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Abstract: We report a new method of diagnosis of a node in a network by “Point Stimulus Response”. The “Point 
Stimulus Response” corresponds to the impulse response of the network, that is, the state temporal variation 
in the Markov transition with the delta-function of initial state. We can evaluate the reaction of the system 
against a point stimulus such as a point failure. In this report, for the first, we summarize our mathematical 
platform for analysing complex network system using the adjacency matrix as the transition matrix in 
Markov transition approximation. On this basis, we formulate the point stimulus response. The location 
dependence of the point stimulus response is demonstrated in Tokyo Metropolitan Railway Network System. 
For a concrete example, the total amount of suffered passengers and time response of recovery from a point 
failure will be discussed depending on the location of point failure in the network system.  It can be said that 
a way to find a point for effective stimulus response is one of key approaches for knowledge discovery. 
However, the real indication or meaning of the point stimulus is in the stage of speculation. 

1 INTRODUCTION 

Knowledge Discovery is an interdisciplinary area 
focusing upon methodologies for identifying valid, 
novel, potentially useful and meaningful patterns 
from data, often based on underlying large data sets. 
Our mathematical platform is aiming extraction and 
analysis of knowledge from the mutual interaction 
patterns, obtained by such network log data (Onnela, 
2008). The mutual interaction pattern is described as 
the adjacency matrix in the Markov process 
approximation (Ozeki, 2010). 

 Brin and Page reported, in their first paper on 
“Google”(Page, 1990), that it was a great surprise 
the PageRank is obtained purely mechanically from 
the pattern of mutual page links. That is the surprise 
of discovery that the pattern is entangled with the 
real world. The “Google” approximates a Web 
surfer as a random walker in the Markov process and 
combines the dominant eigenvector with the list of 
coincidence as the PageRank . 

The “Google”, however, uses only the dominant 
eigenmode because the eigenvectors of higher-order 

modes are not positive valued so that the probability 
finding the Web surfer at a page cannot be defined 
for the higher-order modes (Langville, 2006). 

Here, we have proposed a mathematical platform 
for analysing the network pattern in multi-modal 
scheme (Ozeki, 2009). Each mode corresponds to a 
substructure of the pattern. Various pattern 
dependant behaviours can be analysed for 
knowledge discovery. 

In this paper, we would like to report a new 
method for the diagnosis of various objectives, such 
as security and activation, of a network system by a 
“Point Stimulus Response”.  

The “Point Stimulus Response” corresponds to 
the impulse response of the network system, that is, 
the state variation in the Markov transition with the 
delta-function of initial state. We can evaluate the 
system activity against the point stimulus.  

It can be said that a way to find a point of 
effective stimulus response or “tsubo” is one of the 
key approaches of “Knowledge Discovery”. 

In Japan, “Shiatsu” is a popular therapy by 
pressing “shiatsu point” to enhance the body’s 
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natural healing ability and prevent the progression of 
disease. Shiatsu points are called “tsubo”, in 
Japanese and their locations and effects are based on 
understanding of modern anatomy and physiology. 
The concept of “tsubo” is our stimulus point of the 
network system.  

The point stimulus has been used as a way of 
reactivation of an old city (Horiike, 2002).  

This report is believed as the first theoretical 
approval of locating stimulus points of a network 
system.      

 

2 MATHEMATICAL PLATFORM 

In this session, we would like to summarize our 
mathematical platform for network system analysis, 
briefly.  

2.1 Adjacency Matrix 

The adjacency matrix jiA ,  of a network can be used 
as a Markov-transition matrix to simulate the 
evolution of states: nn qAq )ˆ()ˆ( 1 ⋅=+  where nq)ˆ( is 
the probability amplitude vector of the state at the nth 

transition step. The probability amplitude is 
normalized with respect to the Euclidean norm after 
each transition step by application of 
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eigenvector; the eigenvectors form a complete 
orthogonal basis under the assumption of a 
symmetric adjacency matrix. This fact is the reason 
of using the adjacency matrix as the transition 
matrix in the Markov transition.  

It should be noted that using a Markov process 
normalized by the Euclidean norm makes it possible 
to describe the network states in a multi-modal way. 
Previously, in such systems as the Google search 
engine (Langville, 2006) using a stochastic transition 
matrix normalized by the 1-norm, higher order 
modes cannot define the probability of finding a 
random walker because the components of 
eigenvectors are not always positive.  

2.2 Non-linear Markov Transition 

To examine multi-modal dynamics of the network, 
we define a Markov transition with weak non-
linearity; a non-linear Markov process can be 
formulated as follows: the transition coefficient from 
node ”j “ to node ”i” is affected by the probability 
amplitude nkq )( of node ”k” linked to node ”i”. Such 
a non-linear Markov transition is given by 
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, whereν is a measure of the strength of the non-
linearity. Since the Markov property states that the 
probability distribution for the system at the next 
step depends only on the current state of the system, 
the non-linear state transition given by equation (1) 
indeed defines a Markov process. It is possible to 
define higher-order non-linear interactions in a 
similar way (Ozeki,2009). Since we have a complete 
basis of orthogonal eigenvectors, the mode 
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mode evolution of the system (Haken,1987). 

2.3 Node, Mode and Network 
Entropies  

The entropy may be efficient measure of network 
optimazation. We define three kinds of entropies 
based on the Shanonn entropy (Shanonn,1948) using 
the probability finding a random walker at each node. 
The node entropy iNE  is defined by 

2 2( ) ln(( ) )m m
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of mode m.The mode entropy mME  is defined by 
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entropy of the mode m  over all of node i.  The 
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network entropy GE is defined by 

i m
i m

GE NE NE= =∑ ∑ .   

3 POINT STIMULUS 

3.1 Formulation of “Point Stimulus 
Response” 

The point stimulus response is the impulse response 
in the electronic circuit system: that is, the temporal 
response stimulated by a delta-function provides the 
network system characteristics. The point stimulus 
response is defined by the temporal response in the 
non-linear Markov transition for the positive point 
stimulus;  ),( piPPSi δ= , where node "" p is a 
location of stimulus. We found that the inverse or 
negative delta function is more effective in some 
network with particular symmetric nature. In a kind 
of network having skew degeneracy (Ozeki,2010), a 
negative point stimulus, ),( piNPSi δ−= is effective 
to stimulated the mode competition among the skew 
degenerate modes. In the following, for the first, the 
positive point stimulus response is discussed by a 
concrete network example and in later the negative 
point stimulus response is discussed.  The 
stimulation of the mode competition between the 
modes close to quasi-skew degeneracy is interesting 
related to the potential activity or development of 
nodes. 

3.2 Diagnosis of Tokyo Railway System 

Fig.1 denotes the complexity of a central part of 
Tokyo Railway System including subways. The 
adjacency matrix is assumed to be symmetric and 
the total number of stations (nodes) is truncated to 
736 (Rail Map of Tokyo Area, 2004). A distorted 
hexagonal in Fig.1 is “Yamanote Circular Line” 
which includes several well-known stations such as 
Tokyo, Akihabara, Ikebukuro, Shinjuku, Shibuya 
and etc. Before the detail analysis of point stimulus 
response, it seems better to summarize the mode 
structure of the network. The list of eigenmode 
naming and eigenvalue is shown the top of Fig.2. 
The probability amplitude distributions of the 
important four modes are shown in Fig.2. The 
dominant mode with the largest positive eigenvalue  
is  named mode #2 of which probability amplitude is 
positive.  The  mode   #  0  has  the  largest  negative 

eigenvalue and its mode amplitude is similar with 
that of mode #3, that is the mode with the second 
largest positive eigenvalue. These mode relations are 
important to understand the mode competition. It is 
our surprise  that  the  probability  distribution of the 

 
Figure1: Tokyo Metropolitan Railway Network System. 

 
Figure 2: Eigenmode naming, eigenvalue and eigenvectors.  
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Figure 4: Location Dependence of Positive Point Stimulus Response. 

 
Figure 3: Probability distribution of mode #0. 

mode having the largest negative eigenvalue shown 
in Fig.3 extract the world largest three stations from 
viewpoint of number of passengers without any 
passenger statistics. In Google-like matrix, the 
dominant mode provides only the degree vectors. 

3.3 Location-Dependent Positive 
Point-Stimulus 

We set the point stimulus on from Shinsjuku to 
Tokyo, along the Yamanote-line in CCW. The point 

stimulus responses of these stations calculated by the 
non-linear Markov process are shown in panels of 
Fig.4  with station name and code number. The 
mode amplitude nnnn aaaa 3,2,1,0  correspond to the 
mode #0,#1,#2 and #3, being shown in Fig.2. The 
point stimulus responses of from Shinjuku #0 to 
Ebisu #4 dominantly consist of damped oscillation 
of mode #0 (red) and a quick build-up of mode #2 
(green). The damped oscillation amplitudes decrease 
toward Ebisu #4. On the other hand, in the point 
stimulus responses of from Ohsaki#7 to Tokyo #13, 
damped oscillation of the mode #1 denoted by blue, 
becomes dominant, and the damped oscillation 
amplitudes reach at the peak around Shinagawa #8 
and Shinbashi #11.  

3.4 Location-Dependent Negative 
Point-Stimulus  

Fig.5 denotes the negative point stimulus responses  
For typical three stations: Shinjuku, Shibuya and 
Tokyo. The bottom panels of Fig.5 show the 
probability amplitude distribution insp , finding a 
random walker, calculated by the superposition of  
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Figure 5: Location Dependant Point Stimulus Response. 

modes using Eq.2.  In the case of Shinjuku and 
Shibuya, since the sustainable oscillation of mode #0 
is observed, the probability distribution of finding 
random walker also oscillates between the in-phase 
superposition and the out-of-phase superposition, 
just as shown in the bottom panels. The red line 
denotes the in-phase superposition and the blue line 
denotes the out-of-phase superposition. (Here, we 
should note that the sign of out-of-phase 
superposition is inverted for clear understanding.)  
The distance between nodes included in red and blue 
lines is only one link distance: For example, 
Shinjuku (code #0) and Ikebukuro(code #25) in one-
link distance due to the Saikyo-line, so that the 
random walker can transit between red/blue station-
groups within one step. In the case of Tokyo, the 
superposition of modes of Eq.2 shows no temporal 
variation after damped oscillation is vanished.  

∑ ⋅=
m

m
inmin asp φ)(,  (2)

  

3.5 Categorization of Point Stimulus 
Response and Response Time 

It is convenient to categorize the point stimulus 
response into the following two: The point stimulus 
response with the sustainable oscillation is named 
“the infinite response point”. The point stimulus 
response with the finite response is named “ the 

finite response point”. The categorization of stations 
within the Yamanote circular line is shown in the 
bottom panels of Shinjuku and Shibuya, in Fig.5, 
that is, the stations with larger probability amplitude, 
such as Shinjuku, Yoyogi, Harajuku, Shibuya, 
Ikebukuro, Shinohkubo  and Yotsuya, are the 
infinite response nodes. These are the stations within 
one-link distance of Shinjuku and can be said as 
satellite stations: The others are the finite response 
nodes. 

 It should be noted that the build-up time of the 
dominant mode #2 takes longer steps to reach the 
stationary state due to the mode competition with 
mode #0, in the case that the positive point stimulus 
is applied to from Shinjuku to Ebisu, as shown 
inFig.4. The response time of nodes in the network 
is mainly determined by this mode competition. For 
further study, the recovery time from the point 
failure of the Tokyo Railway Network will be 
analysed from these viewpoints. 

4 POINT FAILURE OF 
NETWORK SYSTEM 

The point failure of the station in the Tokyo 
Metropolitan Railway Network System is one of 
concrete image of the point stimulus. We can 
estimate the total suffered passengers as shown in 
Fig.6 using  the following; 
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where mstimulus is the projection of the positive 

point stimulus iPPS on the eigenvector m
iφ . The total 

number of suffered passengers denoted by red line is 
rather independent of the location of point failure 
compared with larger variation in the number of 
passengers. 
We feel that the number of suffered passenger 
calculated seems rather larger than the reported 
figures. Tokyo metropolitan railway system has a lot 
of redundancy in it structure for reliable operation, 
but we define the link topologically, that is, multiple 
duplication of trucks between adjacent stations is 
neglected. It is necessary to improve the accuracy of 
the adjacency matrix expression. 

 
Figure 6: Total number of Suffered Passengers. 

5 CONCLUSIONS AND FUTURE 
WORKS 

We discuss on the multi-modal analysis method for 
discovery of knowledge from pattern information. 
We proposed a diagnosis tool of the point stimulus 
response and demonstrated it in Tokyo Metropolitan 
Railway Network system. The point stimulus is 
effective to find interesting nodes to characterise the 
system, such as the excitation sustainable oscillation. 
It is not verified by physical data yet, but seems to 
be  a  way  of  an  approval  of  “Tsubo”  in  “shiatsu 
therapy”.  

As for future work, we would like to discuss on 
the knowledge discovery based on pattern structure 
embedded in data, automatically collected in the 
network systems. It is believed that the adjacency 
matrix obtained automatically, in such Facebook, 
gives us interesting chances to analyse the social 
substructures and their stability, using these new 
knowledge discovery technology.   
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