finite substrate 
so as to maximize the number of such pieces on the 
substrate. The objective is often stated, equivalently, 
as the minimization of “trim” (i.e., unused substrate) 
(Dighe and Jakiela, 1996; Kendall, 2000). No 
overlaps among the placed pieces are allowed, and 
all such pieces must be placed so as to be completely 
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within the boundaries of the substrate. Figure 1 
depicts a nesting of polygons within a polygon.  

Shape nesting problems arise in a number of 
industries, such as automotive manufacturing, in 
which various shaped parts must be stamped from 
sheet metal substrate, and the garment industry, 
where component apparel pieces must be cut from 
bolts of cloth (Kendall, 2000). 

Here we assume a finite, two-dimensional 
problem: a flat substrate of fixed size, and flat pieces 
to be nested. We assume identical shape: there is 
only one shape we are nesting. We limit ourselves to 
arbitrary, (possibly non-convex) polygons for the 
substrate and to identical circles for the shaped 
pieces to be nested. These limitations help to reduce 
the number of parameters to vary in each algorithm 
when we run comparison tests, which is the main 
focus of this paper. 

2.2 Previous Work 

Horn (2002) applied RFS to one and two-
dimensional shape nesting problems but limited his 
tests to axis-aligned squares for the shaped pieces. 
Horn (2005) extended the 2002 results by applying 
RFS to arbitrarily shaped polygons, for both the 
substrate and for the pieces to be nested. Figure 1 
shows one of the nesting problems, along with one 
nesting found by RFS, from the 2005 paper. More 
recent work on RFS is of a theoretical nature (Horn, 
2008). 
 

 

Figure 1: General polygon nesting (Horn, 2005). 

2.3 The RFS Algorithm 

The implementation of resource-defined 
fitnesssharing on which we base PCSN is the same 
as used by Horn (2002, 2005). 

2.3.1 Encoding the Decision Variables 

For the two dimensional shape nesting problem, the 
placement of a piece is made by specifying the 
piece’s location and its orientation (rotation). 
Because we are nesting circles in the current paper, 
we only have to specify location, which will be an 
(x,y) coordinate in the Cartesian plane.   

2.3.2  RFS Selection 

Every individual of the current population is 
evaluated and assigned a fitness. As with Horn 
(2002, 2005), chromosomes that specify a placement 
of a piece that extends beyond the boundaries of the 
substrate are assigned a fitness of 0. All “feasible” 
individuals (i.e., chromosomes specifying piece 
placements entirely on the substrate), receive fitness 
greater than 0. 

For each of the feasible individuals we compute 
a shared fitness (Goldberg and Richardson, 1987) 
for use in a standard selection method. In RFS, the 
shared fitness for each individual is a function of the 
area of the individual piece, its placement on the 
substrate, and the extent to which the placed piece 
overlaps with other placed pieces.   

To describe the selection mechanism more 
specifically, we need to define terms. Figure 2 
illustrates the terms for two overlapping shaped 
pieces a and b. The area of the shaped piece, which 
is identical for all individuals in the population, is 
used as the objective fitness of each individual:    fa   

=  f b  =   f i   for all shaped pieces i.  The area of 
overlap between pieces a and b is defined as fab , so 
that  0 ≤   fab  ≤  fa.   Overlap is symmetric:  fab  =  fba  . 

 

Figure 2: RFS terms with non-convex polygons. 

Next we define what we mean by species and 
how they relate to individuals. In (Horn, 2002, 
2005) the population consists of individuals. An 
individual is simply a member of the population. 
Two individuals from the current population may 
have the exact same alleles on their chromosomes, 

fa 

fb 

fab    ( = fba ) 
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yet they occupy different “slots” in the population 
(e.g., different elements of the data structure holding 
the population) and so represent distinct individuals. 
A species is considered to be a set of identical 
individuals (i.e., with identical placements). Thus 
unique chromosomes (x,y) map one-to-one with 
unique species. There is complete overlap between, 
and only between, any two members of the same 
species. 

Now we can give the specific form of the RFS 
shared fitness fSh,k  calculation: 
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The upper and lower equations above are 
equivalent. Both have an objective fitness in the 
numerator, and a niche count, calculated over the 
entire current population, in the denominator. In 
Equation 1a, the summation in the niche count is 
taken over the population of individuals (using the 
variable h). In Equation 1b, the population is divided 
into species Y. Each species consists of the set of all 
individuals with the same chromosomes (from the 
current population). Thus the shared fitness for any 
member of a species X is equal to the objective 
fitness of that species divided by the niche count for 
that species, which is computed as the sum over all 
species of the interaction term (fXY) multiplied by the 
number of members in that species, nx. For example, 
the RFS shared fitness calculation for the two 
species A, B in Figure 2 (corresponding to the two 
individuals a and b respectively) would be 
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(2)

3 THE PCSN ALGORITHM 

In this paper we choose to implement the RFS 
approach a bit differently to take advantage of what 
we perceive as the true strengths of this type of co-
evolution. 

The previous section describes a more traditional  

implementation in which a population of individuals 
undergoes selection, mutation, and recombination. 
But as noted there and in (Horn, 2008), it seems that 
the RFS type of co-evolutionary selection operates 
on species, as defined above. Furthermore, it seems 
to be able to handle very large numbers of 
individuals and species, so that we might be able to 
rely on a large initial population for diversity, rather 
than on discovery operators such as mutation and 
crossover. 

Therefore in the approach taken here, which we 
call pure co-evolutionary shape nesting (PCSN), we 
will (1) implement the infinite population model 
(usually used for theoretical studies of an 
evolutionary algorithm), dealing only with species, 
not individuals, and (2) use selection only, omitting 
all forms of mutation and recombination. 

We maintain a population of species. For each 
species we keep track of the proportion of the 
population claimed by the species at a particular 
generation. (Note that each species corresponds to a 
unique piece placement, in this case an x,y 
coordinate for a circle, as describe in the previous 
section.) We apply proportionate selection to obtain 
the expected proportion of the population for each 
species in the following generation. Thus we model 
an infinite population, at least to the extent of the 
precision in our computer representation of a species 
proportion. 

Specifically, let px(t) be the proportion of species 
x at time (generation) t. Then under proportionate 
selection, the expected proportion of x at time t+1 is 
given by:  

(3)

where fsh,x(t) is the shared fitness of species x at time 
t, as described in the previous section.  For PCSN, 
we use this equation to compute the next generation. 
(In generation 0, we initialize the population of 
species to equal proportions). 

4 EXPERIMENTS 

We compare PCSN with existing implementations 
of “mature” shape nesting algorithms, to get some 
idea if this new approach has potential for practical 
application. First we discuss the problem at hand. 

(1a) 

(1b) 
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4.1 A Nesting Problem 

We consider non-convex polygon P1 defined in 
Table 1. (Note that depictions of P1 in this paper 
assume the origin is in the upper left corner, so that 
the y-axis values increase down the page, while x-
axis values increase to the right.) The shape to be 
nested is a circle of radius 72. 

Table 1: Polygon P1. 

(x,y) coordinates for fourteen vertices 
in clockwise order of visitation 

(0,56), (110,0), (254,0), (356,175), (476,142), (644,98), 
(770,128), (770,196), (742,309), (619,406), (500,363), 
(363,421), (350,509), (309,645), (127,673), (55,533), 

(56,372). 
 

We compare three commercial software 
packages with each other and with RFS-based Pure 
Co-evolutionary Shape Nesting (PCSN) on P1. 

4.2 Three Software Packages 

We apply the demonstration/trial versions of three 
commercially available software packages that 
include a shape nesting tool. All three, as well as the 
PCSN program, are run on the same machine, a 
Lenovo R61 laptop with a dual-core 1.8 GHz 
processor and 2 GB of main memory. The three 
packages are listed in Table 2. 

Table 2: Commercial shape nesting software used. 

Package 
Name 

Version Company Web Site 

ArtCAM 
Insignia 

3.000k Delcam Plc www.artcam.com/

ProNest 8.2.1.1 
MTC 

Software 
www.mtc-

software.com 

OptiNest 2.3.1 
Boole & 
Partners 

www.boole.eu 

4.3 PCSN Setup 

All runs of the PCSN algorithm use a diversity 
setting of 6000 species. The species are generated at 
random by drawing a minimum size bounding 
rectangle around P1 and then generating integer 
coordinates x and y independently and uniformly at 
random within the bounding rectangle, discarding 
duplicates and infeasibles (those coordinates which 
would center a circle outside of P1 or intersecting a 
side of P1), until 6000 unique and feasible 

coordinates are found. Selection is then iterated once 
per generation. Each generation we examine the set 
of species whose proportion in the current 
population exceeds 1/6000. When this set consists 
entirely of non-overlapping circles, we stop the 
algorithm and display that set of species. 

4.4 Results 

In this section we present separately the results of 
running each of the shape nesting approaches: 
PCSN and the three commercial packages, each 
nesting the same shape, a circle of diameter 72 units, 
in the same polygon (P1).  

PSCN: Figure 3 shows that PCSN can nest 12 
circles in P1.  
 

 

Figure 3: PCSN fits 12 circles into P1. 

 

Figure 4: ArtCAM nests 11 circles in P1. 

ArtCAM: In Figure 4 we see the results of one run 
of ArtCAM Insignia with a nesting of 11 circles. 
ArtCAM’s nesting parameters require that the user 
specifies which of four corners to use as the start of 
nesting: upper left, upper right, lower left, and lower 
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right. A second, independent nesting parameter 
specifies the direction of nesting (implying a 
sequential algorithm): the x-direction or the y-
direction. This yields eight possible settings of 
ArtCAM’s nesting parameters. We tried all eight, 
and all eight yielded an eleven circle nesting. 

ProNest: Unlike ArtCAM, ProNest has many 
different nesting parameters with many possible 
settings.  We first tried ProNest on P1 using the 
initial setting of parameters as they are found when 
the program is started. This resulted in a nesting of 
ten circles (not shown). 

We next explored the range of possible nesting 
parameter settings and settled on what appeared to 
be an optimal setting, resulting in the eleven circle 
nesting shown in Figure 5. 
 

 

Figure 5: ProNest with optimized settings fits 11. 

OptiNest: With OptiNest, there are also a large 
number of nesting parameters to “tune”, some of 
which are continuous-valued, resulting in an infinite 
number of possible parameter combinations. So we 
first tried a nesting using what OptiNest names the 
“default settings”. The result was an eleven circle 
nesting (not shown). 

 

Figure 6: OptiNest with optimized settings fits 12. 

By spending about thirty minutes exploring the 
effects of various nesting parameters (e.g., 

“subgroup size”), we settled on what appears to be 
the optimal performance for OptiNest on P1. Figure 
6 shows the twelve circle nesting. 

SUMMARY: Table 3 summarizes these results. 
The numbers in bold are the best-seen-so-far, which 
is twelve circles for P1, obtained by both the PCSN 
and OptiNest with optimal parameter settings.  Note 
that the run times are approximate, and simply show 
that all four approaches are similar in execution 
time. In much of the literature on shape nesting 
applications, a run time of several minutes or less is 
considered acceptable. 

Table 3: Results on Polygon P1. 

Method or Package No. of circles 
nested in P1 

Approximate 
Run Time 
(seconds) 

 ArtCAM Insignia  

(with initial settings)

 (best of all runs)

 

11 

 

2 

11 60 

ProNest  

(with initial settings)

(best of all settings)

 

10 

 

1 

11 5 

OptiNest  

(with default settings)

(with optimized settings)

 

11 2 

12 140 

Pure Co-evolutionary 
Shape Nesting (PCSN) 

(with diversity 10000)
12 70 

5 DISCUSSION 

The modified version of RFS that we introduce as 
PCSN (Pure Co-evolutionary Shape Nesting) 
represents a population distribution as a vector of 
species proportions, thus allowing the use of a 
simple replicator equation to implement evolution. 
The PCSN approach has a number of possible 
advantages and disadvantages but this study is 
meant only to introduce the approach.  

The above results on polygon P1 provide 
evidence that the co-evolutionary approach to shape 
nesting can sometimes perform as well as, or better 
than, existing, deployed algorithms (as sampled in 
the current commercial software tested here). But 
the application of the commercial software packages 
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was not performed by someone trained in the use of 
such packages. For ProNest and OptiNest in 
particular, the number of parameters to tune is quite 
a high. A more rigorous study is in order, in which 
parameter settings are explored in a systematic 
manner. (On the other hand, the fact that commercial 
packages require such parameter tuning, while 
PCSN does not, can be considered a strength of 
PCSN in particular, and of co-evolutionary 
approaches in general.) 

And yet PCSN does have one critical parameter: 
its diversity setting. This corresponds to the “species 
population size”, that is, the number of species 
represented. How high should this be set for a 
particular problem? Without discovery operators 
such as mutation and crossover, even if PCSN can 
scale to larger (i.e., more species) populations, it is 
not clear that enough diversity can be generated this 
way.   

And larger, more challenging problems are out 
there. Nesting circles, even inside of arbitrary 
polygons, is not as impressive as nesting more 
complex shapes, especially shapes that are not 
rotationally symmetric. Also, the numbers of circles 
nested in P1 are relatively small. Typical problems 
in industry involve nesting dozens or even hundreds 
of shapes on one substrate. Still, the fact that PCSN 
is able to select subsets of a dozen or so shapes from 
a set of thousands (e.g., 6000) indicates some ability 
to scale with problem size. 

Clearly the use of selection alone, relying solely 
on the initial population for genetic diversity, is a 
radical step for a practical algorithm, but we hope 
that it points out an important challenge and strength 
of all cooperative co-evolution algorithms: the need 
to perform subset selection from a large set. Even 
with all the components of a good solution present 
in the initial population, it is not an easy task to 
select those components. Their quality is based 
solely on their relationships with each other. 

We hope also that we have shown that the 
infinite population model, traditionally used in 
theoretical models of evolutionary algorithms, can 
be used in the algorithms themselves, in practical 
implementations. Such a representation of an 
evolving population could prove to be extremely 
efficient, in terms of computational space and/or 
time requirements, for co-evolutionary algorithms. 

A final note on future work: there are many more 
commercial packages. In addition, there are many 
published, academic algorithms for shape nesting, 
which have the advantage (over commercial 
implementations) of being fully specified in 

publications. This comparison study is just the 
beginning. 
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